
Automatic MPI application transformation with ASPhALT

Anthony Danalis1, Lori Pollock1, and Martin Swany1

1University of Delaware
Department of Computer and Information Sciences

Newark, DE 19716 USA
{danalis, pollock, swany}@cis.udel.edu

Abstract

This paper describes a source to source compilation tool

for optimizing MPI-based parallel applications. This tool

is able to automatically apply a “prepushing” transforma-

tion that causes MPI programs to aggressively send data

as soon as it is available, thus improving communication-

computation overlap and improving application perfor-

mance.

In this paper we present asphalt transformer; the

Open64-based component of our framework, ASPhALT,

responsible for automatically performing the prepushing

transformation. We also present an extensive study of

the performance gains witnessed from automatically trans-

formed codes. In particular, we demonstrate how different

levels of aggregation affect the performance of parallel pro-

grams executing various computation kernels on different

clusters. Furthermore, we discuss the differences in perfor-

mance improvement between the hand-optimized and auto-

matically optimized codes, as well as the effect of automa-

tion on time-to-solution.

1 Introduction

Cluster computing is a common way to achieve high

processing power. Clusters are used by groups with bud-

gets and requirements as large as those in national labo-

ratories and supercomputing centers, or as small as uni-

versity research teams with a few members. Nevertheless,

there are some negative aspects associated with cluster com-

puting. Namely, unlike shared memory machines, clus-

ter nodes communicating over a network introduce delays

This research was funded by NFS grant CSR ASE 0509170.

1-4244-0910-1/07/$20.00 c©2007 IEEE.

to the executing parallel applications due to the intercon-

nect’s latency. Furthermore, the applications executing on

cluster environments need to incorporate explicit message

passing to achieve communication across nodes, which in-

creases the complexity of the applications and prolongs the

time to solution. We assert that given this complexity, it is

highly desirable to have an automatic system for transform-

ing parallel programs in order to improve the performance

of those programs and make reasonable application perfor-

mance available to a wider range of engineers and scientists.

To minimize the communication latency, specialized in-

terconnects are used in clusters. Several vendors of such

technologies [5, 21], have been providing solutions with ex-

tremely low latency and high bandwidth. Nevertheless, at

the time this paper is being written the fastest networks have

a best case latency in the order of hundreds of nanoseconds,

while the fastest CPUs are clocked in the order of 5GHz.

This results in message delivery times in the order of thou-

sands of CPU cycles. In addition, contrary to simple bench-

marks, complex applications using abstract communication

libraries such as MPI, may not always be able to fully utilize

the underlying hardware, resulting in even higher commu-

nication overhead. Furthermore, the very design of an ap-

plication can have an effect on performance. In particular,

if computation and communication are separated, in order

to achieve a modular design with improved maintainability,

the communication-computation overlapping features of the

underlying hardware are effectively disabled. Even if the

hardware supports advanced features such as Remote Di-

rect Memory Access (RDMA), if the communication starts

after the completion of the computation, the transfer can-

not be overlapped and will lead to thousands of idle CPU

cycles.

In an effort to hide from the programmer the complexity

of explicit message passing, several global-address space

(GAS) languages [12, 17, 18, 19, 25] have been proposed,

along with techniques to automatically translate programs

written in a shared memory model such as OpenMP to

MPI [3], or even enable programs written in Matlab to exe-

cute in parallel [23, 8]. Nevertheless, explicit message pass-

ing through MPI remains the dominant parallel program-

ming paradigm in the high performance computing com-

munity.

The work presented in this paper is part of a big-

ger project, ASPhALT, that aims to address the perfor-

mance issues associated with MPI communication, while

hiding from the programmer the complexity of highly ef-

ficient message passing codes. Namely, we present as-

phalt transformer, a tool that can automatically apply a

prepushing transformation [10] on MPI codes, without re-

quiring any knowledge of the esoterics of our approach

by the parallel application developer. We demonstrate that

our tool considerably reduces the communication latency of

the transformed applications, by enabling communication-

computation overlapping. Our tool can provide a developer

with sufficiently efficient code, even if the initial code has

the simple form of Figure 1. As such simple code is easy to

write and understand, we argue that our tool can reduce the

complexity of developing efficient message passing parallel

applications and improve time to solution.

This paper proceeds with a discussion of the prepushing

compiler transformation process as well as experimental re-

sults that provide an evaluation of the compiler-transformed

codes in terms of performance. We have conducted experi-

ments on more than one cluster environment and we present

a detailed study that shows the performance improvement of

the transformed code as compared to the original version, as

well as the effect of aggregation on the performance of the

transformed code.

2 Prepushing Transformation

Figure 1, depicts the abstract form of the input code to

the transformer and the output after applying the prepushing

transformation. As shown in the figure, the class of applica-

tions that can benefit from this transformation are those that

consist of two parts.

First, the application executes a computation loop, with

no (or limited) dependencies across iterations. This loop de-

fines (i.e., alters, or generates) the application data. Then, a

communication call (such as an MPI collective operation) ,

following the loop, exchanges the data that was defined by

the computation. In contrast, the resulting code has a less

modular design, with the computation organized in tiles,

and the communication of each tile overlapped with the

computation of future tiles through the use of asynchronous

data exchange mechanisms (such as MPI Isend() and

MPI Irecv()). In a sense, prepushing can be viewed as

reversed (or producer initiated) prefetching as it is pushing

the data to the consumer as soon as it becomes available,

even if it is not needed yet by the consumer. The goal of this

transformation is to hide, or at least reduce, the communi-

cation latency by overlapping the data transfer with useful

computation.

As can be seen in Figure 1, the transformation has the

following effect on the code:

• restructures the computation into tiles

• replaces synchronous communication by asyn-

chronous communication

• issues the asynchronous calls in correspondence with

each computation tile, such that the communication of

a tile is overlapped with the execution of future tiles,

enabling the tiles to proceed in a pipelined fashion

DO OUT_I = 1, N, K

 DO P = 1, NPROC
 asynchRecvInit()

 END DO

 DO I = OUT_I, OUT_I + K - 1
 kernelSubroutine(Array[i], ...)
 END DO

 DO P = 1, NPROC

 IF(OUT_I .GT. D * K) wait(Past-Send)
 asynchSend(Array[OUT_I:OUT_I+K-1)
 END DO

 wait(Past-Recv)

END DO

AFTER

DO I = 1, N
 kernelSubroutine(Array[i], ...)
END DO

synchDataTransferCall(Array[:])

BEFORE

Figure 1. Code Transformation Overview

Sorting [9], LU Factorization [11], Finite differences,

and multidimensional FFT, are examples of algorithms that

fit this abstract canonical form, and can be optimized with

the use of prepushing.

3 Transformer Design and Implementation

Our tool, which we refer to as asphalt transformer, is

implemented as a compilation phase of Open64 [2] as

depicted in Figure 2. Open64 is able to parse C, C++

and Fortran 95 code into an intermediate representation

called WHIRL and output a program’s Abstract Syntax Tree

(AST) represented in WHIRL, along with the symbol ta-

bles, to a file. After this point, asphalt transformer, using

Open64 libraries, can perform the actual analysis and ma-

nipulation of the AST and the symbol tables. At the end of

WHIRL

AST

AST

Manipulation

asphalt_transformer

Open64

Transformed Application

ParserUnparser

WHIRL

AST

C, C++, F95

Original Application

Figure 2. asphalt transformer

the transformation, with the use of Open64 provided “un-

parsers”, the resulting AST can be translated back to the

source language.

We presented an earlier preliminary version of an auto-

matic transformer in [15]. Illuminating as it was, regarding

the process of designing and implementing such as system,

it did not produce the results one would expect. This hap-

pened because the earlier version was considerably differ-

ent than the current one in several ways. First of all, it was

based on Nestor [26], rather than Open64. More impor-

tantly, in an effort to achieve generality, we designed our

first transformer to handle general case codes, without mak-

ing assumptions that one could expect to hold for scientific

codes. Last, but not least, our preliminary version was built

as a stand-alone program, in contrast with the current ef-

fort to build a fully automated optimization framework (AS-

PhALT), in which the transformer is the central component,

but not the only one.

3.1 Transformation Process

At the beginning of the transformation process, as-

phalt transformer traverses the Abstract Syntax Tree,

WHIRL AST, representing the code, examining all the

function calls. When a function call is recognized as one

of the MPI communication calls that the system knows how

to optimize, details about that call are extracted. The cur-

rent version of our tool focuses on MPI ALLTOALL(), but

adding support for more communication calls requires only

the handling of the particulars of each call. After a known

data transfer call is found, information from the function’s

prototype is used to identify the array that is being transmit-

ted (Asnd) by the call.

Consecutively, the AST is traversed again, for the com-

putation kernel that includes the definition of Asnd to be

found. In other words we try to identify the code segment

where data is stored in Asnd. This can be achieved through

the use of Ud-chain, or Reaching Definitions data flow in-

formation. In the current implementation we assume that

there are no if-then-else branches in the code that stores

data in the message buffers, nor any other incoming con-

trol edges between the definition and the use (such as goto

labels). Due to this assumption, there is only one reaching

definition for Asnd and it is a dominator of the use. The

discovering of the dominating reaching definition is imple-

mented as a simple backward traversal of the AST.

Since our transformation aims to improve performance

by increasing the communication-computation overlapping,

we focus on array assignments that occur within loops, so

that there will be some substantial computation to overlap

with the transfers. The inner most loop, that encloses the

definition is considered the computation kernel loop, Lkrn.

When a known data transfer call and the corresponding

computation loop have been identified, asphalt transformer

tries to identify if part of the computation consists of an un-

necessary array to array copy. We do that because some

collective calls, such as MPI ALLTOALL, exchange data

in a particular pattern and so programmers commonly use

a special “data packaging” loop before them, so that the

data is placed in the send array (Asnd) the way that the MPI

function “expects” to find them. If asphalt transformer can

identify such a copying, and can conservatively analyze the

array access patterns, it attempts to remove it. Note that for

the definition of Asnd to be conservatively removed, there

needs to be only one use of this definition, and it needs to

be the function call we are optimizing. In other words, re-

moving the original communication call should render the

definition of the source array as dead code, and therefore

conservatively removable.

If such a “data packaging” array copy is found, the anal-

ysis phase searches further up the AST to find the definition

of the array that is copied into Asnd. This “source-array”,

Asrc, can then be sent directly to the receiver, using a data

exchange pattern equivalent to what would have taken place

by the exchange via the collective call. If the definition of

the Asrc cannot be found , or if no such data packaging copy

took place, Asnd is transmitted instead.

After the array to be sent (either Asrc, or Asnd) has been

identified, the innermost loop that encloses its definition,

Lkrn, is marked as the target for tiling. By tiling the loop,

blocks of computation are generated, followed by the cor-

responding aggregated communication of the data defined

(generated, or altered) within the block. In this new form

of the code, the communication of each block can be over-

lapped with the computation of future blocks. In addition,

by controlling the size of the blocks, we control the aggrega-

tion of the data transfers which has a direct effect on the per-

formance of the optimized code as we have shown in [10]

and we also discuss in Section 5. Clearly, a very small tile

size would lead to a large number of small message trans-

fers, while a very large tile size would lead to a very large

final tile which would inhibit performance as the final tile’s

communication cannot be overlapped.

Tiling turns Lkrn into the inner loop of a double loop

nest, with the outer loop, Lout, being a newly introduced

one. In addition, the boundaries of Lkrn are transformed,

so that it executes one tile, of size K kernels, and Lout is

used to iterate over tiles. The asynchronous communication

loops are inserted inside Lout as well. In addition, blocking

operations need to be inserted in Lout, to guarantee correct-

ness while keeping the duplicate buffers at a manageable

level. One could avoid using wait operations inside the

loop, and wait for the arrival of the data at the end of the

whole process but such an approach would require a very

large amount of resources. This is true, because an asyn-

chronous send operation returns before the data has actu-

ally finished being transferred. Therefore, if a subsequent

computation reused the same send buffer, it could not be

guaranteed that the previous data was not overwritten be-

fore being submitted. Consequently, if blocking is not used,

the application needs a different send buffer for every send

operation. Similarly, asynchronous recv operations need

matching wait operations before the received data can be

safely saved into a permanent array, or the program needs to

use a different temporary receive buffer for every recv op-

eration. By using blocking wait operations and maintain-

ing limited duplicate buffers, the asynchronous communica-

tion can have a managed unacknowledged window, which

can be thought of as a form of tile pipelining.

Finally, some implementations of MPI, notably

MVAPICH[1], need an additional call to a probing func-

tion such as MPI Test in order to proceed with large

asynchronous transfers. This is true, due to the nature of

the rendezvous protocol used for large messages. Namely,

when MPI Isend is called, with a large message size,

the sender initiates a handshake by transmitting a small

message with meta-data about the real message, in order to

prepare the receiver to accept the message. Only when the

receiver responds with a message acknowledging the avail-

ability of a receive buffer can the actual message transfer be

initiated. The problem that can occur with computationally

intensive applications, such as those we are considering,

is that the acknowledgment message may not arrive until

the sender is executing the computation kernel. In such

a case, the actual transfer will not be initiated, let alone

completed, until the application makes the next call into

the MPI library, after the kernel has completed. Should

that occur, the opportunity for communication-computation

overlapping will have been lost, since the computation will

have been completed. To prevent this from happening, we

insert an MPI call with no side effects, namely MPI Test

inside the computation loop, Lkrn. This way, even if

the handshake response arrives while the application is

executing the computation loop, the MPI library will be

informed, and the asynchronous message transfer will

be overlapped with the computation. A more detailed

discussion on the rendezvous protocol in MVAPICH can be

found in [27].

The analysis and transformation performed by our sys-

tem is implemented at the WHIRL, or intermediate imple-

mentation level of Open64. Therefore it is in principle inde-

pendent of the source language. In reality though, different

features of the different potential source languages could

complicate phases of the analysis. For example, C/C++

pointers and aliasing could make reaching definitions anal-

ysis impossible or intractable. Nevertheless, if the analy-

sis described earlier in this section can be conservatively

performed, then the transformation can be applied without

major differences between source languages. In the experi-

ments performed so far, we have focused on Fortran, since

we consider it to be the language of choice among domain

scientists, as well as more tractable to analyze.

4 Experimental Study

The main question targeted by this experimental study

is whether an automatically transformed code can experi-

ence performance improvements comparable to what we

witnessed in our proof of concept study [10], in which the

applications were transformed manually. To answer this

question, we used our tool, asphalt transformer, to auto-

matically transform an MPI code, and we compared the

performance of the code before and after the transforma-

tion. Since the performance of the transformed, tiled code

depends heavily on the tile size, we profiled a large part

of the parameter space. In other words, we ran the trans-

formed code multiple times, using several different values

of tile size. In our graphs, we show the results for all the

different values we used.

Figure 3. Custom Computation Kernel

To demonstrate the generality of our transformation, as

far as the type of computation performed by the applica-

tion is concerned, we created a synthetic application where

the computation kernel consists of a loop nest that performs

multiple arbitrary, irregular accesses to the input array, tak-

ing time O(n · logn), shown in Figure 3. Since we have full

control over this synthetic computation kernel, we can al-

ter its behavior to control the computation/communication

ratio, emulating the load of different types of computation

kernels (FFT, finite differences, etc).

4.1 Experimental Methodology

For the purpose of this study we used two clusters. The

first cluster is located in the Chemical Engineering depart-

ment at the University of Delaware and has 41 nodes with

2.2GHz AMD Opteron 248 CPUs. The network inter-

connect uses the Ammasso 1100 Gigabit Ethernet Server

Adapter, which supports RDMA. Each node runs Linux

2.6.9 and has 2GBytes of main memory.

The second cluster is located at the University of Ten-

nessee and consists of 55 nodes with dual 1.4GHz AMD

Opteron 240 CPUs. The network interconnect is Myrinet

with NIC information: 333.2 MHz LANai, 132.9 MHz PCI

bus, 2 MB SRAM and MX version 1.0.3. Each node runs

Linux 2.6.13 and has 2GBytes of main memory.

Regarding the MPI library, we used the MPI versions

provided by the corresponding network vendors.

5 Results and Analysis

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Tile Size (K) (send buffer size = K*720 bytes)

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

1.55

1.60

1.65

1.70

1.75

1.80

1.85

1.90

E
x
ec

u
ti

o
n
 T

im
e

N
o
rm

al
iz

ed
 t

o
 C

o
m

p
u
ta

ti
o
n
 T

im
e

MPI_ALLTOALL
Tiled Code (ASPhALT)

Slowdown VS. Tile Size

Figure 4. NP=16, Ammasso, 1440x1440x48

The results of our experiments are demonstrated in Fig-

ures 4, 5, 6, 7. The Y axis in these graphs depicts the

slowdown due to communication. This value is obtained

by normalizing the total execution time witnessed by the

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
Tile Size (K) (send buffer size = K*480 bytes)

1.0

1.1

1.2

1.3

1.4
1.5

1.6

1.7

1.8

1.9
2.0

2.1

2.2

2.3

2.4
2.5

2.6

2.7

2.8

2.9

E
x
ec

u
ti

o
n
 T

im
e

N
o
rm

al
iz

ed
 t

o
 C

o
m

p
u
ta

ti
o
n
 T

im
e

MPI_ALLTOALL
Tiled Code (ASPhALT)

Slowdown VS. Tile Size

Figure 5. NP=24, Ammasso, 1440x1440x48

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Tile Size (K) (send buffer size = K*960 bytes)

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

1.80

1.90

2.00

2.10

2.20

2.30

2.40

2.50

E
x

ec
u

ti
o

n
 T

im
e

N
o

rm
al

iz
ed

 t
o

 C
o

m
p

u
ta

ti
o

n
 T

im
e

MPI_ALLTOALL
Tiled Code (ASPhALT)

Slowdown VS. Tile Size

0 10 20 30 40
1

2

3

4

5

6

7

8

9

Figure 6. NP=24, Ammasso, 2880x1440x96

application to the computation time of the application. In

other words, the Y axis shows the value 1 + Ocomm where

Ocomm is the communication overhead. We chose to nor-

malize the execution time in order to emphasize the com-

munication overhead, since our work focuses on overlap-

ping the communication with the computation in order to

reduce this particular type of overhead.

The X axis in the graphs depicts the size of the tile (K), or

the number of computation kernels that are executed before

a data transfer is initiated. The X axis also depicts the size

of the send buffer, since the transferred data size is linearly

proportional to the tile size.

The (blue) dashed-dotted line in each graph rep-

resents the slowdown witnessed by the original code

(MPI ALLTOALL). Note that the original code is not tiled

0 5 10 15 20 25 30 35 40 45 50 55 60
Tile Size (K) (send buffer size = K*240 bytes)

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

1.80

1.90

2.00

2.10

2.20

2.30

2.40

2.50

2.60

2.70

2.80

E
x

ec
u

ti
o

n
 T

im
e

N
o

rm
al

iz
ed

 t
o

 C
o

m
p

u
ta

ti
o

n
 T

im
e

MPI_ALLTOALL
Tiled Code (ASPhALT)

Slowdown VS. Tile Size

0 5 10 15 20

2

4

6

8

10

12

14

16

Figure 7. NP=48, Myrinet-MX, 1440x1440x48

and therefore the slowdown is the same for all values of the

X axis.

All measurements were repeated in the order of 10

times, in order to reduce the noise of our experiments. In

graphs 4, 5, 6, 7, each black box represents the minimum

execution time observed by the transformed code for a given

tile size. The error bars indicate the distance to the median.

Therefore, the range depicted in the graphs represents 50%

of our executions with the least noise.

5.1 Performance and Tile Size

Unmistakably, for every cluster and for all different num-

bers of processors, there are more than one tile sizes (values

on the X axis) that make the optimization successful (black

box lower than dashed line). Therefore, our experiments

indicate that the prepushing transformation, can reduce the

communication overhead if a good tile size is used in the

transformed application.

However, it is interesting to observe that there is no

consistent “safe” value for the tile size. That is, in some

cases we start witnessing good performance at relatively

smaller tile sizes, while in others higher aggregation is

needed for good performance. In two of the cases (6, 7)

the performance for small tile sizes was so poor that pre-

senting them in the same graph with the rest of the values,

would render the rest of the values unreadable. For this rea-

son, we include inset graphs in order to show the behavior

of the code for small sizes.

These observations highlight the fact that transformed

codes tuned for a given cluster environment might not per-

form as well if they are transferred to a different cluster, or

the environment changes in any way. For this reason, or cur-

rent and future work is focused on automatically tuning the

transformed codes, or at least guiding the tuning process.

5.2 Automatic vs. Manual Transforma-
tion

In our previous work [10], we performed the transfor-

mations by hand in order to study the potential gains of

prepushing. In particular, for every benchmark application

we created two transformed codes; one using MPI’s asyn-

chronous I/O, and another using one-sided I/O through calls

to a thin library we developed to make the low level API of

the hardware vendor accessible from Fortran code.

asphalt transformer, although still under development,

is already able to transform the MPI ALLTOALL code the

same way as we would transform it by hand. In other

words, by letting the compiler perform the transforma-

tion automatically, we do not sacrifice performance and

are able to automatically utilize more complicated fea-

tures, such as MPI asynchronous I/O.

As far as the transformation that utilizes one-sided I/O

is concerned, it is beyond the current capabilities of as-

phalt transformer, but we are planning to include it in fu-

ture versions of our system. This scheme is more difficult

to implement, because it bypasses the abstraction of MPI,

which creates the need to explicitly handle more details.

Nevertheless, the very reason that creates these difficulties,

(i.e., the bypassing of MPI’s abstractions) yields significant

additional performance improvements as we showed in our

previous study, and as Bell et al. show in [4].

6 Time to Solution

A system such as ASPhALT provides an obvious benefit

to parallel application developers. It can make their appli-

cations run faster, or scale to more CPUs. Although execu-

tion speed and scalability are two metrics that are intuitive

to understand and easy to measure, the high performance

computing community is becoming increasingly interested

in a different metric of productivity; namely, time to solu-

tion [7, 14]. This metric is important to productivity be-

cause it is in a sense the real total time that a developer

spent from the conception of the idea to the final results of

the execution. We argue that ASPhALT can reduce time to

solution much further than it can reduce the pure execution

time, and we believe this for two reasons.

First, contrary to solutions that add new layers of com-

plexity or instrumentation, or low level APIs in order to

achieve better performance, our work allows developers to

write their code in the simplest possible form (i.e., a compu-

tation loop followed by a collective communication call). In

this way, domain scientists, who are the most common users

of HPC systems, do not have to spend their time learning,

developing and debugging low level, asynchronous, or one-

sided I/O codes. They can rather focus on what they do best,

their science, and leave the efficient code generation to an

automated system such as ASPhALT.

Furthermore, as one can see in Figures 4- 7, just writing

code that initiates asynchronous transfer calls ahead of time

does not guarantee a performance improvement. If param-

eters of the transformed code, such as the level of aggrega-

tion, are not selected properly, the “optimized” code could

run orders of magnitude slower than the original code! It is

clear that a system is needed that can transform the applica-

tion codes, as well as automatically (or semi-automatically),

select values for the parameters that control the performance

of the transformed code.

7 Related Work

Significant amount of research has been performed in

the field of Global Address Space (GAS) languages [12,

17, 18, 19, 25]. These projects are similar to our work in

that they try to hide from the programmer the complexity

of highly efficient parallel programming, while achieving

efficient execution. GAS languages deploy compiler analy-

sis and optimization along with low level, high performance

APIs [6, 24] in order to achieve high performance while ex-

posing a high level language to the programmer. The main

difference with our project is that we aim to optimize MPI-

based codes instead of introducing a new language or set of

interfaces. This way, our optimizations can be applied to

new or legacy applications written by developers oblivious

to our work.

Two additional studies that considered a transformation

similar to ours are presented in [22] and [20]. These papers,

suggest peeling, or strip mining of the computation loops

in order to achieve prefetching of the data. In our study,

we consider applications that generate data using local ar-

rays, and we try to prepush them to the destination before

they are needed. This difference can have important im-

plications as true get operations are not common1, while

one-sided put operations exist in all RDMA-capable net-

works. Furthermore, we have gone beyond identifying the

transformation by developing an actual compilation phase

(asphalt transformer) capable of performing the transfor-

mation on existing scientific applications.

Bell et al. [4] presented very similar work to our

own. They too transform parallel codes in order to pre-

push the generated data and achieve better communication-

computation overlapping. Although our results are simi-

lar to theirs, the two projects are different in several ways.

They focus on one-sided communication and they utilize a

communication API (GASnet) lower than MPI, while we

1Some APIs provide get operations that are implemented as a multi-

step negotiation between the producer and the consumer.

show that significant benefits can be gained by the use of

regular MPI asynchronous I/O (although we acknowledge

the low-level, one-sided I/O can provide even further per-

formance gains). In addition, we perform an extensive in-

vestigation of the effects of different levels of aggregation

(i.e., different values of tile size) to performance, while they

use two fixed message sizes for their study. Furthermore,

their work is performed in the context of UPC, while our

transformer (asphalt transformer), is developed as part of

ASPhALT, a project that aims to optimize MPI applications.

Finally, the most important difference of the two projects is

that we present a tool that can automatically transform a

scientific application, where they showed benefits by trans-

forming the applications manually.

Transforming MPI collective operations into point-to-

point operations for performance is also considered by Faraj

and Yaun [13]. Their work focuses on optimizing based on

the topology of the network and takes no account of data

dependence.

8 Conclusions and Future Work

The overarching hypothesis of which this work is a part,

is that it is possible to create an integrated system where

not only the program transformation can be performed au-

tomatically, but empirical active probing (similar to that per-

formed by systems such as ATLAS [28] or FFTW [16]) can

automatically determine the best parameter values needed

in a given cluster. In a non-automatic environment, where

the programmer has optimized the code by hand, every time

the characteristics of the cluster change, profiling, or other

time consuming techniques are necessary to adapt the appli-

cation to the changed cluster. ASPhALT is being developed

to be an automated and fully integrated system able to assist

developers of parallel applications in generating highly effi-

cient code without requiring the developers to have knowl-

edge of advanced APIs or programming techniques, or the

esoteric details of our system.

In this paper we presented asphalt transformer, a compi-

lation phase developed within Open64, which is able to au-

tomatically perform the prepushing transformation on MPI-

based codes. We showed that the automatic transformation

can reduce the communication overhead by a significant

amount, regardless of the details of the computation ker-

nel that the application executes, or the type of the cluster

used.

In addition to developing the parameter selection and

tuning part of ASPhALT, we are currently working on ex-

panding the applicability of asphalt transformer by en-

abling it to optimize more communication functions. In

addition, we are planning to enable asphalt transformer to

generate code that can bypass MPI and perform low level

one-sided I/O.

Acknowledgments

We would like to thank the University of Tennessee

and professor Dionisios G. Vlachos at the University of

Delaware for providing us with access to their clusters.

References

[1] Network-Based Computing Laboratory. MPI over Infini-

Band Project. http://nowlab.cse.ohio-state.

edu/projects/mpi-iba.
[2] Open64. http://open64.sourceforge.net.
[3] A. Basumallik and R. Eigenmann. Towards automatic trans-

lation of openmp to mpi. In ICS ’05: Proceedings of the 19th

annual international conference on Supercomputing, pages

189–198, 2005.
[4] C. Bell, D. Bonachea, R. Nishtala, and K. Yelick. Optimiz-

ing Bandwidth Limited Problems Using One-Sided Com-

munication and Overlap. In 20th International Parallel &

Distributed Processing Symposium (IPDPS), 2006.
[5] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik,

C. L. Seitz, J. N. Seizovic, and W.-K. Su. Myrinet:

A gigabit-per-second local area network. IEEE Micro,

15(1):29–36, 1995.
[6] D. Bonachea. GASNet specification. Technical Report

CSD-02-1207, University of California, Berkeley, October

2002.
[7] F. Cantonnet, Y. Yao, M. Zahran, and T. El-Ghazawi. Pro-

ductivity Analysis of the UPC Language. In IPDPS 2004

PMEO workshop.
[8] R. Choy. Parallel matlab survey. http://theory.lcs.

mit.edu/∼cly/survey.html.
[9] M. J. Clement and M. J. Quinn. Overlapping Computations,

Communications and I/O in parallel Sorting. Journal of Par-

allel and Distributed Computing, 28(2):162–172, 1995.
[10] A. Danalis, K. Kim, L. Pollock, and M. Swany. Transfor-

mations to Parallel Codes for Communication-Computation

Overlap. In SC ’05: Proceedings of the 2005 ACM/IEEE

conference on Supercomputing, 2005.
[11] F. Desprez, J. Dongarra, and B. Tourancheau. Performance

study of LU factorization with low communication overhead

on multiprocessors. Parallel Processing Letters, 5:157–169,

1995.
[12] T. A. El-Ghazawi, W. W. Carlson, and J. M. Draper.

UPC specification v. 1.1. http://upc.gwu.edu/

documentation, 2003.
[13] A. Faraj and X. Yuan. Automatic generation and tuning of

mpi collective communication routines. In ICS ’05: Pro-

ceedings of the 19th annual international conference on Su-

percomputing, pages 393–402, New York, NY, USA, 2005.

ACM Press.
[14] S. Faulk, J. Gustafson, P. Johnson, A. Porter, W. Tichy, and

L. Votta. Measuring hpc productivity. International Journal

of High Performance Computing Applications, 18(4):459–

473, 2004.
[15] L. Fishgold, A. Danalis, L. Pollock, and M. Swany.

An Automated Approach to Improving Communication-

Computation Overlap in Clusters. In Parallel Computing

2005, 2005.

[16] M. Frigo. A fast fourier transform compiler. In PLDI ’99:

Proceedings of the ACM SIGPLAN 1999 conference on Pro-

gramming language design and implementation, pages 169–

180, 1999.
[17] High Performance Fortran Forum. High Performance For-

tran language specification, version 1.0. CRPC-TR92225,

Rice University, Houston, TX, 1993.
[18] P. Hilfinger, D. Bonachea, D. Gay, S. Graham, B. Liblit,

G. Pike, and K. Yelick. Titanium language reference man-

ual. tech report ucb/csd-01-1163, u.c. berkeley, november

2001.
[19] S. Hiranandani, K. Kennedy, and C.-W. Tseng. Compiler

optimizations for fortran d on MIMD distributed-memory

machines. In Supercomputing, pages 86–100, 1991.
[20] C. Iancu, P. Husbands, and W. Chen. Message Strip Mining

Heuristics for High Speed Networks. In VECPAR, 2004.
[21] InfiniBand Trade Association. InfiniBand Architecture

Specification, Release 1.0, October 24 2000.
[22] G. Liu and T. Abdelrahman. Computation-Communication

Overlap on Network-of-Workstation Multiprocessors. In In-

ternational Conference on Parallel and Distributed Process-

ing Techniques and Applications, 1998.
[23] F. M, M. C, K. K, and J. G. Strategy for Compiling Parallel

Matlab for General Distributions Rice University, (TR06-

877), Houston, TX, 2006.
[24] J. Nieplocha and B. Carpenter. ARMCI: A portable remote

memory copy library for distributed array libraries and com-

piler run-time systems. In RTSPP IPPS/SDP’99, 1999.
[25] R. W. Numrich and J. K. Reid. Co-Array Fortran for parallel

programming. ACM Fortran Forum 17, 2, 1-31, 1998.
[26] G.-A. Silber and A. Darte. The Nestor library: A tool for

implementing Fortran source to source transformations. In

High Performance Computing and Networking (HPCN’99),

volume 1593 of Lecture Notes in Computer Science, pages

653–662. Springer Verlag, Apr. 1999.
[27] S. Sur, H.-W. Jin, L. Chai, and D. K. Panda. RDMA read

based rendezvous protocol for MPI over InfiniBand: design

alternatives and benefits. In PPoPP ’06: Proceedings of the

eleventh ACM SIGPLAN symposium on Principles and prac-

tice of parallel programming, pages 32–39, 2006.
[28] R. C. Whaley and J. Dongarra. Automatically Tuned Linear

Algebra Software. In SuperComputing 1998: High Perfor-

mance Networking and Computing, 1998.

