
Open Internet-based Sharing for Desktop Grids in iShare

Xiaojuan Ren1, Ayon Basumallik1, Zhelong Pan2, Rudolf Eigenmann1
1School of ECE, Purdue University 2VMWare Inc.

West Lafayette, IN 47907 USA Palo Alto, CA 94304 USA
{xren,basumall,eigenman}@purdue.edu zpan@vmware.com

Abstract

This paper presents iShare, a distributed peer-to-peer
Internet-sharing system, that facilitates the sharing of di-
verse resources located in different administrative domains
over the Internet. iShare addresses the challenges of re-
source management in desktop grids, and integrates these
resources with production grids. In this paper, we present a
brief overview of the iShare system and describe how iShare
leverages existing standards to provide novel solutions to
the problems of resource dissemination, resource allocation
and trust in desktop grids. We also discuss how iShare in-
tegrates production grid systems, such as the Teragrid, with
desktop resources and compare the iShare approach with
web-based user portals for production grids. To quantita-
tively evaluate our techniques, we measured the efficiency of
resource allocation in iShare and the overheads associated
with establishing trust and providing the iShare user inter-
face for production grids. The evaluation results demon-
strate that iShare enables open Internet sharing with effi-
ciency, reliability, and security.

1 Introduction

Revolutionary advances in networking technologies have
made it possible to integrate computational and information
resources scattered over the Internet into cohesive comput-
ing systems. Among the infrastructures supporting vari-
ous kinds of Internet-wide collaborations, distributed cycle-
sharing systems – systems that gather compute power from
a large range of machines – have shown success through
popular projects such as SETI@home. These projects have
attracted a large number of participants who contribute idle
CPU cycles on home PCs to a scientific effort.

Distributed cycle-sharing systems have been referred to
as desktop grids. In this paper, we will consider desktop

1-4244-0910-1/07/$20.00c©2007 IEEE.

grids more specifically as systems that address the chal-
lenges of (i) managing the resources of cycle-sharing sys-
tems and (ii) integratingad-hoc and dedicated grid re-
sources. Examples of dedicated grid resources are those
provided by the Teragrid [6].

Resource management in desktop grids: The large-
scale deployment of desktop grid resources require manage-
ment mechanisms that are correspondingly scalable. Cur-
rent desktop grid systems are limited in that they have cen-
tralized structures with participants providing idle compute
cycles to tasks farmed out by a server. Another challenge
arises in that desktop resources are usually non-dedicated
and thus presentfluctuating availability to remote appli-
cations that attempt to use these resources. Furthermore,
Internet users are usually unknown to each other, imply-
ing a lack of trust among resource providers and applica-
tion users. Common authentication techniques, which use a
central authority to verify user identities, are insufficient to
provide protection among these untrusted entities.

Integrating desktop and dedicated grid resources: It
is desirable to integrate production grid resources with ex-
ternal resources. Doing so, exposes scientists to a plethora
of possibilities in selecting and managing access to compu-
tational platforms and also hides the complexity of different
access mechanisms for grid and desktop resources.

This paper presents an open Internet-sharing system,
called iShare, that addresses these challenges. iShare’s re-
source management is based on a decentralized P2P-based
framework, where participants can play the roles of both
providers and users [25]. Resource providers can easily de-
scribe and publish their resources and usage policies; end
users can easily browse and access published resources.
These functionalities are provided as a set of tools in the
user interface to the iShare system, which is implemented as
a lightweight Java application. The assignment of user ap-
plications to resources is guided by a proactive resource al-
location method, which predicts resource availability using
a semi-Markov model [24]. iShare allows untrusted users
to access resources, but confines the execution of their ap-
plications in virtual machines (VMs) [22].

iShare leverages existing resource description standards
in open Internet-based sharing to handle a broad spectrum
of hardware, data and applications resources. iShare for-
malizes basic resource features to represent common op-
erations of widely used local management systems. This
formalization can be extended by adding new resource se-
mantics and modules to process these semantics. We will
present such extensions in integrating dedicated grid re-
sources with desktop systems. We shall examine iShare in
the context ofgrid portals– the other common interface for
dedicated grid resources.

The contributions of this paper are –

• We present the iShare system and describe its tech-
niques that allow desktop grid resources to be de-
scribed, shared and accessed easily.

• We describe techniques used in iShare for interfacing
desktop grid with production grid systems

We evaluate these contributions in terms of improved ap-
plication response time, achieved by our proactive resource
allocation techniques, and overheads incurred by our VM
and the file transfer techniques. The rest of this paper is
organized as follows – Section 2 provides an overview of
the iShare system and describes how iShare enables open
Internet-based sharing for desktop grids. Section 3 presents
the iShare extensions for interfacing with production grid
systems. Section 4 describes the related work of iShare.

2 Overview of the iShare Internet Sharing
System

iShare extends the benefits of Internet-based sharing to
grid computing systems. Providers (users who wish to
make their resources available) can easily post resource fea-
tures, and others can discover and use these resources as
if they resided on their desktop. Among the motivations
for the iShare design were to solve some of the weak-
nesses observed in prior work with the Purdue University
Network Computing Hub (PUNCH) [20]: adding new re-
sources needed to go through a central point of manage-
ment, and the requirements for adding new machine re-
sources at times conflicted with the administrative rules of
their owners. iShare removes these barriers by allowing re-
source providers to describe and publish their resources in
an open manner: composing resource descriptors and post-
ing them on the Web. To make the process easy, iShare
provides rich tools for resource description, resource pub-
lication, and resource access management. End users can
search for specific resources and invoke a published soft-
ware program in a batch or interactive mode.

iShare supports three types of resources at an equal
level: software services (application programs), service

platforms (machines), and data. Available resources are
organized into a hierarchical structure, grouping together
semantically-related information. A thorough description
of iShare’s resource management methods is beyond the
scope of this paper. In the rest of this section, we present the
techniques that address the challenges of managing desktop
resources: (1) the decentralized architecture, (2) the proac-
tive resource allocation, and (3) the protection of resources
from untrusted Internet users.

2.1 Decentralized Architecture for Re-
source Dissemination

Resource dissemination entails the publication and dis-
covery of resources. The distributed and dynamic nature
of desktop resources suggests a decentralized organiza-
tion. iShare realizes decentralization via the integration of
the Web infrastructure and a peer-to-peer (P2P) system: a
provider of resources can describe their features and post
their availability on any web page; meta-data are extracted
from the resource descriptors and are inserted to a P2P over-
lay network that enables efficient resource discovery.

iShare adopts the Resource Description Framework
(RDF) [18] as the description language for resource seman-
tics. RDF is an semantic-oriented language for describing
information contained in a Web resource. We apply RDF
to describe basic resource features as a set of attributes.
The descriptions are processed by a RDF parser and are
used to invoke the corresponding remote access methods.
In adding “non-standard” resources, new resource features
are included by inheriting from an existing RDF schema;
the associated access methods are integrated asplug-insto
iShare’s software modules.

To enable the efficient search for resources with specific
capabilities, iShare organizes resources into a hierarchical
name space and distributes the name space to the underlying
P2P network. An item in the hierarchical space is mapped to
the peer node withnodeId closest to the hashing value of
the item’s prefix path. A child’s path name is kept in its par-
ent’s repository. Resources in an application discipline can
be discovered incrementally by traversing the hierarchical
tree from its root. The current implementation of iShare’s
P2P network is built on a structured overlay, Pastry [26].
Each Pastry node has a unique, uniform, and randomly as-
signednodeId in a circular128-bit identifier space. Given
a message and an associated128-bit key, Pastry reliably
routes the message to the live node whosenodeId is nu-
merically closest to the key. This design enables resource
discovery without requiring any knowledge of where the
corresponding data items are stored. More details about re-
source discovery in iShare can be found in [25].

2.2 Resource Allocation with Availability
Prediction

In cycle-sharing systems, resource owners voluntarily
share CPU cycles only if they incur no significant incon-
venience from letting a foreign job (guest process) run on
their own machines (hosts). For guest users, the free com-
pute resources come at the cost of highly fluctuating avail-
ability. The primary victims of this volatility are large
compute-bound guest applications, most of which are ei-
ther sequential or composed of several tasks as a group and
must all complete before the results can be used. There-
fore, response time rather than throughput is the primary
performance metric for such compute-bound jobs. To im-
prove response time in the presence of fluctuating availabil-
ity, we have developed proactive resource allocation. This
approach predicts resource availability from history and as-
signs user applications to the resources with maximal avail-
able computing capabilities.

We have designed prediction techniques that achieve
high accuracy as well as efficiency appropriate for online
use [24]. In our techniques, we applied a semi-Markov
Process (SMP) to predict thetemporal reliability, which
is the probability that a machine will be available during
a given, future time window. This algorithm does not re-
quire any model fitting, as is commonly needed in linear
regression techniques. To compute the temporal reliabil-
ity on a given time window, the parameters of the SMP are
calculated from the host resource usages during the same
time window on previous days. A key observation leading
to our approach is that the daily patterns of host workloads
are comparable to those in the most recent days [23, 21]. In
previous work [24], we evaluated our prediction techniques
in terms of accuracy and efficiency. The results show that
the prediction achieves the accuracy above86.5% on aver-
age and above73.3% in the worst case. The SMP-based
prediction is also efficient, increasing the completion time
of a guest job by less than0.006%.

We have applied the SMP-based prediction in iShare’s
proactive resource allocator. In the proactive algorithm,the
predicted availability is factored in the estimation of job
completion times, guiding the allocator to select resources
with both high computation capabilities and high reliabil-
ity during the execution of a given task. We compared the
proactive approach with an algorithm that ranks resources
by CPU clock rate, which is used in the Condor system [28].
Figure 1 shows the results of the comparison.

The metric used in Figure 1 is the relative slowdown
of the allocation strategies by comparing them to anom-
niscientalgorithm, which has full knowledge of resource
utilization in the future. To derive this metric, we first col-
lected the average makespan of all the jobs scheduled and
finished (including those failed and then restarted) using a

0%

5%

10%

15%

20%

25%

0.5 1.0 2.0 3.0 4.0 5.0 6.0

Job length (hr)

S
lo

w
do

w
n

co
m

pa
re

d
to

om

ni
si

ce
nt

 s
ch

ed
ul

in
g Condor

Proactive algorithm

Figure 1. Slowdown of jobs under different
scheduling algorithms. The baseline is the
omniscient algorithm, which has full knowl-
edge of host resource utilization in the future.
Lower bars are better.

specific allocation method, and then compared the value to
that obtained by the omniscient algorithm. There are two
sources for the slowdown: the ineffectiveness in selecting
the best resource and the computational overhead of the al-
location algorithm. The omniscient algorithm can make the
perfect selection knowing future traces and its overhead is
set to zero to serve as the baseline. The Condor-like al-
gorithm is computationally fast, but its resource selection
ignores the resource availability. This results in undesirable
failures and restarts of guest jobs, and, as a consequence,
the slowdown as high as22% (for jobs of 4 hours). Our
proactive algorithm outperforms the Condor-like algorithm
in all the cases, improving the average makespan up to14%.

2.3 Protection in the Presence of Un-
trusted Internet Users

iShare applies virtual machine [19] (VM) technologies
to confine the execution of applications that are poten-
tially malicious. Virtual machines enhance system se-
curity by providing strict isolation between the host and
guest jobs. However, they incur significant overhead for
communication-bound applications. Also, setting up a vir-
tual network typically involves root privileges, which is not
feasible in an open Internet sharing system. To solve these
problems, we have developed fast virtual network tech-
niques that can be deployed at the user-level [22]. This sec-
tion presents the user-level virtual machine approach to MPI
program execution on distributed resource nodes in iShare.

We deployed VMs at the user level, building on User
Mode Linux (UML) [8] VM techniques. We developed an
efficientsocket virtualizationtechnique to improve the vir-
tual machine communication performance of the original
UML network solution. The key idea in our approach is
to realize guest socket functions directly via host socket
functions. In our VM system, socket system calls from

0

0.5

1

1.5

2

2.5

3

3.5

BT LU SP

P
er

fo
rm

an
ce

 r
el

at
iv

e
to

 o
ne

 p
hy

si
ca

l m
ac

hi
ne

PHY_1 UML_1 UML_HS_1 PHY_4 UML_HS_4

Figure 2. MPI program performance relative
to one physical machine. The metric is wall-
clock time on one physical machine / wall-
clock time, which reflects execution speed.
Higher bars are better. PHY 1: one physi-
cal machine; UML 1: one virtual machine of
original UML; UML HS 1: one virtual machine
of UML with host socket support; PHY 4:
four physical machines; UML HS 4: four dis-
tributed virtual machines of UML with host
socket support. BT can not run on one VM
because its memory requirement exceeds
the capacity of one original UML virtual ma-
chine.

a guest process are intercepted by UML’s tracing mecha-
nism. These calls are diverted to our socket implementa-
tion, which includes the socket system calls and all the file
access functions. This approach leads to lower overhead of
virtualization compared to the original UML approach. Fur-
thermore, because VMs are connected in the same way as
physical machines, it eliminates the need of system admin-
istration steps, as required by the original UML to dynami-
cally allocate new IPs for VMs, for setting up VM networks.

We have measured the network performance of our VM
implementation. In this paper, we listed the results of ex-
ecuting MPI programs on our virtual network. More ex-
periments and results can be found in [22]. We measured
the MPI program performance by the speedup relative to
program execution on one physical machine. we ran three
applications in the NAS parallel benchmark suite [3]: BT,
LU and SP, on four 1.5 GHz Pentium IV machines in a 100
Mbps LAN. Figure 2 shows the results.

The figure measures scenarios possible without root
privilege. The UMLHS 4 bars are measured by running
the programs on four VMs, each of which resides on a dif-
ferent physical machine. The VM is the UML with our host
socket support. The applications run faster on four VMs

with the host socket support than on one physical machine.
Our solution also achieves a reasonable speedup relative
to the execution with one VM. Comparison of the results
for PHY 4 (four physical machines) and UMLHS 4 shows
that running MPI programs on four VMs is slower than on
four physical machines. Note that running on 4 processors
with original UML would require root privilege and hence
is not feasible. The performance overhead has two sources:
(1) UML itself introduces overhead, indicated by the bar of
UML 1. (2) Our socket communication has larger latency
than the physical case, due to the cost of virtualization.

We conclude that the performance degradation experi-
enced by an MPI application, relative to the speed on the
physical host, is acceptable. In return, our VM solution
gains a higher degree of guest isolation and customization.

3 Integrating Desktop Grids with Production
Grid Systems

Production grid systems, such as the Teragrid [6], pro-
vide significant data, application and hardware resources
for the execution of science and engineering applications.
While grid resources include software stacks for activities
such as authentication, job submission and resource mon-
itoring, directly learning and using these may be a daunt-
ing task for a large class of users. Additionally, production
grid systems are being increasingly targeted towards an au-
dience beyond the traditional scientific and HPC communi-
ties, with users from arts and humanities making use of grid
resources. Thus, creating user interface for production grids
that is intuitive for desktop users is becoming increasingly
important. In this section, we describe an effort to make
production grid resources accessible through iShare.

The previous section described how iShare enables a
broad class of resources to be shared and accessed through
a desktop interface. In interfacing with production grid sys-
tems, iShare needs to address some additional issues –

• Single Authentication Mechanism :While desktop
grid resources may each specify their own authenti-
cation mechanisms, production grid systems usually
have a single authentication mechanism for accessing
resources (often through X.509 certificates). The user
interface should shield the user from the complexi-
ties of different authentication mechanisms for desktop
grids and production grids.

• Batch Processing :Many production grids are batch
processing systems – a paradigm that most current
desktop users are not accustomed to. Additionally,
each site within a single production grid usually has its
own job queues and schedulers.Therefore, the iShare
system needs to shield the user from the complexities
of batch processing associated with production grids.

In this section, we describe how these issues were addressed
in implementing an interface to the Teragrid using iShare.

The base iShare system has modules for resource pub-
lishing, parsing resource semantics and remote execution
using SSH. We implemented plug-ins to these modules to
allow Teragrid resources to be accessed from iShare. Ad-
ditionally, to allow easy access to the data resources on the
Teragrid, we created a general FTP client type user inter-
face and implemented plug-ins that allow data to be ac-
cessed from GridFTP [13] servers and Storage Resource
Brokers [17]. A schematic representation of these plug-ins
and their functions is depicted in Figure 3.2.

3.1 RDF Extensions to Support Produc-
tion Grid Resources

Apart from the usual parameters, specification of grid
resources typically require additional details such as queue
names and accounting information. We extended the iShare
user interfaces to allow these parameters to be specified,
wherever appropriate, during resource publication and re-
mote execution. We also implemented two sets of plug-ins
– the first accommodates these additional details specified
during resource publication in RDF and the second extends
the RDF parser module to make appropriate use of these
parameters for job submission on Teragrid resources.

3.2 Remote Execution

iShare has a remote execution module that uses SSH to
run remote jobs. We implemented a set of plug-ins that ex-
tend this module for job submission to grid systems. For
this implementation, we used the Java CoG kit [29]. This
provides a pure Java implementation of a subset of Globus
tools and libraries. Since iShare is also implemented in
Java, the Java CoG kit provides a suitable set of libraries
for developing the Teragrid plug-ins.

For remote execution on the Teragrid, plug-ins need to
handle (1) GSI based authentication using Teragrid X.509
certificates and (2) Job submission using the Globus Re-
source Allocation Manager (GRAM) protocol. We imple-
mented certificate management and authentication using the
certificate management API provided by the Java CoG kit.
For job submission, instead of creating a low level GRAM
client with theorg.globus.grampackage, we used theTask
abstraction [2] provided by the CoG kit. The use of ab-
straction enhances the stability of this iShare plug-in by de-
coupling it from the actual protocol implementation, thus
insulating it from any protocol changes with future versions
of GRAM and Globus. The use of the task abstraction also
provides for a more simple, maintainable and reusable im-
plementation of remote job submission on Grids.

3.3 Extensions for Data Transfer

Data resources constitute an important class of Teragrid
resources. iShare enhances the end-user’s computing expe-
rience by allowing seamless access to these data resources
as well as non-grid data resources. Using this interface,
users may browse and transfer data between locations that
have different access protocols (Secure FTP, GridFTP, SRB,
local and network file systems). To implement GridFTP
based transfers, we used theFileResourceandTaskabstrac-
tions of the Java CoG kit. As in the case of remote execu-
tion, the use of these abstractions enabled a cleaner, stable
and reusable implementation. For implementing transfers
from and browsing of data collections on Storage Resource
Brokers (SRB), we used the Jargon [16] API.

We extended the iShare RDF to accommodate descrip-
tions of these diverse data resources. A salient feature of
this RDF extension is that it allows any number of format
or item-specific attributes to be stored in the data descrip-
tor. This provides the flexibility of using domain specific
attributes in the future for enhanced functionality, such as
transferring only those parts of a file matching the user’s
requirements.

To evaluate the overhead of providing the iShare user
with the desktop interface to grid resources, we measured
the performance of GridFTP transfers initiated using three
different methods – (i) from the Unix command line on
a host where the fullGlobustoolkit is installed using the
globus-url-copycommand, (ii) from the iShare FTP user
interface and (iii) from a Gridsphere based portal. Figure 4
shows the relative performance of file transfers from each
of these user interfaces. As a baseline, the graph also shows
the secure transfer time – the fastest available method for
data transfers. For submission through a portal, in case of
medium to large file sizes, the portal queues the transfer as
a separate batch task. Therefore, for submission through a
portal, we have measured both the “submission time” (the
time taken from when the user clicks aFile Copy button
to when the portal responds stating that the job has been
submitted) and the “completion time” (the time taken by
the submitted transfer to complete). From the graph, we
find that iShare overheads and the command-line submis-
sion overheads are similar, with iShare being about 30%
faster for small transfers and 25% slower for large trans-
fers. iShare is almost two orders of magnitude faster than
the Gridsphere based portal for file transfers.

3.4 Comparison with Grid Portals

With the emergence of production grid systems, user in-
terfaces for accessing grid resources have become impor-
tant. Portals or gateways are one of the user interfaces that
have gained popularity in terms of user interfaces to produc-

1

10

100

1000

10000

100000

100 KB 1 MB 10 MB 100 MB

File Size

T
im

e
(S

ec
on

ds
)

Secure FTP globus-url-copy
GridFTP using iShare Portal Submission Time
Portal Completion Time

Figure 4. Performance Comparison of
GridFTP initiated from (i) the command line
using globus-url-copy, (ii) from iShare and (iii)
from a Gridsphere portal.

tion grids. A portal is a web-based application that usually
aggregates content to provide a single entry-point to a set
of tools or application. When these tools and applications
are grid-based, the portal is called a grid-portal. A distinc-
tion is often made between the termsportal andgateway. A
gatewayis a portal that provides services to a specific user
community. The NanoHUB (http://www.nanohub.org), for
example, is a science gateway. For the rest of this section,
however, we shall use the termsportal andgatewayinter-
changeably. Drawing from our previous experience with the
PUNCH [20] portal and our current experiences in creating
a portal for climate simulations on the Teragrid, we compare
and contrast certain aspects of iShare and grid portals.

Architecture : Portals, by design, have a centralized ar-
chitecture. They are not necessarily monolithic – different
parts of a portal such as a database, a credential repository
and the actual portal container may run on different phys-
ical machines. However, the machines usually need to be
within a single administrative domain. The portal adminis-
trator decides the full set of applications and services that
the portal will provide. Users can access a subset of these
services. If a new application is to be added to the portal, it
requires the direct participation of the portal administrator
and portal developers.

On the other hand, iShare has a completely distributed
architecture. There is no central entity on which the iShare
system depends – a collection of clients form peer-to-peer
rings to store meta-data for the resources. Each client in it-
self is capable of accessing any iShare resource. A salient
feature of the distributed architecture of iShare, discussed in
Section 2, is the ease with which resources can be added to
iShare. Another direct consequence of this distributed de-
sign is improved fault tolerance. Portal services become un-
available whenever the physical resources hosting the portal

container or any of its components fail, whereas the iShare
system has no such central point of failure.

Some recent work has been building portals with the goal
of providing a collaborative environment for grid applica-
tion development and cross-grid resource usage. One ex-
ample is the P-GRADE Portal [27]. It allows the collabo-
ration betweenworkflowdevelopers, as well as the access
to grid resources across multiple virtual organizations by
using the standard Globus middleware components. iShare
accomplishes the goal of collaborative development as well
by providing an intuitive and standards based approach
(through RDF) for describing resources. The RDF-based
approach and the integration of Grid protocols using the
Java CoG kit also gives iShare the flexibility and interop-
erability to interact with grid and non-grid resources.

Authentication : Grid portals usually provide accesses
to resources within a single grid system. Consequently,
the authentication scheme used by the portal itself is usu-
ally tied to the authentication mechanism of the allied grid
system. Portals may provide a login/password interface to
users, though the allied grid system may require, for exam-
ple, X.509 certificates from a trusted certifying authority. In
such a case, portals usually do one of three things - (a) The
portal temporarily maps a user to one out of a pool of por-
tal certificates and uses this portal certificate to submit the
user’s job to the grid system. The Purdue NanoHUB, for
example, uses this scheme to submit jobs to the Teragrid.
(b) The portal generates a certificate for each user after a
certifying authority has endorsed the user using some other
mechanism. (c) The user has valid credentials for accessing
the grid resources and the portal retrieves these resources
from some credential repository, such as MyProxy. In cases
(b) and (c), systems such as PURSE and GAMA [14, 4]
may be used to hide the complexities of credential genera-
tion and retrieval from the user.

iShare allows users to access only those production grid
resources for which they have valid credentials. The creden-
tial management module in iShare uses Java CoG kit func-
tionality to generate proxy certificates if the user’s creden-
tials are stored on the user’s desktop and retrieves creden-
tials from a MyProxy repository otherwise. In both cases,
user’s are still shielded from the complexities of proxy ini-
tialization and retrieval – they see a username/password
type of interface, both for local proxy initialization as well
and for proxy retrieval from a credential repository.

Job Submission : As described earlier in this section,
iShare uses Java CoG kit abstractions to implement job sub-
mission and file transfers to Globus based grid systems.
In this respect, its implementation technology is similar to
current portal systems, such as the Teragrid User Portal
(https://portal.Teragrid.org/gridsphere/). Many current por-
tal systems also use the Java CoG API within their servlets
and portlets for job submission and allied functionality (ex-

amples include GridPortlets [15] and OGCE portlets [12]).
User Interface : To compare the user interface provided

by iShare and grid portals, we shall discuss both the visual
user interface and the interface provided for accessing ser-
vices provided by each. In terms of the visual interface, grid
portals usually allow the user a level of customization both
in terms of look and feel and in terms of the services that are
visible. Portals, especially those composed of portlets often
strive for a more “desktop” feel, allowing users to individ-
ually access specific sub-windows within a single browser
window. iShare, being a desktop client, implicitly offers a
visual interface intuitive for desktop users. In terms of con-
tent organization, portal administrators usually categorize
applications and tools into groups and usually offer users
the flexibility of subscribing to these groups selectively.In
iShare, resources are hierarchically organized, by seman-
tics, into a hierarchical name space. In portals, user priv-
ileges may determine the visibility of services, based on
policies set by the portal administrator. In iShare, all pub-
lished resources are visible to all users - access privileges of
a specific user are checked only when the user tries to access
a specific resource. An important difference between the vi-
sual interfaces in iShare and grid portals is in how and when
the user interface for a resource is implemented. iShare
provides tools for the resource publisher to create an user
interface for the resource being published, which becomes
part of the resource description and is rendered by iShare
whenever the resource is accessed. For portals, the interface
is created by the portal developer using the technology be-
ing used to serve content (usually portlets and servlets). In
terms of extensibility, iShare has certain advantages. First,
iShare clients are desktop java applications and thus do not
have the constraints of web based interfaces (applets and
servlets). Second, the resource description and access inter-
face in iShare can be updated easily. In case of portals, this
usually entails reprogramming of some portal component.

In terms of access methods, portals often allow their ser-
vices to be accessed asWeb Services. Users can now com-
pose basic web services into arbitrarily sophisticated work-
flows. iShare, on the other hand, provides a more traditional
notion of composition. Output from an iShare application
can be piped into another iShare application, allowing for a
type of composition that desktop users, accustomed to using
pipes and redirection, may find more intuitive.

4 Related Work

On-going research on middlewares for Internet-sharing
systems can be divided into four categories. The focus of
the first category is to provide application programmers a
set of tools to harness grid resources., Examples of such
work include Globus [10] and GridLab [1]. Work in the
second category aims to develop “grid-enabled” domain-

specific applications. Active projects include EuroGrid [11]
and CrossGrid [5]. Work in the third category is geared
towards providing end users and resource providers with
the means to disseminate, access, and utilize networked
resources. Related work in this category includes sys-
tems to support high throughput computing on large col-
lections of distributed computing resources (such as Con-
dor [28]), web service techniques using Application Servers
(http://www.w3.org/TR/ws-arch), and active web portals
such as the NanoHUB (http://www.nanohub.org). The forth
category targets desktop resources for supporting large-
scale computation and storage. Active research includes
P2P-based systems in file sharing (http://www.kazaa.com)
and CPU cycle sharing (http://setiathome.ssl.berkeley.edu).

The work described in this paper best fits the third cat-
egory (end-user-oriented systems) and the forth category
(desktop grids). In the context of end-user-oriented sys-
tems, we have already compared iShare with grid portals.
Condor, the other type of system in this category, and iShare
are similar in the fact that both systems make use of desk-
top resources as well as dedicated grid resources. How-
ever, openness is not the design thesis of Condor; it de-
ploys system-specific standards in authentication, job sub-
mission, and job control. This is in contrast to iShare’s open
approach in embracing heterogeneous resources. Another
difference is iShare’s fully decentralized structure lever-
aging the scalability and self-management of a structured
P2P overlay, versus the constitution of central units (such
as matchmakers and managers) in Condor. Furthermore,
iShare’s approach of proactive resource allocation achieves
better application performance on desktop resources.

Existing desktop grid systems federate voluntary facili-
ties of computation. Some of them, e.g., Entropia [7] and
BOINC (http://boinc.berkeley.edu), are limited in the struc-
tures with participants providing idle CPU cycles to tasks
farmed out by a centralize server. These systems assume
that all applications are trusted and apply naive schedul-
ing methods, such as FCFS, for allocating resources. Other
systems such as XtremWeb [9] and WaveGrid [30] manage
providers and consumers as peers in a more decentralized
way. They proposed mechanisms to verify the validity of
user applications (XtremWeb planned to usesoftware fault
isolation and WaveGrid proposed aquiz mechanism), but
did not measure the introduced overhead of their methods.
Similar to iShare, WaveGrid exploited the knowledge of re-
source availability to achieve fast turnaround. However, the
knowledge is based on the simple intuition that more idle
cycles are available at night; it does not factor the fluctuat-
ing availability caused by arbitrary resource behavior.

5. Conclusion

In this paper, we have presented iShare, an open system
for federating networked resources: both voluntary desktop
machines and dedicated resources from production grids.
The iShare system incorporates innovative techniques for
managing desktop resources. By posting resource descrip-
tors on the Web and inserting resource meta-data into a
peer-to-peer network overlay, iShare achieves decentraliza-
tion in resource dissemination and flexibility in adding new
resources. The resource availability is predicted and fac-
tored into resource allocation in iShare. This proactive
approach obtains desirable application performance under
fluctuating resource availability. Last, iShare confines the
execution of untrusted applications within virtual machines.
We also discussed the methods that enable iShare to ex-
tend its intuitive Internet-sharing paradigm to production
grid systems, and compared with another paradigm using
web-based user portals.

We measured iShare’s end user performance in terms
of the average job completion time of our proactive re-
source allocation, the overhead introduced by confining un-
trusted applications, and the efficiency of data transfer en-
abled by integrating production grids. The evaluation re-
sults demonstrate that iShare provides efficient, reliableand
secure management of Internet-based resources.

References

[1] G. Allen, K. Davis, K. N. Dolkas, N. D. Doulamis, et al.
Enabling applications on the Grid - a GridLab overview.In-
ternational Journal of High Performance Computing Appli-
cations, 17(4), 2003.

[2] K. Amin, M. Hategan, G. von Laszewski, and N. J. Zaluzec.
Abstracting the Grid. InProc. of PDP’ 04, pages 250–257,
2004.

[3] D. H. Bailey, E. Barszcz, J. T. Barton, et al. The nas parallel
benchmarks-summary and preliminary results. InProc. of
SC’91, pages 158–165, 1991.

[4] K. Bhatia, K. Mueller, and S. Chandra. Gama: Grid ac-
count management architecture. InProc. of IEEE Interna-
tional Conference on EScience and Grid Computing, page
10 pages, Dec. 2005.

[5] M. Bubak, M. Malawski, and K. Zajac. The CrossGrid ar-
chitecture: Applications, tools, and grid services. InProc.
of AxGrids, 2003.

[6] C. Catlett. The philosophy of TeraGrid: Building an open,
extensible, distributed terascale facility. InProc. of CCGrid,
2002.

[7] A. Chien, B. Calder, S. Elbert, and K. Bhatia. Entropia:
architecture and performance of an enterprise desktop grid
system. Journal of Parallel and Distributed Computing,
63(5):597–610, 2003.

[8] J. Dike. A user-mode port of the Linux kernel. Inthe 4th An-
nual Linux Showcase and Conference, pages 63–72, 2000.

[9] G. Fedak, C. Germain, V. N’eri, and F. Cappello. Xtremweb:
A generic global computing system. InProc. of CCGrid’01,
2001.

[10] I. Foster and C. Kesselman. Globus: A metacomputing in-
frastructure toolkit.International Journal of Supercomputer
Applications, 11(2), 1997.

[11] C. Hoppe, P. Gmbh, D. Mallmann, and F. Julich. Eurogrid -
european testbed for grid applications.GRIDSTART Techni-
cal Bulletin, 2002.

[12] http://www.collab ogce.org/ogce2/. OGCE : Open Grid
Computing Environments, 2004.

[13] http://www.globus.org/toolkit/docs/4.0/data/gridftp/. FTP
for Grid Systems, 2001.

[14] http://www.grids center.org/solutions/purse/. Purse: Portal-
based user registration service, 2005.

[15] http://www.gridsphere.org/. Grid Portlets User’s Guide,
2005.

[16] http://www.sdsc.edu/srb/index.php/Jargon. A java client api
for the datagrid, 2005.

[17] http://www.sdsc.edu/srb/index.php/MainPage. The sdsc
storage resource broker, 2004.

[18] http://www.w3.org/RDF. Resource Description Framework,
2004.

[19] X. Jiang, D. Xu, and R. Eigenmann. Protection mechanisms
for application service hosting platforms. InProc. of CC-
Grid’04, pages 656–663, 2004.

[20] N. H. Kapadia and J. A. B. Fortes. PUNCH: An architecture
for Web-enabled wide-area network-computing. InProc. of
Cluster Computing, 1999.

[21] M. W. Mutka. Estimating capacity for sharing in a privately
owned workstation environment.IEEE Trans. On Software
Engineering, 18(4):319–328, 1992.

[22] Z. Pan, X. Ren, R. Eigenmann, and D. Xu. Executing MPI
programs on virtual machines in an internet sharing system.
In Proc. of IPDPS’06, page 10 pages, 2006.

[23] X. Ren and R. Eigenmann. Empirical studies on the be-
havior of resource availability in fine-grained cycle sharing
systems. InProc. of ICPP’06, pages 3–11, 2006.

[24] X. Ren, S. Lee, R. Eigenmann, and S. Bagchi. Resource
availability prediction in fine-grained cycle sharing systems.
In Proc. of HPDC’06, pages 93–104, 2006.

[25] X. Ren, Z. Pan, R. Eigenmann, and Y. C. Hu. Decentral-
ized and hierarchical discovery of software applications in
the ishare internet sharing system. InProc. of PDCS’04,
2004.

[26] A. Rowstron and P. Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer sys-
tems. InProc. of IFIP/ACM International Conference on
Distributed Systems Platforms, pages 329–350, 2001.

[27] G. Sipos and P. Kacsuk. Multi-grid, multi-user workflows in
the p-grade portal.Journal of Grid Computing, 3(3-4):221–
238, 2006.

[28] D. Thain, T. Tannenbaum, and M. Livny. Distributed com-
puting in practice: The condor experience.Concurrency -
Practice and Experience, 17(2-4), 2004.

[29] G. von Laszewski, I. Foster, J. Gawor, and P. Lane. A Java
Commodity Grid Kit.Concurrency and Computation: Prac-
tice and Experience, 13(8-9):643–662, 2001.

[30] D. Zhou and V. Lo. Wave scheduler: Scheduling for faster
turnaround time in peer-based desktop grid systems. InProc.
of JSSPP’05, 2005.

