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Abstract

We make two contributions in the area of memory pro-
filing. The first is a real-time, memory-profiling toolkit
we call Memcov that provides both allocation/deallocation
and access profiles of a running program. Memcov requires
no recompilation or relinking and significantly reduces the
barrier to entry for new applications of memory profiling by
providing a clean, non-invasive way to perform two major
functions: processing of the stream of memory-allocation
events in real time and monitoring of regions in order to
receive notification the next time they are hit.

Our second contribution is an adaptive memory pro-
filer and leak detector called MemcovMPC . Built on top
of Memcov, MemcovMPC uses Model Predictive Control
to derive an optimal control strategy for leak detection
that maximizes the number of areas monitored for leaks,
while minimizing the associated runtime overhead. When
it observes that an area has not been accessed for a user-
definable period of time, it reports it as a potential leak.
Our approach requires neither mark-and-sweep leak detec-
tion nor static analysis, and reports a superset of the mem-
ory leaks actually occurring as the program runs. The set
of leaks reported by MemcovMPC can be made to approxi-
mate the actual set more closely by lengthening the thresh-
old period.

1 Introduction

Profiling is a popular technique for finding bugs and in-
efficiencies in software. Profiling is possible across any in-
terface which has a well-defined set of events. For example,
storage profiling can be performed across the file system in-
terface, where the set of events consists of file events such as
open, read, and close [10]. Other examples of profiling ap-
plications include network profilers, which interpose on an
operating system’s network APIs to measure the time taken
and the amount of data transferred for network protocol in-
teractions [12]—and execution profilers, which sample the
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CPU program counter to estimate what fraction of a pro-
gram’s runtime is spent in each function [5].

In this paper we present two contributions in this area.
The first is a new, general approach to memory profil-
ing: a real-time profiling toolkit that profiles both alloca-
tion/deallocation and access events as the program runs; our
toolkit requires no recompilation or relinking, and can be
used by third-party or custom tools to process the events.
The second contribution is an adaptive profiler that uses this
toolkit to detect memory leaks. Because monitoring an area
to see if it is accessed incurs overhead when it is accessed,
our profiler monitors commonly used areas less frequently,
reducing the overhead from hits on memory areas that are
not leaks.

The toolkit we present in this paper, called Memcov,
significantly reduces the barrier to entry for new applica-
tions of memory profiling. Memcov provides a clean, non-
invasive way to perform two major functions:

• Reading the stream of memory-allocation events in
real time. This allows analysis of total heap consump-
tion, number of allocations per second, distribution of
allocation size, and other metrics.

• Monitoring regions in order to receive notifications the
next time they are hit. Such a capability supports heap-
usage analysis, leak analysis, and working-set profil-
ing.

The profiler, which we call MemcovMPC , uses the prin-
ciple of Model Predictive Control [4] to derive an optimal
strategy for leak detection that maximizes the number of
areas monitored for leaks while minimizing the associated
runtime overhead. MemcovMPC reports any area for which
it has observed no accesses for a user-definable period of
time as potential leaks. Our approach requires neither mark-
and-sweep leak detection nor static analysis, and we report
a superset of the memory leaks actually occurring as the
program runs. The set of leaks reported by Memcov MPC

can be made to approximate the actual set more closely by
lengthening the threshold period.

The rest of the paper is organized as follows. Sec-
tion 2 discusses Memcov’s design. Section 3 describes the
Model Predictive Control theory underlying the design of



MemcovMPC. Section 4 considers the data Memcov can
provide and how MemcovMCP uses it. Section 5 summa-
rizes related work. We conclude in Section 6 and discuss
directions for future work.

2 Design

We designed Memcov with three goals in mind:

Flexibility: It should be possible to perform a wide va-
riety of analyses with the tools provided by Memcov.
For example, it may be sufficient to test for double-
frees or unfreed allocations in the case of simple mem-
ory allocations. In another use case, one may want
to determine average allocation size. Other use cases
may require that LRU statistics be kept for allocations
to discover inefficient memory use.

Non-invasiveness: As little profile code as possible
should run in the context of the application under in-
vestigation. This reduces the possibility of the profiler
interfering with application behavior and makes it eas-
ier to determine profiling overhead, especially if the
profiler is being run on a multicore or multiprocessor
computer.

Simplicity: The API for the profiler should be as simple
as possible while providing the necessary interfaces
to preserve flexibility. We must provide easy access
to the stream of memory-allocation, freeing, and ac-
cess events generated by the application. We must also
provide access to all existing memory allocations, al-
lowing the profiler to maintain use-case-specific data
about each allocation.
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Figure 1. Design of the memory profiler

We illustrate Memcov’s high-level architecture in Fig-
ure 1. Portions of the memory profiler execute in two con-
texts: the target process, whose memory usage is being pro-
filed, and the monitor process, which is doing the profiling.

We implemented core functionality for Memcov as a server
that we embed in the target process by runtime insertion
using the loader, and as a client that is linked into the moni-
tor process at compile time. This core functionality ensures
that malloc, realloc, free, and calloc continue to run
correctly while keeping track of all existing allocations in a
data structure and allowing monitoring of individual mem-
ory regions using memory-protection primitives.

The server implements the actual memory allocator
back-end in such a way that memory allocations can be
monitored individually. The primary challenge here is that
the mprotect system call, the POSIX interface to the op-
erating system’s memory-protection functionality, operates
at page granularity; in contrast, most standard memory al-
locators store multiple small allocations on a single page.
This means that if we monitor each small allocation, then
all allocations on the same page will also be monitored. We
eliminate this granularity mismatch by forcing our allocator
back-end to allocate in multiples of a single page. We chose
the POSIX mmap facility for this purpose; a user-space al-
ternative, posix memalign, exists as well but is very slow.

The client maintains a splay tree containing the base and
extent of all existing allocations. This data structure has
two consumers: (1) the server, which periodically needs to
query extent information for a particular base in order to
deallocate, protect, or resize memory regions; and (2) the
use-case-specific profiling logic. For the benefit of the pro-
filing logic, the client also maintains one private data pointer
per allocation, which can be filled by the profiling logic.
The profiling logic can access allocation information by
registering a callback that is called each time an event hap-
pens, or by obtaining an iterator that we can use to traverse
all existing allocations.

The server and the client communicate via a packet-
based protocol implemented on top of POSIX pipes. There
are two pipes: (1) a data pipe on which the server commu-
nicates event data and requests extent information; and (2) a
command pipe on which the client issues commands to the
server, instructing it to monitor certain areas and sending
the extent information required by the server to implement
the memory-allocator back-end.

The protocol is largely asynchronous, as shown in Fig-
ure 2. For example, we can allow free to return despite
the fact that the memory will not be freed until the client
has queried its splay tree and determined the extent of the
region to be freed. This is because free requires eventual
deletion, not immediate deletion; behavior on subsequent
accesses is undefined [7]. However, one synchronous oper-
ation remains: a call to realloc requires a round-trip to the
client to obtain the size of the region before resizing. How-
ever, in all cases, the Memcov client performs updates to its
region database asynchronously. Because of the ordered na-
ture of POSIX pipes, we guarantee that updates are commit-
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Figure 2. Packets and actions for a selection
of memory events

ted before subsequent operations require the updated extent
information.

3 Model Predictive Control

Our memory leak detector, MemcovMPC , uses Memcov
as a backend and implements a Model Predictive Control
strategy that seeks to maximize the number of areas mon-
itored for leaks, while minimizing the associated runtime
overhead. Upon reaching a given system state s, a model
predictive controller [4] performs an online calculation that
allows it to explore state trajectories that emanate from s in
search of a cost-minimizing control strategy. As explained
below, the control action taken by MemcovMPC is to ad-
just the monitoring rate associated with allocated memory
areas.

Strictly speaking, a memory leak in an executing pro-
gram P is a memory allocation that is not accessed by
P beyond a certain point in time. In terms of temporal-
logic model checking [3], the (negation of the) memory-
leak property can be expressed as a liveness property: a
temporal-logic formula of the form “Something good even-
tually happens.” Liveness properties, however, are not well-
suited for runtime verification, since it is not generally

known when the “good” event will eventually occur.
We therefore investigate bounded memory leaks with

MemcovMPC: memory allocations that are not accessed for
a time interval TL. The set of bounded memory leaks is a
superset of the set of actual memory leaks, as it may contain
allocations that are in fact accessed in the future. Length-
ening TL has the effect of improving the accuracy of the set
of leaks reported by MemcovMPC . The bounded-memory-
leak property corresponds to a bounded liveness property in
temporal logic.

MemcovMCC uses the page-monitoring facility pro-
vided by the Memcov toolkit to determine when objects
are accessed. Areas that are accessed are not leaks, and
each memory hit incurs overhead in the form of a page
fault and the overhead associated with communicating the
event between Memcov’s client and server components.
MemcovMPC therefore reduces the monitoring rate on ar-
eas it observes being accessed, while increasing the moni-
toring rate on areas it observes to not be accessed. This ap-
proach has two advantages. First, it catches more accesses
to infrequently used areas, reducing false positives. Second,
it enables sorting of areas by how often they are accessed,
allowing not only leak detection but also detection of inef-
ficient memory usage.
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Monitored

Threshold = 100s
Monitored

. .
 .

Not monitored
Threshold = 100s

. . .

Threshold passes
Area is accessed
Legend

Figure 3. State machine controlling monitor-
ing threshold

MemcovMPC manages the monitoring rate for alloca-
tions by adjusting their monitoring threshold: the time be-
tween an access to an area, which causes deactivation of the
area’s memory protection, and the reactivation of the pro-
tection to detect the next access. The monitoring threshold



also determines the amount of time the area is allowed to
remain untouched before reducing the monitoring thresh-
old. This leads to a state machine similar to the one shown
in Figure 3, differing only in the number of states and their
corresponding thresholds.

4 Analysis

In this section, we demonstrate the use of Memcov on the
text editor vim. First, we show how Memcov can be eas-
ily used to build a simple allocation-profiling application.
Second, we demonstrate access profiling, first naively and
then using MemcovMPC , and illustrate the benefit from its
adaptive approach to leak detection. Third, we determine
the overhead imposed by Memcov’s memory-allocator in-
terfaces. In all cases, we ran the benchmarks on a 2-way
HyperThreaded 3GHz Pentium 4 with 2GB of RAM, run-
ning Linux 2.6.18 and glibc 2.5.

4.1 Using Memcov

We first used the Memcov toolkit to build a profiling ap-
plication that reports the number of mallocs and frees per
unit time. This profiler is a consumer of the stream of event
information that the client relays to the profiling logic over
the data pipe. We performed no post-processing to obtain
the data presented here; the source data for all graphs pre-
sented here was emitted as vim ran.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0  5  10  15  20  25  30  35  40  45  50
 0

 500

 1000

 1500

 2000

 2500

 3000

Nu
mb

er
 of

 ra
ng

es
 (t

ota
l)

Nu
mb

er
 of

 ev
en

ts 
(se

co
nd

-1
)

Time in benchmark (s)

Total ranges

mallocs

frees

Figure 4. Calls to malloc and free over time for
vim.

We ran a benchmark consisting of a vim script that first
opened a new file, then repeatedly inserted lines of text at

the beginning of the file, wrote the file to disk, deleted ev-
ery line in the file, again wrote the file to disk, and finally
quit. The results of running the profiler on vim performing
this benchmark are shown in Figure 4; the figure shows the
usage statistics for the memory allocator as well as a count
of existing allocations. We observe heavy initial memory
activity as vim starts up. (We discuss the 7-second start-
up time in Section 4.3.) We then observe a smooth up-
ward trend for memory use, with frees matching but always
slightly trailing mallocs, as more and more lines are put into
the buffer. Then, the buffer is saved, cleared (causing an-
other spike of activity), and vim terminates.

4.2 Leak Analysis and MemcovMPC

After analyzing vim’s memory allocation behavior, we
set out to analyze the use of the allocated memory. We first
developed a profiler that uses Memcov to monitor all cur-
rently unmonitored areas each second. Because Memcov
disables monitoring for areas that are accessed, this means
that we are ensuring that each area is hit at most once a sec-
ond.
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Figure 5. Aging of allocations over time for
vim

Figure 5 illustrates the data provided by the profiler. A
cross-section along the y-z plane for any point on the x
axis is a histogram depicting how many areas have been
untouched for less than 1, 2, 4, 8, 16, and 32 seconds at
the corresponding time in the benchmark. We observe a
gradual aging of memory areas over time, with some initial
turnover corresponding to vim start-up but all memory ar-
eas gradually aging. By the time vim terminates, 78% of all
allocations have been sitting idle for over 16 seconds, and



only 0.7% have been accessed within the last 2 seconds.
We then used MemcovMPC to observe how its adaptive

approach would affect runtime. Figure 6 shows a histogram
over time of the threshold times for all allocations. Initially
there is a large group of regions which are accessed fre-
quently enough to cause the threshold to increase from its
initial value of 1 second to 10 seconds; as the run continues,
however, most of this group is accessed less frequently, and
joins the large majority of regions at the shortest interval.
This adaptation to usage patterns pays off: the benchmark
runs in 71% of the time it takes when monitored naively,
even though most regions are monitored with a much higher
precision.
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Figure 6. Distributions of threshold times for
regions in MemcovMPC

From this data, we observe inefficient use of allocations.
Even if they are not actual leaks, the buffers that vim is
constantly allocating, as shown in Figure 4, could evidently
be re-used since most allocations are sitting unused (as we
concluded from Figures 5 and 6).

4.3 Performance

In order to measure the performance overheads incurred
by Memcov, we designed a micro-benchmark to test Mem-
cov’s memory allocator. The micro-benchmark performs
repeated 1-page memory allocations, then touches the al-
located memory to defeat a lazy allocator. The micro-
benchmark then uses realloc to resize each allocation
to two pages, touching the second page to make sure it is
paged in. Finally, the micro-benchmark frees the mem-
ory. We divide by the number of allocations to obtain per-
allocation performance metrics for the glibc memory alloca-

tor, the Linux mmap facility, and Memcov. We benchmarked
mmap in order to determine how much of Memcov’s over-
head comes from its allocator as opposed to other factors,
such as the asynchronous communication and round-trip for
realloc. The results are shown in Figure 7.

Operation glibc mmap Memcov
Allocate 13.4 8.1 38.8

Touch 0.27 18.6 24.5
Resize 21.0 131.4 3,008.7
Touch 0.30 19.2 23.3

Free 2.61 26.6 108.3

Figure 7. Allocator performance in thousands
of cycles

We observe that Memcov adds large overheads for all
memory-allocator operations, most notably realloc (which,
as we noted before, requires a round-trip as currently im-
plemented). We also observe that a large portion of this
overhead is due to our use of mmap as a backend. Although
using mmap gives us page-aligned memory suitable for in-
dividual protection, freeing and resizing areas requires in-
formation about the size of the area, which is not provided
to glibc. This requires lookups in an auxiliary data struc-
ture. Since Memcov does this lookup in another process, it
introduces asynchronous behavior: over multiple runs, we
observed dramatic fluctuations in the Free phase depending
on the interleaving of the dispatch of free notifications to
the client and receipt of free commands from the client.

To eliminate this problem, we are working to take mmap
out of the equation and use the native memory allocator
wherever possible. We have implemented the allocator
backend for this, and obtained the results shown in Figure 8.
We observe dramatic improvements on the resize and free
operations, as expected. We now incur an approximately
25-kilocycle (8.3µs) overhead on these operations, which is
primarily associated with writing to the data pipe and can
be further reduced by using a faster IPC mechanism. We
must also alter our page fault handler to support multiple
allocations on the same page.

5 Related Work

This paper is primarily intended to present an alternate
approach to Chilimbi and Hauswirth’s low-overhead tempo-
ral profiling tool, SWAT, which they use to perform leak de-
tection [6] by instrumenting memory accesses by particular
pieces of code for short periods of time. Using binary trans-
lation, SWAT produces instrumented and uninstrumented
versions of basic blocks, switching between them to toggle



Category glibc Memcov Memcov2

Allocate 13.4 38.8 39.7
Touch 0.27 24.5 0.21
Resize 21.0 3,008.7 60.7
Touch 0.30 23.3 0.31

Free 2.61 108.3 26.3

Figure 8. Effects of swapping out the back-
end. Memcov2 is a version of Memcov that
uses glibc as a backend.

monitoring. It reduces the sampling rate for commonly ex-
ecuted code dynamically. We believe that maintaining sam-
pling rates per allocated area rather than for pieces of code
is more appropriate for problems like leaks that are specific
to allocations rather than the accessing code; the SWAT ap-
proach is perfect, on the other hand, for bounds checking,
where the property applies to pieces of code.

The Sun Studio Performance Tools, which began life as
the SPARCworks Analyzer, provide visualizations of mem-
ory allocation/deallocation activity over the execution time
of an application [8, 13]. A collector logs memory alloca-
tions and deallocations by the program. It also uses hard-
ware counter overflow profiling to determine the pages af-
fected by cache misses [9]. The analyzer reads the gener-
ated logs and reports as leaks any allocations that are not
freed by the time the program terminates.

The mprof tool concentrates on determining the cause
of heap memory allocations [14]. This consists of a library
which is linked into an executable in order to interpose on
malloc and free. Although mprof requires the developer
to link with a custom library, we presume that the linking
could be accomplished using dynamic loader interposing as
we do. The library’s implementations of the memory allo-
cator functions record the size of the area allocated and the
top five addresses from the call chain that led to this alloca-
tion, obtained by inspecting the return addresses stored in
the stack. This data is post-processed and correlated with
symbol information from the binary image of the applica-
tion under test to produce an allocation call graph, in which
each function is credited with its callees’ allocations.

Solaris’s libumem provides malloc and free imple-
mentations that collect data about allocated regions [1].
Developers can instrument programs with these functions
when the executable is loaded, as Memcov does. The So-
laris OS Modular Debugger (MDB) [11] can search for ref-
erences to allocated areas in a memory dump of a running
program. Those areas that are not referenced are flagged as
memory leaks. The libumem allocation functions can also
be configured to pad allocated areas with red zones so that
MDB can detect bounds violations, and they can similarly

fill recently freed areas to detect writes to those areas.
The profiler in IBM’s Rational Test RealTime instru-

ments memory allocation and deallocation functions by
directly transforming the source code immediately before
compilation [2]. The instrumented functions profile al-
locations using techniques like those used by Solaris’s
libumem. Profiling is not real-time, but instrumented pro-
grams can be configured so that events, such as calls to a
particular function, trigger the profiler to analyze the run-
ning program and report issues, including memory leaks.

6 Conclusions

We have presented and demonstrated Memcov, an inno-
vative toolkit for building memory profilers. It is flexible,
providing insight not only into an application’s memory al-
location behavior but also into its memory accesses, thus
allowing the detection not only of leaks but of inefficient
memory usage. It is non-invasive, performing large por-
tions of its logic outside the context of the program being
instrumented and requiring no additional instrumentation or
analysis phases. Finally, it is simple, providing a straight-
forward and easy-to-understand interface for new profiling
applications.

We have also presented MemcovMPC , a leak detec-
tor that uses model predictive control to adapt to the
memory-access patterns of the program under observa-
tion. MemcovMPC seeks to reduce the monitoring rate for
commonly-accessed regions, thereby allowing it to zero in
on those areas that are more likely to be leaks. We have
demonstrated the performance advantages of Memcov MPC

over non-adaptive approaches, showing how it maintains
much higher monitoring resolution for most areas while sin-
gling out those that would otherwise cause most of the mon-
itoring overhead, and monitoring them less frequently.
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