
NGS: Service Adaptation in Open Grid Platforms

Krishnaveni Budati, Jinoh Kim, Abhishek Chandra and Jon Weissman
Department of Computer Science and Engineering

University of Minnesota - Twin Cities
{budati, chandra, jon}@cs.umn.edu

Abstract

Large-scale donation-based distributed infrastructures
need to cope with the inherent unreliability of participant
nodes. A widely-used work scheduling technique in such en-
vironments is to redundantly schedule the outsourced com-
putations to a number of nodes. We present the design
and implementation of RIDGE, a reliability-aware system
which uses a node’s prior performance and behavior to
make more effective scheduling decisions. We have imple-
mented RIDGE on top of the BOINC distributed comput-
ing infrastructure and have evaluated its performance on a
live PlanetLab testbed. Our experimental results show that
RIDGE is able to match or surpass the throughput of the
best BOINC configuration by automatically adapting to the
characteristics of the underlying environment. In addition,
RIDGE is able to provide much lower workunit makespans
compared to BOINC. RIDGE is also able to produce signif-
icantly lower communication makespans for downloading
clients. Collectively, the results suggest that RIDGE has
great promise for service-oriented environments with time
constraints.

1 Introduction

Voluntary distributed computing infrastructures have
been an active area of research in the past few years, e.g.
SETI@home [2]. Today, these infrastructures are being
used in a diverse set of application domains such as bioin-
formatics [6], physics [7], and environment science [5].
BOINC [1] is a generalization of these projects that pro-
vides a computing infrastructure for utilizing donated re-
sources.

This paper presents the design and implementation of
RIDGE (Reliable Infrastructure for Donation-based Grid
Environments), a system designed to combine reliability
and performance of the underlying infrastructure. RIDGE
is built as an extension to BOINC.

We focus on two problems here, the timeliness of com-

putation and communication performance of the nodes.
These problems arise as nodes have dynamically changing
workloads, may leave and join unexpectedly, and may be-
have maliciously. When nodes are serving data, their ex-
treme time-varying heterogeneity in terms of different ca-
pacity, bandwidth, and latency can also compromise perfor-
mance. For the first problem, we present a scheme that can
dynamically adjust the degree of replication based on the
current node behavior. In an earlier paper, we showed how
intelligent replication can improve performance through a
simulation study [9]. This paper focuses on the implemen-
tation and deployment of the proposed ideas in a live envi-
ronment.

For the second problem, we present a scheme that can
dynamically select the most appropriate nodes for data
download based on current network dynamics. The key
contribution is that clients can make independent download
decisions from replicated data nodes without direct interac-
tion and minimal state.

We have deployed a prototype of RIDGE and evaluated
it on a live distributed testbed on PlanetLab [3], using the
BLAST [4] bioinformatics application. The results show
that RIDGE can automatically match, and in some cases
surpass, the best static BOINC performance (which requires
knowing the dynamics of the environment) in terms of re-
liability, and can achieve far better computation makespan.
The results also show that communication makespan can be
significantly reduced using our schemes (17-43% improve-
ment over existing heuristics). Collectively, these results
indicate that RIDGE is well-suited to service-oriented envi-
ronments with time constraints.

2 System Architecture

RIDGE is implemented on top of the core BOINC ar-
chitecture, and it utilizes BOINC mechanisms for workload
creation, communication with worker nodes, result gather-
ing, etc. We first briefly describe the core BOINC architec-
ture, followed by the RIDGE enhancements and workload
allocation strategy.

1-4244-0910-1/07/$20.00 ©2007 IEEE



2.1 BOINC Architecture and Work Allo-
cation Policy

The BOINC architecture consists of a centralized server
responsible for distributing work to the worker nodes.
Each unit of computation (referred to as a “workunit”) is
replicated into a fixed number of replicas (referred to as
“tasks”). The replication factor is a static value specified
by the application writer. Results are returned by the work-
ers to the server upon completion of each task execution,
and are verified using a verification technique specified by
the application designer. M-majority voting and M-first vot-
ing are the most common verification techniques used. With
M-majority voting, each workunit is replicated into at least
2M-1 tasks and the workunit is said to have completed suc-
cessfully if a minimum of M out of the 2M-1 results match.
In M-first voting, each workunit is replicated into at least M
tasks and a workunit is said to have completed successfully
as soon as M results match. A key limitation of BOINC
work assignment policy is that a static replication factor is
used for all workunits and the assignment of tasks to worker
nodes is arbitrary.

2.2 RIDGE Scheduling Framework

RIDGE replaces the default BOINC workload allocation
policy with a Reputation-based scheduling technique [9].
The idea behind this technique is to collect reliability rat-
ings of individual worker nodes and use this information
to group them together more intelligently and thus increase
throughput while meeting the desired success-rate. The ba-
sic idea is that a node’s reliability rating is based on the
number of ‘timely’ and ‘correct’ task executions performed
in the past relative to the total number of tasks allocated to
it. Using these values, it is possible to determine effective
redundancy groups, both in size and in worker composi-
tion. More details of this technique can be found in [9].
While the original algorithms are designed for M-majority
voting, we have extended them to work for M-first voting
in this paper. The RIDGE server employs these scheduling
algorithms and is driven by the following key parameters:

• Target Success-Rate: It is defined as the minimal
success-rate desired from the system and is specified
as a value in the range 0-1.

• Execution-Threshold: It is defined as the maximum
time that a task execution is allowed to take for it to
be considered ‘timely’.

• Scheduling-Threshold: The number of workers for
which the RIDGE scheduler waits for before running
the scheduling algorithm. In this paper, we use a
threshold of 1 to enable a fair comparison of RIDGE
to vanilla BOINC.

• MinClients: The minimum number of workers that a
workunit should be scheduled to.

• MaxClients: The maximum number of workers that a
workunit should be scheduled to.

There is a tradeoff between the desired success-rate and
throughput. The higher the replication factor, the greater
is the success-rate achieved, while there may be a drop in
throughput.

2.2.1 Component Architecture

Scheduler: The scheduler is responsible for forming re-
dundancy groups of worker nodes based on their reliabil-
ity ratings, and assigning a workunit to each redundancy
group. Before each scheduling instance, the scheduler waits
for the Scheduling Threshold number of workers to arrive
at the server. Once it has enough workers to proceed,
the scheduler obtains the reliability ratings for the avail-
able workers from the reputation manager. It then runs a
Reputation-based scheduling algorithm [9] to form the re-
dundancy groups and assigns tasks to the worker nodes.
Reputation Manager: The reputation manager maintains
the reliability ratings of the worker nodes. The scheduler
uses these reliability ratings in making its scheduling deci-
sions. The reputation manager is also responsible for updat-
ing the reliability ratings of worker nodes when a workunit
is validated: a node’s rating may be increased or decreased
based on the outcome of the validation [9].
Validator: This is a part of the BOINC core architecture
(while the others are not). The validator initiates the val-
idation process when the required number of results for a
workunit arrive at the server, and determines if an agree-
ment is achieved.
Re-Scheduler: When a validation fails, the re-scheduler
decides the number of additional tasks to be created for the
failed workunit As a default, the re-scheduler creates one
additional task incrementally for the failed workunit.

2.2.2 RIDGE Workflow

Figure 1: Workunit Life-Cycle

Figure 1 illustrates the workflow in the RIDGE frame-
work through the life-cycle of a workunit. Workunits are



created and put in the RIDGE database. Additional worku-
nits are created as the work queue empties to maintain a
minimum workpool size at the server. Worker nodes arrive
at the RIDGE server requesting work. The request handler
informs the scheduler about the arrival of a worker node and
blocks the worker node until the scheduler is ready to allo-
cate work. When the number of available workers meets the
scheduling threshold, the scheduler performs the allocation
of workunits. In our framework, priority is given by default
to partially completed workunits whose tasks are assigned
to the most reliable available workers. The remaining work-
ers in the worker queue are then grouped into redundancy
groups and each group is given tasks of one workunit to ex-
ecute. At this point, the workunit transits to the scheduled
state. Once the workunit is scheduled, the worker nodes in
its associated group pick up their assigned tasks and start
executing them. The workunit is now in execution.

When the minimum number of results for a workunit that
are required for validation have arrived, the validation pro-
cess is triggered to verify the results using the validation
scheme. If the validation succeeds, then the workunit is
considered to be complete, otherwise, the workunit needs to
be re-scheduled. The re-scheduler then incrementally cre-
ates new tasks for this workunit which are eventually allo-
cated by the scheduler.

3 Evaluation

In this section, we evaluate the RIDGE framework
and present a comprehensive performance comparison of
RIDGE against vanilla BOINC. We first describe our ex-
perimental setup along with the metrics used, followed by
the evaluation results.

3.1 Experimental Setup

We have deployed BOINC/RIDGE on PlanetLab [3]—a
shared distributed infrastructure consisting of donated ma-
chines. Our Grid consists of 120 nodes which serve as the
worker nodes. The BOINC/RIDGE server runs on a ded-
icated machine outside the PlanetLab infrastructure. We
used the BLAST (Basic Local Alignment Search Tool) [4]
bioinformatics application as our test application. In our
setup, BLAST is run as a BOINC project by writing a
BOINC-specific wrapper around it. Each workunit consists
of a BLAST database file and an input sequence that has
to be compared with each sequence in the database file.
BLAST performs the sequence comparison and generates
an output file result which is returned to the server. We have
used a standard BLAST database file igSeqNt, with sizes of
28MB and 55MB for our experiments. The input sequence
was a randomly selected sequence from the database file
and is of length 770 bytes. M-first voting is used as the

verification technique. To isolate the impact of RIDGE vs.
BOINC scheduling, we have disabled ‘Re-scheduling’ in
the initial results presented (later, we re-enable it). Thus,
in our first set of experiments, a workunit whose validation
is not successful for the first time is deemed to have failed
and is discarded from the work queue. Each experiment is
run for 2 hours and is repeated 3 times to smooth the effects
of the underlying load fluctuations in PlanetLab.

3.2 Timeliness Evaluation of Reliability

In this section, we evaluate the performance of BOINC
against RIDGE w.r.t. the timeliness of workers in an en-
vironment where getting work done within certain time-
constraints is the primary objective. Here, we assume that
every worker is 100% reliable w.r.t. correctness and hence
the reliability of a worker reduces to the probability that it
returns a result in a ‘timely’ manner. The timeliness of a
task is determined by an ‘Execution-Threshold’ parameter,
which is defined as the maximum task execution time be-
yond which a task is considered late and discarded. The
ultimate goal is to use these reliability ratings to do sophis-
ticated scheduling to support deadline-oriented service en-
vironments.

Since all nodes are assumed to be correct in this scenario,
a workunit is said to be completed as soon as one sched-
uled task returns within the ‘Execution-Threshold’ time. In
other words, M-first voting with M=1 is used as the verifi-
cation technique. Since M is just 1, now comparably higher
success-rates could be achieved for smaller replication fac-
tors, and hence, we use a desired success-rate of 0.90 for
these experiments.

3.2.1 Emulation of different Reliability Environments

In this set of experiments, we use the actual timeliness val-
ues of the results returned by nodes in our PlanetLab testbed
to determine their reliability ratings. To emulate differ-
ent reliability environments, we used different values of
Execution-Threshold, so that higher values of Execution-
Threshold corresponded to more reliable environments and
vice-versa. We use an Execution-Threshold of 120s, 180s
and 240s respectively. We refer to these distributions as
LowRE, ModRE and HighRE respectively. We observed an
interesting fact that most of the nodes are either highly re-
liable or unreliable w.r.t. a given Execution-Threshold and
there are a very small fraction of nodes with reliabilities in
the range 0.2-0.9. This implies that given an Execution-
Threshold, learning the reliability of nodes is indeed useful
since the node reliabilities are relatively stable over time in-
tervals in the order of a few hours.



 1

 0.9

 0.75

 0.5

 0.25

LowREModREHighRE

S
uc

ce
ss

-R
at

e

Worker Reliability Distribution

(Desired) Grp1
Grp2
Grp3
Grp4
Grp5
Grp6

(a) Success-Rate

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

LowREModREHighRE

T
hr

ou
gh

pu
t

(N
o.

 o
f c

om
pl

et
ed

 w
or

ku
ni

ts
/R

un
)

Worker Reliability Distribution

Grp1
Grp2
Grp3
Grp4
Grp5
Grp6

(b) Throughput

Figure 2: Comparison of different BOINC configurations.

 1

 0.9

 0.75

 0.5

 0.25

LowREModREHighRE

S
uc

ce
ss

-R
at

e

Worker Reliability Distribution

(Desired) BOINC*

RIDGE
BOINC-

(a) Success-Rate

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

LowREModREHighRE

T
hr

ou
gh

pu
t

(N
o.

of
 c

om
pl

et
ed

 w
or

ku
ni

ts
/R

un
)

Worker Reliability Distribution

BOINC*

RIDGE
BOINC-

(b) Throughput

Figure 3: Comparison of RIDGE with BOINC optimal and conservative configurations.

3.2.2 Performance of BOINC

In this section, we evaluate the performance of BOINC for
various fixed replication factors for different reliability en-
vironments discussed above. The replication factor is varied
from a minimum of 1 to a maximum of 6, to determine the
optimal replication factor for a desired success-rate.

Figures 2(a) and 2(b) show the performance of BOINC
for different replication factors, for different reliability en-
vironments. We observe that the optimal replication fac-
tor values in this case are 2, 3, and 5 respectively for
HighRE, ModRE and LowRE with corresponding (success-
rate, throughput) combinations of (0.95, 2378), (0.96, 1723)
and (0.91, 1020) respectively, and that RIDGE equals or
surpasses the best static replication factor. Since the under-
lying distribution may not be known a priori, a conservative
application designer might operate at a fixed replication fac-
tor of 5, to get a minimal success-rate of 0.90 for all relia-
bility environments.

3.2.3 BOINC vs. RIDGE Comparison

We now compare the performance of RIDGE and BOINC.
Each run of BOINC was set at 2 hrs, while RIDGE was
run for 3 hrs with 1 hr for the learning period. The RIDGE
server is configured with a Target Success-Rate of 0.90, and
MinClients and MaxClients set to 1 and 5 respectively.
Performance Comparison: Figures 3(a) and 3(b) illus-
trate the performance comparison of BOINC∗, RIDGE and
BOINC− (that uses a replication factor of 5). We observe
that RIDGE meets the desired success-rate of 0.90 in all
three environments. Also, from the Throughput comparison
graph, we notice that RIDGE in fact has higher throughput
than BOINC∗. This is because RIDGE can form groups of
size 1 which is not possible in BOINC and RIDGE does fast
serial scheduling.
Resource Utilization Comparison: Table 1 illustrates the
Resource Utilization of BOINC∗ with that of RIDGE for the
three reliability environments. An interesting observation is
that the Group-Size of RIDGE is less than that of BOINC∗.
This is because, depending on the value of Threshold-Time,
there is a high percentage of very highly reliable workers in



Group Size Quorum Size
Distr BOINC∗ RIDGE BOINC∗ RIDGE

HighRE 1.67 1.46 1.05 1.01
ModRE 2.31 1.89 1.12 1.03
LowRE 3.68 3.22 1.41 1.08

Table 1: BOINC∗ vs RIDGE Resource Utilization

all three reliability environments. RIDGE actually has the
option to create groups of size exactly 1 using such highly
reliable workers, thus, lowering the average group-size. De-
pending on the reliability of the environment, there may be
large number of such single-worker groups, having a pos-
itive performance impact, despite the minor overhead in
RIDGE due to oversized groups or performance overheads
as discussed before. However, forming such small groups is
not possible for BOINC∗, since it operates at a fixed replica-
tion factor for all the workunits (with an optimal replication
factor of at least 2 in all cases).

3.3 Evaluation for Service-Oriented En-
vironments

In this section, we evaluate how BOINC and RIDGE
perform in service-oriented environments. We characterize
such environments by a high-level unit of work, a service re-
quest, that is defined as a set of workunits. A request is said
to be completed when all its constituent workunits are com-
pleted successfully. For this set of experiments, we enable
the ‘Re-scheduling’ component of BOINC and RIDGE, so
that a workunit that has failed in its first validation is not
discarded, but is re-scheduled until it is successfully com-
pleted.

Since the optimal BOINC configuration BOINC∗ has al-
ready been identified, we compare only the performance of
BOINC∗ against RIDGE. To emulate ‘Service Request’ be-
havior, each set of consecutive workunits in the workpool
are bundled to model a ‘Service Request’. The perfor-
mance comparison is shown for two reliability environ-
ments, HighRE and LowRE. The results for ModRE are
similar and are omitted due to space constraints.
Makespan Comparison: Request makespan is a key met-
ric in a service-oriented environment since a service request
is not complete until all of its component workunits are
complete. Figures 4(a) and 4(b) show the request makespan
for BOINC∗ and RIDGE as the number of workunits per
request is varied from 1 to 8. We observe that as the request
size is increased, the makespan for BOINC∗ increases much
more rapidly when compared to RIDGE. This is explained
by the way BOINC and RIDGE schedule and re-schedule
work. As mentioned, randomization in scheduling is one
factor. Another is that when a validation fails, BOINC puts

the additional task in the workpool and no explicit prefer-
ence is given to the pending tasks. However, since RIDGE
gives preference to pending work compared to new work,
RIDGE achieves better requests makespans. This is another
factor that supports RIDGE in a service-oriented environ-
ment. Our results also indicate that RIDGE not only mini-
mizes the makespan but also maintains the request through-
put.

4 Collective Data Download

We now consider the complementary problem of con-
current downloading by a number of compute clients work-
ing on the same service request in RIDGE. This challenge
is complicated by the extreme time-varying heterogeneity
of the volunteer Grid as data servers have widely different
capacity, bandwidth, and latency with respect to a down-
loading client. Simultaneous downloading from central data
servers can lead to bottlenecks due to capacity and geo-
graphic constraints. Since worker nodes can be dispersed
world-wide, the download times of some distant and poorly
connected nodes might overwhelm the overall execution
time of the service request. Replicating to a few data servers
can achieve more efficient data access, but still suffers from
the problems of scalability and fault-tolerance if static repli-
cas are used. Caching at the compute workers can help, but
it is not well-suited to handle the problems of node churn
and dynamic data generation. To address these problems,
we assume that the data is highly replicated across a data
network and that clients make local decisions to select a
server for download.

4.1 System Model

In our system model, we incorporate a compute network
as well as a data network to host large-scale services that
operate on large datasets, require significant computation,
and are accessed by remote end-users, e.g. BLAST. In our
model, the compute network consists of worker nodes that
provide CPU cycles for computation. The data network is
responsible for transmitting data from the data generation
or storage locations to the worker nodes that operate on the
data. Our compute network is BOINC [1], and our data
network is Pastry [8].

Formally, the compute network consists of compute
nodes {c1, c2, ...}, and the data network is composed of data
servers {d1, d2, ...}. All the data files required for compu-
tation are assumed to be replicated across multiple servers
in the data network, with Ri denoting the set of replicas for
a file Fi. For scheduling purposes, a job J is decomposed
into a set of tasks or workunits Ui(0 < i ≤ n), where each
Ui requires one (or more) files Fi. The scheduler assigns
a workunit Ui to a set of worker nodes Wi, each of which



 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 8 7 6 5 4 3 2 1

R
eq

ue
st

 M
ak

es
pa

n 
(in

 s
ec

s)

No.of workunits per Request

BOINC*

RIDGE

(a) HighRE Makespan

 0

 500

 1000

 1500

 2000

 8 7 6 5 4 3 2 1

R
eq

ue
st

 M
ak

es
pa

n 
(in

 s
ec

s)

No.of workunits per Request

BOINC*

RIDGE

(b) LowRE Makespan

Figure 4: Comparison of Request Makespan for different reliability environments

then attempts to download the associated file Fi from one
of its replicas.

To download the file, each node wij ∈ Wi queries the
data network for a set of servers holding the file Fi, along
with their current state. The server state might include at-
tributes such as the server capacity, its roundtrip latency
from the worker node, etc. We define a candidate set Cij

for a worker node to be the set of replicas that the data net-
work returns in response to the query.

The size and composition of the candidate set is a func-
tion of the degree of replication, the time-out values used to
search for replicas, and is dependent on the type of data net-
work employed as well as the location of the worker node.
The worker then uses a server selection heuristic select a
server sij from the candidate set for the actual download.

Minimizing makespan is key as the service request will
not be complete until all tasks are finished. Since data
download or communication is a key component of the
workunit execution time, we define the communication
makespan to be the maximal download time for a worku-
nit Ui:

makespan = max
wij∈Wi

{Tij},

where, Tij is the download time for worker wij ∈ Wi.

4.2 Server Selection Heuristics

We investigated different metrics that affect the effi-
ciency of data downloading. Based on the impact of these
metrics, we present heuristics for selecting data servers in
our environment. A key requirement of our model is to
minimize the overall makespan of a service request, and not
to simply minimize the individual download times at each
worker independently.

Proximity has been employed as a network metric of
choice in several domains ranging from routing in overlay

networks to nearest server selection in the Internet. In gen-
eral, proximity refers to the network distance between hosts
and can be measured in terms of roundtrip latency between
the hosts, using TCP roundtrip times or ICMP echo packets.
According to conventional wisdom, proximity is the dom-
inant factor in predicting data download performance. As
a result, proximity information is collected by many data
network infrastructures.

We conducted experiments on a 43-node PlanetLab slice
to determine the parameters that affect download perfor-
mance. Several measures are explored, and we find strong
correlations not only between RTT and download perfor-
mance but also between network bandwidth and download
performance. We derived a cost function fi,j that is used by
a worker i to quantify the desirability of a server j for data
download:

fi,j = αj · rtti,j , (1)

where rtti,j is the RTT between the worker and the server,
and αj is a weight used to incorporate other server parame-
ters, defined as follows:

αj = e(kj/bwj), (2)

where bwj is the bandwidth of the server, and kj is a (server-
dependent) constant that incorporates parameters such as
load and concurrency.

We define three heuristics for server selection that use
different values for kj :

• BW-ONLY: Uses kj = constant. We use kj = 1 in our
experiments.

• BW-LOAD: Uses kj = loadj , where loadj is the 5-
minute average system load on the server.

• BW-CAND: Uses kj = num candj , where
num candj is the number of times the servers has re-
sponded as a candidate within the last 15 seconds.



The heuristic BW-ONLY uses only the RTT and the
bandwidth metrics for selecting a server, while the other
heuristics BW-LOAD and BW-CAND also use average sys-
tem load and concurrency information respectively. BW-
CAND uses the number of times the server has responded
as a candidate window. In the experiments, we set the time
window to 15 seconds. Using the heuristic BW-CAND,
servers which have responded as a candidate several times
recently are penalized, because they are more likely to be
selected by multiple workers, and hence to be concurrently
serving data in the near future.

4.3 Performance Evaluation

4.3.1 Experimental Testbed and Methodology

To evaluate the various server selection heuristics described
in the previous section, we conducted experiments on a set
of randomly selected PlanetLab nodes geographically dis-
tributed across the globe. We conducted each of our exper-
iments as follows: data files are distributed over the data
network at the beginning of each experiment, and then data
queries are generated for downloading these data files. For
each data query, a set of worker nodes are selected randomly
to request the same designated file concurrently. Table 2
shows the various experimental scenarios we created. The
scenarios differ in some of the parameters above, as well as
the specific set and number of nodes that were used.

4.4 Comparison of Server Selection
Heuristics

Figure 5 compares the various server selection heuristics
for Concurrency (C)=5 and Data Size (D)=2MB, using the
aggregated results of all the experiments that used C=5 and
D=2MB. Figure 5(a) plots the average download time and
makespan respectively for the various heuristics. The first
observation we make from the figure is that the bandwidth-
based heuristics perform much better that proximity-based
server selection in terms of both the average as well as the
makespan. Moreover, the gaps in performance are larger in
the case of makespan (∼30-45%) than in mean download
time (∼20-30%). This result is also seen from Figure 5(b)
that plots the CDF of the download completion times. As
seen from the figure, 10% of PROXIM queries take more
than 60 seconds to complete, while the bandwidth-based
heuristics take less than 40 seconds to complete 90% of
their queries. Moreover, these heuristics finish most of their
queries within around 100 seconds, while about 5% percent
of queries are unfinished for PROXIM selection. Thus, this
result implies that using bandwidth in addition to proximity
produces better performance, not only in terms of individual
download, but also in overall makespan.

Another observation we make from Figures 5(a) and 5(b)
is that BW-CAND shows the best results for both mean
download time and makespan. In the case of makespan,
BW-CAND gains over 40% compared to PROXIM, while
BW-ONLY and BW-LOAD show 30-40% gains. Fig-
ure 5(b) shows the CDF of the completion times of all the
queries. This result implies that incorporating concurrency
in addition to bandwidth improves the performance even
further.

The basic reason why the bandwidth-based heuristics
outperform proximity-based selection is that they can ex-
clude extremely slow servers. In our experiments, the par-
ticipating hosts are almost uniformly distributed through the
bandwidth ranges as shown in the Figure 5(c): nearly 10%
of the hosts have a bandwidth under 1Mbps, 50% of the
hosts have under 30Mbps, and upper 10% hosts have over
80Mbps bandwidth. By penalizing low bandwidth servers,
the bandwidth-based heuristics can select servers with bet-
ter bandwidth, even though they may be a little further from
the worker node.

Table 3: Server Bandwidth Distribution

Class Low Medium High
< 1Mbps 1 − 10Mbps > 10Mbps

EX-1 5% 26% 67%
EX-2 12% 6% 82%
EX-3 0% 24% 76%
EX-4 0% 24% 76%

EX−1 EX−2 EX−3 EX−4
0

10

20

30

40

50

60

M
ak

es
pa

n 
(s

ec
on

ds
)

PROXIM
BW−ONLY
BW−LOAD
BW−CAND

Figure 6: Performance comparison for individual experiments
(C=5, D=2MB): PROXIM is the worst and BW-CAND is the best
in all cases except EX-2, where BW-CAND is comparable to BW-
ONLY and BW-LOAD.

The reason BW-CAND performs the best can be found
in the bandwidth distribution of servers as shown in Ta-
ble 3. Here, we classify hosts in three categories: low,
medium, and high bandwidth, based on their bandwidth
values. All of the bandwidth-based heuristics can penalize



Table 2: Experiments setup

Experiments Nodes Replication Candidate Concurrency Data Size Queries
EX-1 19 10 5 5 2M 690
EX-2 33 10 5 5 256K,512K,1M,2M > 200
EX-3 29 10 5 5,10,15 2M > 250
EX-4 29 10 5 5 256K,512K,1M,2M > 450

Average Makespan
0

5

10

15

20

25

30

35

40

D
ow

nl
oa

d 
T

im
e 

(s
ec

on
ds

)

PROXIM
BW−ONLY
BW−LOAD
BW−CAND

(a) Mean vs. Makespan

0 20 40 60 80 100 120 140 160 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Makespan (seconds)

F
ra

ct
io

n 
of

 q
ue

rie
s

Makespan CDF

PROXIM
BW−ONLY
BW−LOAD
BW−CAND

(b) Completed Query CDF

10
−1

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Bandwidth (Mbps)

F
ra

ct
io

n

Host Bandwidth CDF (log scale)

(c) Server Bandwidth

Figure 5: Performance comparison of different heuristics (C=5, D=2MB, Num Queries>1800): (a) shows the average download time and
makespan, (b) shows the CDF of download completions, and (c) shows the bandwidth distribution of data servers.

low-bandwidth servers (i.e. those with less than 1Mbps),
but may not penalize medium-bandwidth servers (i.e. those
between 1Mbps and 10Mbps). In fact, BW-ONLY might
not penalize such medium-class servers because the weight
value αj is likely to stabilize beyond 1Mbps, due to its ex-
ponential relation to bandwidth (Equation 2). In addition, if
the average load is low on these medium-class hosts (close
to 1), BW-LOAD also does not penalize them. In contrast,
BW-CAND can penalize these servers, if too many clients
try to select them, thus leading to higher values of recent
candidate set queries. Thus, BW-CAND is able to provide
better performance for such servers, by proactively prevent-
ing overloads from happening, while BW-LOAD is able
to react only to past observed load. Unlike other experi-
ments, EX-2 shows all the heuristics to have similar perfor-
mance. This can be explained by the fact that EX-2 has only
6% medium-class servers (as seen from Table 3), whereas
other experimental scenarios have more than 20% medium-
class servers, thus reducing the differentiation opportunity
for BW-CAND. However, note that BW-CAND does not
perform any worse than other heuristics even under these
conditions.

References

[1] D. Anderson. BOINC: A System for Public-Resource Com-
puting and Storage. In Proceedings of the 5th IEEE/ACM
International Workshop on Grid Computing (GRID 2004),
2004.

[2] D. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and
D. Werthimer. SETI@home: An Experiment in Public-

Resource Computing. Communications of the ACM, 45(11),
2002.

[3] A. Bavier, M. Bowman, B. Chun, D. Culler, S. Karlin,
S. Muir, L. Peterson, T. Roscoe, T. Spalink, and M. Wawr-
zoniak. Operating System Support for Planetary-Scale Net-
work Services. In Proceedings of the Fifth Symposium on
Networked Systems Design and Implementation (NSDI’04),
2004.

[4] BLAST. http://www.ncbi.nlm.nih.gov/blast.
[5] Climate Prediction Network. http://www.

climateprediction.net/.
[6] Folding@home distributing computing project. http://

folding.stanford.edu.
[7] PPDG: Particle Physics Data Grid. http://www.ppdg.

net.
[8] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized

object location, and routing for large-scale peer-to-pe er sys-
tems. Lecture Notes in Computer Science, 2218:329+, 2001.

[9] J. Sonnek, M. Nathan, A. Chandra, and J. Weissman.
Reputation-Based Scheduling on Unreliable Distributed In-
frastructures. In Proceedings of the 26th International Con-
ference on Distributed Computing Systems, July 2006.


