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Abstract 
 

Storage@home is a distributed storage infrastructure 
developed to solve the problem of backing up and sharing 
petabytes of scientific results using a distributed model of 
volunteer managed hosts. Data is maintained by a 
mixture of replication and monitoring, with repairs done 
as needed. By the time of publication, the system should 
be out of testing, in use, and available for volunteer 
participation. 
 
 
1. Introduction 
 

Many researchers including ourselves are currently 
generating huge amounts of computational data and 
results that need to be stored, backed up, processed, and 
shared with other researchers who may have ideas for 
how to extract knowledge from the data. Traditional 
methods of storing the data to RAID, backing it up to 
tape, and shipping tapes by land have stopped scaling 
with the amounts of data being generated and money 
available. 

For example, the Folding@home[6] distributed 
computing project is currently running over 210 TFLOPS 
(actual) and even with the aggressive discarding and 
compression of generated data, it has resulted in 150 
terabytes (TB) of generated data. This is growing at over 
2 TB per month and all of this data needs backup and 
some limited distribution. This leads us to use distributed 
computing techniques to address our storage problem. 

The common distributed computing model fits the 
current state of the Internet with fast downloads, slow 
uploads, and often-disconnected hosts, and those are 
exactly the problems to overcome in this project. A 
distributed storage project is also atypical in the fact that 
it is not GRID or LAN-centric assuming very high 
available bandwidth to any given host at any time. 
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One additional challenge is the slow broadband speeds 
on the commercial Internet. The most common upload 
speeds in North America are limited to 384 Kbps under 
ideal conditions. This makes using Internet hosts at 30 
KB/sec 1,000 times slower then tape backup, and 10,000 
times slower then a local RAID volume. (We can safely 
multiply broadband speeds in this paper by 20 for East 
Asia, as their infrastructure is more developed).  

We designed an architecture for practical use, that 
overcomes these problems by aggregating large numbers 
of volunteer run hosts, each with limited bandwidth and a 
small donation of storage.  By combining storage 
contributions on the order of 10 GB per computer 
multiplied by tens to hundreds of thousands of computers, 
a significant storage pool can be generated.  The 
challenge is in determining the means to store and retrieve 
this data efficiently and rapidly, as well as handling data 
integrity via redundancy and testing.  We detail our 
solutions to those issues below. 
 
2. Architecture 
 

In this section, we will focus on the policy engine, 
registration, and volunteer aspects of the system shown in 
Figure 1. These are the aspects that one would only see in 
a volunteer configuration. In enterprise or personal 
storage, hosts would be self-managed or contracted with 
vendors under a Service Level Agreements, leading to a 
different set of challenges, but managing the system is 
straightforward due to very low failure rates and high 
bandwidth. 
 
2.1. Design Assumptions 
 

The design assumptions result from a mixture of 
measured numbers from the Stanford networks, 
Folding@home logs, and policies resulting from 
experience with distributed computing. 



 
 

Figure 1: Storage@home Architecture 
 

To begin, one must consider how many hosts would be 
volunteered.  Based on previous distributed computing 
projects, a reasonable number of hosts to assume is on the 
order of 100,000 computers. This would gives one access 
to one petabyte of raw storage initially. Most users will 
have up to approximately 400Kbps of upload bandwidth, 
so 30 KB/s a reasonable average expectation. As ISPs 
typically oversubscribe, hosts near each other will have to 
compete for bandwidth. 

Based on results from Folding@Home (unpublished 
results), we have found that host and volunteer churn is 
about 1/2% per day, rising to the 1%/day range after an 
influx of users from press coverage. We will cover 
recruiting in more depth in Section 3.1. 

Files are around 100 MB each and typically represent a 
complete simulation run in Folding@home. This is a 
convenient size but not a significant parameter to 
performance. When dealing with the data for reading, 
writing, or transfer to other researchers, files are batched 
up or continuously queued as very large transfers. In 
general data is generated on the scale of weeks and 
months, so the need to store and retrieve data is not a 
surprise. The order of retrieval is also not important since 
each run is fairly atomic and can be processed in parallel 
and out of order. 

A reasonable estimate of total bandwidth is 1 TB/day, 
in and out of the Stanford network to the commercial 
Internet and Internet2. This is likely to increase over time 
to match the increase in data generated. 

One also needs to consider other challenges to the 
network.  For example, consider natural disasters that 
cause the loss of all hosts on a country-wide basis, such as 
the December 26, 2006 earthquake near Taiwan. Internet 
connectivity within six countries was almost completely 
cutoff from the world for days. Outages due to fire, 
electrical loss, and storm damage are also not uncommon.  
Thus, one would need to consider a means to handle these 
correlated failures in a distributed storage system. 
 
2.2. Implementation 
 

The storage clients, metadata server, and identify 
server functions are handled by a modified version of 
CosmFS and CosmID[2]. The metadata server stores 
information about all the files stored in the system, 
checksums, locations, and allows for searches and status 
information to be run. The identity server handles the 
security and identity functionality, and location tracking 
of mobile and dynamic IP hosts. 

We mainly focused on pre-configuration, hard coding 
authority to the Storage@home main servers, and 
replacing the normal user interface with the policy engine. 
Installers were written along with signup wrappers to 
make it very easy for our volunteers to install and 
participate without having to understand options beyond 
how much space we can use and tying the host to their 
user profile in the public statistics. 

Briefly, each file is encrypted and split into four copies 
striped across ten hosts, giving each host an overlapped 
40% of the file. This means that data is only lost if four or 
more of the ten hosts fail, and four or more failed hosts 
are adjacent in the wrapped ordering. So while some 
reliability is lost due to the ten hosts being involved, not 
all failures of 4-7 hosts result in loss. The end result is 
that in exchange for a 2.5x speedup in read and self repair 
speed, we give up only one "nine" of reliability. 

Writing to the hosts is done by sending one copy of the 
data to a set of the 10 hosts, and letting them relay the 
data to complete the other 3 replicas with client-to-client 
transfers. Once that is done, the replicas are hashed and 
verified by the metadata server before the data is marked 
as stored. 

Reading back a file can be done by reading all 10 
hosts, giving us a higher read bandwidth. This is still not 
very much bandwidth, but since many files can be 
retrieved simultaneously this yields far more available 
bandwidth then we can possibly use. 

One significant problem is that to do this, large 
numbers of temporary command and long lived data 



connections need to be maintained to all the hosts 
involved in transfers at any given time. Modern operating 
systems are still not good at maintaining thousands of 
TCP connections or often even hundreds, so we will 
likely have to employ multiple boxes to handle all the 
connections. Overloading the local routers is also of some 
concern, but is simpler to fix by changing parameters in 
the routers. 

The policy engine is the master of the system, and does 
all the planning and coordination of the storage. It pulls 
the information on what hosts are available from the 
identity server, and the data on what should be in the 
system from the metadata server. This allows it to trigger 
storage, retrieval, and transfer of data for us. It is also 
constantly watching the entire system ready to trigger 
repair operations. 

A major challenge for the policy engine is the decision 
of where to put replicas of files so that the chances of loss 
are minimized. We use methods ranging from traceroute 
data, ISP names, clustering of the outages times, to some 
simple hard coded rules. One such rule is that we expect 
all Windows machines to reboot on the second Tuesday 
of each month and some fraction of them not to return 
until the owner intervenes. We will likely add more such 
rules as we discover them. 
 
2.3 Monitoring and Self-repair 
 

As with any storage system, the critically important 
aspect is not merely the size or speed of the storage pool, 
but how well it can handle failure and recovery 
operations. Even with every effort to store the data 
carefully on uncorrelated hosts, we will still expect 500-
1000 hosts to disappear every day representing 5-10 TB 
of space that needs to be relocated, due to the nature of 
volunteer computing. 

Monitoring is handled by self reporting, heartbeat 
functions, and polling by the identity server. Self 
reporting is handled during a controlled shutdown and at 
startup. In the case of crashes, during startup the storage 
client checks that the last shutdown was controlled and 
reports the outage since the last checkpoint. For any 
downtime the self reported times and the polling reported 
downtimes may overlap, so the downtimes are merged 
with min-start max-end and stored. 

Each host is involved in self-repair operations for the 
entire system. In an average day a host will be involved in 
repair related transfers proportional to it's own storage, or 
approximately it's own storage used times the failure rate 
of hosts. Table 1 summarizes the expected values and 
overhead of the system once fully operational. The core 
limitation to the system is the amount of time a host is 
using its network connections per day, as we do not want 
to have hosts busy when the user wants it. We keep this 

Hosts failures/day < 1,000 
MTBF of any host 86 Seconds 
Repair ops/day 1,000,000 
Repair ops/second 12 
Hosts self-repair upload/day 100 MB 
Host average upload/second 30 KB 
Net use per host/day 10 x 5.5 Minutes 
Average repair ops in flight ~4,000 

 
Table 1: Summary of Self-repair Expectations 

 
under an hour total and only 5.5 minutes at a time. Since 
we know the host's time zone we use that to repair from 
hosts that are in nighttime hours if possible. Observe that 
24 hours worth of failures can all be fixed in parallel in 
under an hour. 

Since we do not declare a host dead for 24 hours, we 
have much of that time to do fairly careful planning and 
optimizations on the locations of the new replicas. We can 
use all of the demographic data, clustering, and other 
methods to decide where to move storage. If at any time 
more then 2 adjacent replicas of a file are down, we can 
add replicas of that file immediately without any 
significant overhead, pruning any extras periodically. 
 
3. Deployment 
 

Storage@home follows a use model typical of a 
volunteer computing project, with an agent installed on 
the user's machine after they register to participate. 
However, much more attention needs to be paid to the 
user and the hosts contributing storage during the signup 
and maintenance processes then in other projects. 

In computation-centric distributed computing, the 
location and management of the hosts has very little effect 
on the progress of the project. Slow, disconnected, or 
faulty (and cheating) hosts are either not heard from 
again, or are quickly screened out by result verification 
mechanisms in the servers. 

In storage-centric systems, the need for long host life 
and the ability to decorrelate host location and failures are 
the most important features. This results in the need to 
gather accurate information during signup from the user 
and from automated tests. We ask the user for as much 
user and host demographic information as possible 
including location, time zone, ISP, and how much space 
we can use. We gather data in their bandwidth, ISP, router 
path to our servers, operating system, and system 
performance. 

Unfortunately, this leads to several rather negative 
types of user feedback. The users most willing to help and 
give us significant amounts of storage are not allowed to 
do so due to the bandwidth constraints of their broadband 



connections. Also unlike computation projects, using 
machines at work or school would also be quickly noticed 
by network administrators due to the self-repair overhead. 

Since we are using the bandwidth of hosts instead of 
any significant computation on the hosts, this makes it 
possible for our Folding@home volunteer base to run 
both projects at full capacity. This is important as it 
allows us to avoid a zero-sum tradeoff to existing 
participants. 

The current state of broadband in North America is a 
challenge to this type of project. Speeds are one 
sometimes two orders of magnitude slower then eastern-
Asian options for the same price, which would allow us to 
use proportionally more storage per host. Currently all of 
the limitations of the systems are bandwidth related. 
Happily, this is increasing and the Internet should grow as 
fast as we can generate and send the data out. 

The electrical usage of a host already running a 
computationally intense process or running as a server 
will not be effected by also running Storage@home as 
they are on all the time already. This is not true of hosts 
that were previously idle in hibernation when not in use, 
with the drives and other power-hungry components 
shutdown. For distributed storage, the computer need not 
be busy, but it must remain awake enough to answer 
incoming TCP connections (idle CPU, disk and display 
powered down). The important question here is the cost of 
this additional electrical use on the hosts that would be 
idle versus the cost of building and maintaining a data 
center 24/7. Since most all of our volunteers would be 
likely running Folding@home, and may be using their 
machines 24/7 for other purposes (e.g. runing a HTTPD 
server on their home machine), this is probably not a great 
increase in total energy use, or may even be a wash. 
 
3.1. Volunteer Recruiting and Motivation 
 

Recruiting the right type of volunteers is as important 
or more important than the quantity of volunteers in this 
case. In order for the system to perform well, we would 
like people to participate for at minimum 6 months. There 
are three main causes of users leaving a project when they 
are still wanted: intentionally leaving due to lack of 
interest, forgetting to reinstall after a hardware/OS failure, 
and system takeover by spyware and rootkits rendering 
the host useless. 

Volunteers are willing to participate because the 
project has merit higher then the opportunity cost of 
volunteering, and has no real financial or commercial 
benefits to the sponsors. History is littered with projects 
that lacked one of these two aspects, so they need to be 
taken seriously. 

The reward system for users must be chosen very 
carefully so that the amount of reward aligns exactly with 

what is most useful for the project. A central part of 
volunteer computing has been some means of 
competition.  Volunteers are rewarded with points, which 
are made publicly viewable on the project statistics site. 
Volunteers also form teams to compete with other teams 
and to make recruiting more fun. In the case of 
Storage@home, we award points for giving us space, and 
penalize them if their hosts end up being marked as dead 
without them telling us first. This system will be changed 
as we find out what works. 

However, as volunteers compete, some fraction of 
them will try to cheat the system and some may be 
hostile. This is historically a low enough percentage that it 
is relatively easy to detect and prevent, but it does take a 
large amount of time maintain. The registration server is 
aware of the existing Folding@home user base and 
statistics, but because of the intentional lack of strong 
identity in Folding@home, linking the two profiles is 
rather limited. 
 
3.2. Policy Risk 
 

One cannot work on the modern Internet without 
considering policy risks. This encompasses all the 
political and business reasons that may cut off 
communications with a great number of hosts at the same 
time before repairs can be made. 

One example is that many companies have blocked all 
Internet traffic besides HTTP traffic, and that is heavily 
monitored and filtered. We actively discourage users from 
setting up Storage@home at work for this and several 
other reasons. A host’s ISP can also change policies at 
any time with no notice to block some or all ports and 
cutoff communications. In general all peer-to-peer-like 
traffic is aggressively either blocked or packet-shaped 
today, and will be even more so in the future. The largest 
risk is that the ports we use get labeled peer-to-peer, 
which would make those ports permanently unusable to 
anyone on the Internet, and require us to redeploy on 
different ports. 

We address these risks by taking measures to 
decorrelate storage to these parameters as well, storing 
replicas in different nations, states, and ISPs. 
Unfortunately, in the U.S. we are back to only a handful 
of providers, and most of our user base is in the U.S. so 
this is not always possible, and is as much of a risk to us 
as it is to every other project that uses the Internet. 
 
3.3. The (other) Graduation Crisis 
 

Students at universities are a common group of 
volunteers to distributed computing projects, and present 
unique challenges.  Indeed, graduation is a wonderful 
time, unless you’re running a distributed storage project. 



In May/June and December (Christmas break), millions of 
students around the world move from high speed campus 
networks, to lower speed broadband connections or even 
to modem lines. For ~3/4 of these hosts, the move is 
temporary, but for those graduating it is a permanent 
downgrade in bandwidth, and thus in the capacity we can 
utilize on their computer. This is the kink in the system - 
high bandwidth hosts are only high bandwidth 
temporarily. 

Educational hosts accessible by Internet2 are far faster 
then hosts on broadband, but they have a high degree of 
correlation. Many hosts at one site are far less reliable 
then if they are spread around and thus are less attractive 
in this respect. 

There is also offline travel or maintenance time for 
most users, more common in students. The simplest 
solution to these problems turns out work well. Before 
these times of low bandwidth or travel/maintenance, we 
ask the users to tell us so we can flag the host as 
downgraded bandwidth or as in transit and not penalize 
them. This allows us to exempt them from the storage 
limit or the host-failure time limits respectively if we 
know about it ahead of time, since in almost all cases the 
data will be completely intact when they return. 

The end result of this host relocation is that for now we 
choose to allow each machine the same maximum amount 
of space. This allows us to not worry about losing 
"superhosts" and focus on other reliability and 
optimization issues. This also actually helps recruitment, 
since people will be more likely to get their friends to run 
it as well to boost their team stats, since individual stats 
will be harder to increase. 
 
4. Evaluation 
 

Evaluation of the working system is primarily about 
reliability and thus preventing the loss of data with 
completely unreliable hosts. 

However, there are many other metrics to consider 
even though most performance is limited strictly by our 
connection to the internet. The overhead involved in 
doing self-repair compared to other systems. This places 
stresses on volunteer systems and our servers. How well 
our reliability predictions compare to actual reliability is 
also a good metric of how well our policy engine is 
performing. 

Scaling will also be a factor as the internet speeds up 
and we can store more on each node. Our servers will 
need to be replaced by more servers, but in all likelihood 
the outgoing bandwidth will scale up much slower then 
consumer bandwidth, server abilities, and host reliability, 
which means that one’s institution’s Internet connections 
remain the bottleneck.  Nevertheless, we believe 

Storage@home will perform very well by these metrics, 
with caveats mentioned below. 
 
4.1. Limitations 
 

Using this sort of system for any sort of real-time or 
ad-hoc storage is not feasible. The bandwidth limitations 
throughout require that one plan ahead, but as stated 
before, this is not generally a problem for researchers. It's 
not difficult to plan ahead, and thus exploit the massive 
parallelism in the storage. 

The complexity of choosing uncorrelated hosts and 
coordinating the repairs is non-trivial. The overhead 
involved in repair and verification is still minimal 
compared to the data bandwidth, so this will likely never 
become an issue.  The master hosts must also be well 
maintained, themselves replicated with reasonable 
failover and recovery abilities.  
 
5. Related Work 
 

The number of actively or formerly deployed 
distributed storage systems on this scale is unfortunately 
limited. 

SRB[1] is used to store several petabytes of federated 
storage in GRID systems. The storage hosts are somewhat 
trusted and have high reliability, so the design constraints 
are different. Bandwidth is measures in gigabits/second 
between locations, and each location has many terabytes 
on average. However, this is still the closest deployed 
system to Storage@home that we can find. 

Commercial Internet backup solutions compare in 
many ways to Storage@home, but their cost is prohibitive 
to be used by a research group to store hundreds of 
terabytes to petabytes, and they represent a single source 
of failure via disaster or bankruptcy just as any off-site 
storage system. In the past we have backed up to Internet2 
data centers, but this also has the same problems. 

The Google File System[4] uses large racks of cheap 
drives, but relies on a high speed LAN and makes a large 
set of operational assumptions that do not match up with 
our usage. It is an example of a cluster-based system and 
is representative of an entire class of file systems using a 
metadata and data server model over the last 40 years. 

Fully peer-to-peer systems research tend to focus on 
anonymity for large numbers of users, or the large scale 
distribution of copyrighted works. This results in a great 
deal of complexity as well as lacking the guarantees and 
reliability metrics we require. OceanStore[5] and 
PAST[3] are good representatives of this class of 
research. 

Erasure codes are currently used in many storage and 
peer-to-peer systems as opposed to replication. Since the 
local Internet connection is a serious bottleneck in getting 



the data out, straight replication allows us to send only 
one copy of the data and then use client-client transfers to 
do the replication. Verifying this has happened correctly 
only adds 0.1% to data overhead, where erasure coding 
would add 100% using a 1/2 encoding. Computationally 
feasible erasure code methods are also patented, and the 
high likelihood of submarine patents makes them 
untouchable in deployable systems for several more 
decades. 
 
6. Conclusions and Future Work 
 

Maintaining a centralized online petabyte would cost 
well over 1 million dollars for hardware alone, require 
twelve racks of disks, a large server room, and result in a 
large monthly electrical bill. Storage@home should allow 
us to soon access that amount of storage and maintain it 
with higher reliability and far less cost. 

Future work includes the analysis of the performance 
of the system, and comparing it to our expected results in 
terms of reliability, and usability by a variety of 
researchers. We should have quite a large amount of data 
on machine failures, and can refine our correlation models 
to make them even more robust in planning where to 
place replicas. We also suspect we can decrease the 
replication factor due to the speed repairs can be made 
and still maintain extremely high reliability. Once 
established the system can be extended to other research 
groups at Stanford and serve to lower the cost of storage. 
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