
Storage@home: Petascale Distributed Storage

Adam L. Beberg1, Vijay S. Pande2

1Stanford University
Computer Science Department

Stanford, CA, 94305
beberg@cs.stanford.edu

2Stanford University
Chemistry Department
Stanford, CA, 94305
pande@stanford.edu

Abstract

Storage@home is a distributed storage infrastructure
developed to solve the problem of backing up and sharing
petabytes of scientific results using a distributed model of
volunteer managed hosts. Data is maintained by a
mixture of replication and monitoring, with repairs done
as needed. By the time of publication, the system should
be out of testing, in use, and available for volunteer
participation.

1. Introduction

Many researchers including ourselves are currently
generating huge amounts of computational data and
results that need to be stored, backed up, processed, and
shared with other researchers who may have ideas for
how to extract knowledge from the data. Traditional
methods of storing the data to RAID, backing it up to
tape, and shipping tapes by land have stopped scaling
with the amounts of data being generated and money
available.

For example, the Folding@home[6] distributed
computing project is currently running over 210 TFLOPS
(actual) and even with the aggressive discarding and
compression of generated data, it has resulted in 150
terabytes (TB) of generated data. This is growing at over
2 TB per month and all of this data needs backup and
some limited distribution. This leads us to use distributed
computing techniques to address our storage problem.

The common distributed computing model fits the
current state of the Internet with fast downloads, slow
uploads, and often-disconnected hosts, and those are
exactly the problems to overcome in this project. A
distributed storage project is also atypical in the fact that
it is not GRID or LAN-centric assuming very high
available bandwidth to any given host at any time.

1-4244-0910-1/07/$20.00 c2007 IEEE.

One additional challenge is the slow broadband speeds
on the commercial Internet. The most common upload
speeds in North America are limited to 384 Kbps under
ideal conditions. This makes using Internet hosts at 30
KB/sec 1,000 times slower then tape backup, and 10,000
times slower then a local RAID volume. (We can safely
multiply broadband speeds in this paper by 20 for East
Asia, as their infrastructure is more developed).

We designed an architecture for practical use, that
overcomes these problems by aggregating large numbers
of volunteer run hosts, each with limited bandwidth and a
small donation of storage. By combining storage
contributions on the order of 10 GB per computer
multiplied by tens to hundreds of thousands of computers,
a significant storage pool can be generated. The
challenge is in determining the means to store and retrieve
this data efficiently and rapidly, as well as handling data
integrity via redundancy and testing. We detail our
solutions to those issues below.

2. Architecture

In this section, we will focus on the policy engine,
registration, and volunteer aspects of the system shown in
Figure 1. These are the aspects that one would only see in
a volunteer configuration. In enterprise or personal
storage, hosts would be self-managed or contracted with
vendors under a Service Level Agreements, leading to a
different set of challenges, but managing the system is
straightforward due to very low failure rates and high
bandwidth.

2.1. Design Assumptions

The design assumptions result from a mixture of
measured numbers from the Stanford networks,
Folding@home logs, and policies resulting from
experience with distributed computing.

Figure 1: Storage@home Architecture

To begin, one must consider how many hosts would be
volunteered. Based on previous distributed computing
projects, a reasonable number of hosts to assume is on the
order of 100,000 computers. This would gives one access
to one petabyte of raw storage initially. Most users will
have up to approximately 400Kbps of upload bandwidth,
so 30 KB/s a reasonable average expectation. As ISPs
typically oversubscribe, hosts near each other will have to
compete for bandwidth.

Based on results from Folding@Home (unpublished
results), we have found that host and volunteer churn is
about 1/2% per day, rising to the 1%/day range after an
influx of users from press coverage. We will cover
recruiting in more depth in Section 3.1.

Files are around 100 MB each and typically represent a
complete simulation run in Folding@home. This is a
convenient size but not a significant parameter to
performance. When dealing with the data for reading,
writing, or transfer to other researchers, files are batched
up or continuously queued as very large transfers. In
general data is generated on the scale of weeks and
months, so the need to store and retrieve data is not a
surprise. The order of retrieval is also not important since
each run is fairly atomic and can be processed in parallel
and out of order.

A reasonable estimate of total bandwidth is 1 TB/day,
in and out of the Stanford network to the commercial
Internet and Internet2. This is likely to increase over time
to match the increase in data generated.

One also needs to consider other challenges to the
network. For example, consider natural disasters that
cause the loss of all hosts on a country-wide basis, such as
the December 26, 2006 earthquake near Taiwan. Internet
connectivity within six countries was almost completely
cutoff from the world for days. Outages due to fire,
electrical loss, and storm damage are also not uncommon.
Thus, one would need to consider a means to handle these
correlated failures in a distributed storage system.

2.2. Implementation

The storage clients, metadata server, and identify
server functions are handled by a modified version of
CosmFS and CosmID[2]. The metadata server stores
information about all the files stored in the system,
checksums, locations, and allows for searches and status
information to be run. The identity server handles the
security and identity functionality, and location tracking
of mobile and dynamic IP hosts.

We mainly focused on pre-configuration, hard coding
authority to the Storage@home main servers, and
replacing the normal user interface with the policy engine.
Installers were written along with signup wrappers to
make it very easy for our volunteers to install and
participate without having to understand options beyond
how much space we can use and tying the host to their
user profile in the public statistics.

Briefly, each file is encrypted and split into four copies
striped across ten hosts, giving each host an overlapped
40% of the file. This means that data is only lost if four or
more of the ten hosts fail, and four or more failed hosts
are adjacent in the wrapped ordering. So while some
reliability is lost due to the ten hosts being involved, not
all failures of 4-7 hosts result in loss. The end result is
that in exchange for a 2.5x speedup in read and self repair
speed, we give up only one "nine" of reliability.

Writing to the hosts is done by sending one copy of the
data to a set of the 10 hosts, and letting them relay the
data to complete the other 3 replicas with client-to-client
transfers. Once that is done, the replicas are hashed and
verified by the metadata server before the data is marked
as stored.

Reading back a file can be done by reading all 10
hosts, giving us a higher read bandwidth. This is still not
very much bandwidth, but since many files can be
retrieved simultaneously this yields far more available
bandwidth then we can possibly use.

One significant problem is that to do this, large
numbers of temporary command and long lived data

connections need to be maintained to all the hosts
involved in transfers at any given time. Modern operating
systems are still not good at maintaining thousands of
TCP connections or often even hundreds, so we will
likely have to employ multiple boxes to handle all the
connections. Overloading the local routers is also of some
concern, but is simpler to fix by changing parameters in
the routers.

The policy engine is the master of the system, and does
all the planning and coordination of the storage. It pulls
the information on what hosts are available from the
identity server, and the data on what should be in the
system from the metadata server. This allows it to trigger
storage, retrieval, and transfer of data for us. It is also
constantly watching the entire system ready to trigger
repair operations.

A major challenge for the policy engine is the decision
of where to put replicas of files so that the chances of loss
are minimized. We use methods ranging from traceroute
data, ISP names, clustering of the outages times, to some
simple hard coded rules. One such rule is that we expect
all Windows machines to reboot on the second Tuesday
of each month and some fraction of them not to return
until the owner intervenes. We will likely add more such
rules as we discover them.

2.3 Monitoring and Self-repair

As with any storage system, the critically important
aspect is not merely the size or speed of the storage pool,
but how well it can handle failure and recovery
operations. Even with every effort to store the data
carefully on uncorrelated hosts, we will still expect 500-
1000 hosts to disappear every day representing 5-10 TB
of space that needs to be relocated, due to the nature of
volunteer computing.

Monitoring is handled by self reporting, heartbeat
functions, and polling by the identity server. Self
reporting is handled during a controlled shutdown and at
startup. In the case of crashes, during startup the storage
client checks that the last shutdown was controlled and
reports the outage since the last checkpoint. For any
downtime the self reported times and the polling reported
downtimes may overlap, so the downtimes are merged
with min-start max-end and stored.

Each host is involved in self-repair operations for the
entire system. In an average day a host will be involved in
repair related transfers proportional to it's own storage, or
approximately it's own storage used times the failure rate
of hosts. Table 1 summarizes the expected values and
overhead of the system once fully operational. The core
limitation to the system is the amount of time a host is
using its network connections per day, as we do not want
to have hosts busy when the user wants it. We keep this

Hosts failures/day < 1,000
MTBF of any host 86 Seconds
Repair ops/day 1,000,000
Repair ops/second 12
Hosts self-repair upload/day 100 MB
Host average upload/second 30 KB
Net use per host/day 10 x 5.5 Minutes
Average repair ops in flight ~4,000

Table 1: Summary of Self-repair Expectations

under an hour total and only 5.5 minutes at a time. Since
we know the host's time zone we use that to repair from
hosts that are in nighttime hours if possible. Observe that
24 hours worth of failures can all be fixed in parallel in
under an hour.

Since we do not declare a host dead for 24 hours, we
have much of that time to do fairly careful planning and
optimizations on the locations of the new replicas. We can
use all of the demographic data, clustering, and other
methods to decide where to move storage. If at any time
more then 2 adjacent replicas of a file are down, we can
add replicas of that file immediately without any
significant overhead, pruning any extras periodically.

3. Deployment

Storage@home follows a use model typical of a
volunteer computing project, with an agent installed on
the user's machine after they register to participate.
However, much more attention needs to be paid to the
user and the hosts contributing storage during the signup
and maintenance processes then in other projects.

In computation-centric distributed computing, the
location and management of the hosts has very little effect
on the progress of the project. Slow, disconnected, or
faulty (and cheating) hosts are either not heard from
again, or are quickly screened out by result verification
mechanisms in the servers.

In storage-centric systems, the need for long host life
and the ability to decorrelate host location and failures are
the most important features. This results in the need to
gather accurate information during signup from the user
and from automated tests. We ask the user for as much
user and host demographic information as possible
including location, time zone, ISP, and how much space
we can use. We gather data in their bandwidth, ISP, router
path to our servers, operating system, and system
performance.

Unfortunately, this leads to several rather negative
types of user feedback. The users most willing to help and
give us significant amounts of storage are not allowed to
do so due to the bandwidth constraints of their broadband

connections. Also unlike computation projects, using
machines at work or school would also be quickly noticed
by network administrators due to the self-repair overhead.

Since we are using the bandwidth of hosts instead of
any significant computation on the hosts, this makes it
possible for our Folding@home volunteer base to run
both projects at full capacity. This is important as it
allows us to avoid a zero-sum tradeoff to existing
participants.

The current state of broadband in North America is a
challenge to this type of project. Speeds are one
sometimes two orders of magnitude slower then eastern-
Asian options for the same price, which would allow us to
use proportionally more storage per host. Currently all of
the limitations of the systems are bandwidth related.
Happily, this is increasing and the Internet should grow as
fast as we can generate and send the data out.

The electrical usage of a host already running a
computationally intense process or running as a server
will not be effected by also running Storage@home as
they are on all the time already. This is not true of hosts
that were previously idle in hibernation when not in use,
with the drives and other power-hungry components
shutdown. For distributed storage, the computer need not
be busy, but it must remain awake enough to answer
incoming TCP connections (idle CPU, disk and display
powered down). The important question here is the cost of
this additional electrical use on the hosts that would be
idle versus the cost of building and maintaining a data
center 24/7. Since most all of our volunteers would be
likely running Folding@home, and may be using their
machines 24/7 for other purposes (e.g. runing a HTTPD
server on their home machine), this is probably not a great
increase in total energy use, or may even be a wash.

3.1. Volunteer Recruiting and Motivation

Recruiting the right type of volunteers is as important
or more important than the quantity of volunteers in this
case. In order for the system to perform well, we would
like people to participate for at minimum 6 months. There
are three main causes of users leaving a project when they
are still wanted: intentionally leaving due to lack of
interest, forgetting to reinstall after a hardware/OS failure,
and system takeover by spyware and rootkits rendering
the host useless.

Volunteers are willing to participate because the
project has merit higher then the opportunity cost of
volunteering, and has no real financial or commercial
benefits to the sponsors. History is littered with projects
that lacked one of these two aspects, so they need to be
taken seriously.

The reward system for users must be chosen very
carefully so that the amount of reward aligns exactly with

what is most useful for the project. A central part of
volunteer computing has been some means of
competition. Volunteers are rewarded with points, which
are made publicly viewable on the project statistics site.
Volunteers also form teams to compete with other teams
and to make recruiting more fun. In the case of
Storage@home, we award points for giving us space, and
penalize them if their hosts end up being marked as dead
without them telling us first. This system will be changed
as we find out what works.

However, as volunteers compete, some fraction of
them will try to cheat the system and some may be
hostile. This is historically a low enough percentage that it
is relatively easy to detect and prevent, but it does take a
large amount of time maintain. The registration server is
aware of the existing Folding@home user base and
statistics, but because of the intentional lack of strong
identity in Folding@home, linking the two profiles is
rather limited.

3.2. Policy Risk

One cannot work on the modern Internet without
considering policy risks. This encompasses all the
political and business reasons that may cut off
communications with a great number of hosts at the same
time before repairs can be made.

One example is that many companies have blocked all
Internet traffic besides HTTP traffic, and that is heavily
monitored and filtered. We actively discourage users from
setting up Storage@home at work for this and several
other reasons. A host’s ISP can also change policies at
any time with no notice to block some or all ports and
cutoff communications. In general all peer-to-peer-like
traffic is aggressively either blocked or packet-shaped
today, and will be even more so in the future. The largest
risk is that the ports we use get labeled peer-to-peer,
which would make those ports permanently unusable to
anyone on the Internet, and require us to redeploy on
different ports.

We address these risks by taking measures to
decorrelate storage to these parameters as well, storing
replicas in different nations, states, and ISPs.
Unfortunately, in the U.S. we are back to only a handful
of providers, and most of our user base is in the U.S. so
this is not always possible, and is as much of a risk to us
as it is to every other project that uses the Internet.

3.3. The (other) Graduation Crisis

Students at universities are a common group of
volunteers to distributed computing projects, and present
unique challenges. Indeed, graduation is a wonderful
time, unless you’re running a distributed storage project.

In May/June and December (Christmas break), millions of
students around the world move from high speed campus
networks, to lower speed broadband connections or even
to modem lines. For ~3/4 of these hosts, the move is
temporary, but for those graduating it is a permanent
downgrade in bandwidth, and thus in the capacity we can
utilize on their computer. This is the kink in the system -
high bandwidth hosts are only high bandwidth
temporarily.

Educational hosts accessible by Internet2 are far faster
then hosts on broadband, but they have a high degree of
correlation. Many hosts at one site are far less reliable
then if they are spread around and thus are less attractive
in this respect.

There is also offline travel or maintenance time for
most users, more common in students. The simplest
solution to these problems turns out work well. Before
these times of low bandwidth or travel/maintenance, we
ask the users to tell us so we can flag the host as
downgraded bandwidth or as in transit and not penalize
them. This allows us to exempt them from the storage
limit or the host-failure time limits respectively if we
know about it ahead of time, since in almost all cases the
data will be completely intact when they return.

The end result of this host relocation is that for now we
choose to allow each machine the same maximum amount
of space. This allows us to not worry about losing
"superhosts" and focus on other reliability and
optimization issues. This also actually helps recruitment,
since people will be more likely to get their friends to run
it as well to boost their team stats, since individual stats
will be harder to increase.

4. Evaluation

Evaluation of the working system is primarily about
reliability and thus preventing the loss of data with
completely unreliable hosts.

However, there are many other metrics to consider
even though most performance is limited strictly by our
connection to the internet. The overhead involved in
doing self-repair compared to other systems. This places
stresses on volunteer systems and our servers. How well
our reliability predictions compare to actual reliability is
also a good metric of how well our policy engine is
performing.

Scaling will also be a factor as the internet speeds up
and we can store more on each node. Our servers will
need to be replaced by more servers, but in all likelihood
the outgoing bandwidth will scale up much slower then
consumer bandwidth, server abilities, and host reliability,
which means that one’s institution’s Internet connections
remain the bottleneck. Nevertheless, we believe

Storage@home will perform very well by these metrics,
with caveats mentioned below.

4.1. Limitations

Using this sort of system for any sort of real-time or
ad-hoc storage is not feasible. The bandwidth limitations
throughout require that one plan ahead, but as stated
before, this is not generally a problem for researchers. It's
not difficult to plan ahead, and thus exploit the massive
parallelism in the storage.

The complexity of choosing uncorrelated hosts and
coordinating the repairs is non-trivial. The overhead
involved in repair and verification is still minimal
compared to the data bandwidth, so this will likely never
become an issue. The master hosts must also be well
maintained, themselves replicated with reasonable
failover and recovery abilities.

5. Related Work

The number of actively or formerly deployed
distributed storage systems on this scale is unfortunately
limited.

SRB[1] is used to store several petabytes of federated
storage in GRID systems. The storage hosts are somewhat
trusted and have high reliability, so the design constraints
are different. Bandwidth is measures in gigabits/second
between locations, and each location has many terabytes
on average. However, this is still the closest deployed
system to Storage@home that we can find.

Commercial Internet backup solutions compare in
many ways to Storage@home, but their cost is prohibitive
to be used by a research group to store hundreds of
terabytes to petabytes, and they represent a single source
of failure via disaster or bankruptcy just as any off-site
storage system. In the past we have backed up to Internet2
data centers, but this also has the same problems.

The Google File System[4] uses large racks of cheap
drives, but relies on a high speed LAN and makes a large
set of operational assumptions that do not match up with
our usage. It is an example of a cluster-based system and
is representative of an entire class of file systems using a
metadata and data server model over the last 40 years.

Fully peer-to-peer systems research tend to focus on
anonymity for large numbers of users, or the large scale
distribution of copyrighted works. This results in a great
deal of complexity as well as lacking the guarantees and
reliability metrics we require. OceanStore[5] and
PAST[3] are good representatives of this class of
research.

Erasure codes are currently used in many storage and
peer-to-peer systems as opposed to replication. Since the
local Internet connection is a serious bottleneck in getting

the data out, straight replication allows us to send only
one copy of the data and then use client-client transfers to
do the replication. Verifying this has happened correctly
only adds 0.1% to data overhead, where erasure coding
would add 100% using a 1/2 encoding. Computationally
feasible erasure code methods are also patented, and the
high likelihood of submarine patents makes them
untouchable in deployable systems for several more
decades.

6. Conclusions and Future Work

Maintaining a centralized online petabyte would cost
well over 1 million dollars for hardware alone, require
twelve racks of disks, a large server room, and result in a
large monthly electrical bill. Storage@home should allow
us to soon access that amount of storage and maintain it
with higher reliability and far less cost.

Future work includes the analysis of the performance
of the system, and comparing it to our expected results in
terms of reliability, and usability by a variety of
researchers. We should have quite a large amount of data
on machine failures, and can refine our correlation models
to make them even more robust in planning where to
place replicas. We also suspect we can decrease the
replication factor due to the speed repairs can be made
and still maintain extremely high reliability. Once
established the system can be extended to other research
groups at Stanford and serve to lower the cost of storage.

Acknowledgments

We would like to thank Rich Wolski for his feedback
and suggestions during the preparations for this paper. We
also have to thanks all the volunteers that make up
Folding@home and will very shortly make up
Storage@home, especially the beta testers that help us
find all the moths in our relays.

References

[1] C. Baru, R. Moore, A. Rajasekar, and M. Wan, "The SDSC
Storage Resource Broker", In Procs. of CASCON'98, Toronto,
Canada, 1998.

[2] Cosm. http://www.mithral.com/.

[3] P. Druschel and A. Rowstron., "PAST: A large-scale,
persistent peer-to-peer storage utility", In Proc. HotOS VIII,
Schloss Elmau, Germany, May 2001.

[4] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung,
"The Google File System", In 19th Symposium on Operating
Systems Principles, pages 29–43, Lake George, New York,
2003.

[5] J. Kubiatowicz et al., "Oceanstore: An architecture for
global-scale persistent storage", In Proc. of ASPLOS, 2000.

[6] M. R. Shirts, V. S. Pande, "Screensavers of the world
unite!", Science. 290:1903-1904 (2000).

