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Abstract— A key enabler of the recently popularized, assembly-
centric development approach for distributed real-time software
systems is QoS-enabled middleware, which provides reusable
building blocks in the form of design patterns that codify
solutions to commonly recurring problems. These patterns can
be customized by choosing an appropriate set of configuration
parameters. The configuration options of the patterns exert a
strong influence on system performance, which is of paramount
importance in many distributed software systems. Despite this
considerable influence, currently there is a lack of significant
research to analyze performance of middleware at design time,
where performance issues can be resolved at a much earlier
stage of the application life cycle and with substantially less
costs. The present project seeks to develop a performance analysis
methodology for design-time performance analysis for distributed
software systems implemented using middleware patterns and
their compositions. The methodology is illustrated on a pro-
ducer/consumer system implemented using the Active Object
(AO) pattern in middleware. Finally, broader impacts of the
methodology for middleware specialization are also described.

I. INTRODUCTION

Society today is increasingly reliant on the services provided
by distributed software systems. These services have become
prevalent in many domains including health care, finance,
telecommunications and avionics. In many of these domains,
the performance of a service is just as important as the
functionality provided by the service.

To counter the dual pressures of developing systems which
offer a rich set of services with good performance, while si-
multaneously reducing their time-to-market, service providers
are increasingly favoring the assembly-centric approach over
the traditional development-centric approach. A key facilita-
tor of this assembly-centric approach has been QoS-enabled
middleware [18]. Middleware consists of software layers
that provide platform-independent execution semantics and
reusable services that coordinate how system components are
composed and interoperate. Middleware offers a large number
of reusable building blocks in the form of design patterns [4],
[20], which codify solutions to commonly recurring problems.
These patterns can be customized with an appropriate set of
configuration parameters as per system requirements.

The choice of configuration parameters have a profound
influence on the performance of a pattern and hence a system

implemented using the pattern. Despite the influence on system
performance, which is crucial for many software systems, cur-
rent methods of selecting the patterns and their configuration
options are manual, ad-hoc and hence error-prone. The prob-
lem is further compounded, because there are no techniques
available to analyze the impact of different configuration
parameters on the performance of a pattern prior to building
a system. Performance analysis is thus invariably conducted
after a system is assembled, and it is often too late and too
expensive to take corrective action if a particular selection of
patterns and their configuration parameters cannot satisfy the
desired performance expectations. The capability to conduct
design-time performance analysis of middleware patterns and
the composition of these patterns is thus necessary, especially
for systems with stringent performance requirements.

This project seeks to develop an analysis methodology for
design-time performance analysis of a system implemented
using middleware patterns. The methodology is comprised of
two steps. The first step consists of formulating and solving
performance models of individual middleware patterns. In the
second step, strategies to compose the performance models of
individual patterns mirroring their composition and methods
to solve the composite model to estimate system performance
are developed. Our goal is to automate these processes via
model driven engineering (MDE) [19] where the systems
developer is provided artifacts that are intuitive and closer to
their domain to compose the systems from building blocks.
Generative tools [2] supported by the MDE approach can
then automate the synthesis of performance analysis metadata
that is subsequently used by back-end analysis tools. The
illustration of the first step of the methodology on Reactor,
Proactor and Active Object (AO) patterns demonstrates the
feasibility of conducting performance analysis of a system
implemented using a middleware pattern at design time using
the model-driven paradigm.

The rest of the paper is organized as follows: Section II;
Section II provides an overview of the performance analysis
process of a middleware pattern. Section III illustrates the
process using the AO pattern. Section IV discusses broader
impacts of the project. Section V offers concluding remarks
and directions for future research.
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II. PERFORMANCE ANALYSIS OF A MIDDLEWARE PATTERN

In this section we discuss the process we follow for per-
formance analysis of an individual pattern. We describe the
various steps involved in the process shown in Figure 1 and
how they support each other.

Fig. 1. Performance analysis process of a middleware pattern

• Model formulation: The model formulation step is
comprised of capturing the basic or the invariant char-
acteristics of a pattern into a performance model. Dif-
ferent modeling paradigms such as Stochastic Reward
Nets (SRNs) [17], Layered Queuing Networks [23], and
Colored Petri Nets [11] may be used for this purpose. The
performance model can then be solved/simulated using
tools such as SPNP [10] and DesignCPN [12].

• Model validation: The performance estimates obtained
by solving the performance model are validated in this
step using simulation or experimentation. Experimenta-
tion is conducted by implementing a system with the pat-
tern on the ACE framework www.dre.vanderbilt.
edu/ACE. Simulation is conducted using a general-
purpose simulation language such as CSIM [21].

• Model generalization: In this step the the process of
formulating the model is generalized to enable the system
developer to customize the model according to the system
at hand and to determine system boundaries and limits.

• Model decomposition: It is expected that it would be
infeasible to solve the performance model of a practical
system without encountering the state space explosion
issue [1]. The model decomposition step thus involves
developing a strategy to partition the model into sub-
models. The sub-models can then be solved separately
and their results can be combined to obtain performance
estimates.

• Model automation: Manually creating the analytical
models for performance analysis of patterns-based mid-
dleware building blocks becomes infeasible as the com-
plexity of the building block increases. Our two modeling
languages POSAML (Patterns-oriented Software Archi-
tecture Modeling Language) [14] and SRNML (Stochas-

tic Reward Net Modeling Language) provide the users
with intuitive higher level abstractions to model the pat-
terns and their behavior that is useful for analysis. Gener-
ative tools associated with these modeling languages then
automate the generation of the metadata for simulation,
analysis or empirical benchmarking [15], [13].

• Model replication: In MDE, it is often desirable to
evaluate different design alternatives as they relate to
scalability issues of the modeled system. A typical ap-
proach to address scalability is to create a base model
that captures the key elements and their relationships. A
collection of base models can be adorned with necessary
information to characterize a specific scalability concern
as it relates to how the base modeling elements are
replicated and connected together. In current modeling
practice, replication is usually accomplished by scaling
the base model manually. This is a time-consuming
process that represents a source of error, especially when
there are deep interactions between model components.
As an alternative to the manual process, our research [9]
has focused on the idea of automated model replication
through a model transformation process that expands the
number of elements from the base model and makes
the correct connections among the generated modeling
elements. We have leveraged and expanded the capa-
bilities of the C-SAW (Constraint-Specification Aspect
Weaver) [8] tool for this purpose.

This process has been illustrated on the Reactor [5], [7],
[6], [14], [9], Proactor [15], [16] and AO patterns.

III. PERFORMANCE ANALYSIS OF AN AO-BASED SYSTEM

We illustrate the performance analysis process using the AO
pattern in this section.

A. Description of the pattern

In a multi-threaded application, it is common for several
threads to require the utilization of the same resource. These
threads then compete for mutually exclusive access to the
resource and utilize it for the total time of the required
operation. For low request rates and short session durations,
the performance of this architecture may be acceptable. On the
other hand, for high request rates and long access times, the
performance degradation may be significant. The AO pattern
can be used to alleviate the performance problems encountered
in this type of system. This pattern provides concurrency and
simplifies synchronization to the shared resource by decou-
pling method invocation from method execution and creating
the shared resource in its own thread of control.

The AO [18] is composed of the following components:
Proxy, Activation List, Scheduler, Servant, and Method Re-
quests. The interactions between the components is initiated
by a client thread invoking a method on the proxy to the
AO. It lies in the client thread and provides an interface to
the publicly available methods on the shared resource. Instead
of immediately executing the method upon invocation by the
client thread, the proxy constructs a Method Request and



enqueues it on the Activation List of the AO. Thus, from the
client thread’s perspective, the method has been executed.

The Method Request is a structure that carries the para-
meters of the method invoked, along with other information
necessary to execute the method request later. It also has
guards or synchronization constraints. The Activation List
resides in the thread of the AO and is a buffer holding all the
pending Method Requests. A Scheduler monitors the Activa-
tion List for Method Requests that meet their synchronization
constraints. It chooses a Method Request to be executed,
dequeues the request and dispatches it to the servant, which
initiates the actual execution of the method called by the client.

The AO pattern can be used to implement a class of
producer/consumer, read/write and publish/subscribe systems.

B. Producer/consumer system

Figure 2 shows a producer/consumer system with two
producers and a single consumer. The system is implemented
using middleware to foster scalability, evolvability and interop-
erability [18]. This is achieved through the elimination of point
to point communication between communicating entities and
also due to the reduction of data interfaces. The middleware
solution is comprised of a Consumer Handler, which serves
as a proxy to the consumer application. This handler contains
a message queue for outgoing messages. The two producers
put messages on the message queue. The message queue also
contains a message broker which is responsible for monitoring
the queue for new messages to be sent to the consumer. When
the message queue contains messages, the message broker
gets a message from the message queue and sends it to the
consumer application.

The two producers and the consumer handler/message
queue contend for mutually exclusive access to the message
queue. The message queue is implemented with the Monitor
Object (MO) pattern [18] to allow thread safe access. The
Consumer Handler exists in a single thread of control and
when the Message Broker is actively involved in getting and
sending the sending the message, the message queue is locked.
When the message queue is locked by the Consumer Handler,
the two producers will be denied access to the message queue.
Similarly, when one producer is putting a message on the
message queue the other producer and the consumer handler
will be denied access. Thus, once an entity acquires the mutex
lock from the MO, it retains control until the transaction is
complete, at which time it releases the lock. Thus, for the
duration of the access times of the producers and consumers
the message queue is locked.

In many systems, a distribution boundary exists between
the entities in the system. In this case, the access times to
the message queue are defined by the network latency, which
can fluctuate alongside a busy work environment. As a result
of unpredictable latency, the entities that access the message
queue can be starved from access, resulting in a message loss.

We now describe how the AO pattern could be used to
implement the producer/consumer system shown in Figure 2.

We also discuss how the performance issues could be alle-
viated by the use of the AO pattern. Figure 3 shows the
implementation of the producer/consumer system using the
AO pattern. It introduces a Producer Handler which serves
as a proxy to the consumer handler’s message queue for the
producer client. The Producer Handler is implemented as a
distributed AO to decouple the producer applications from the
consumer handler’s message queue.

Fig. 2. A producer/consumer system

The AO proxy resides on the client application and provides
the interface for the put method which places messages on the
consumer handler’s message queue. When the put command
is invoked by the client, the proxy creates the corresponding
method request and enqueues it on the Producer handler’s
Activation List. The synchronization constraint or the guard
of this put method request is the requirement of the proxy to
have control of the message queue. When the method request
is not guarded, the scheduler will dequeue the request and
execute the method to put the message on Consumer Handler’s
message queue. The AO thus decouples the producer clients
from the consumer application. The access time required to
add messages on the message queue is reduced to the internal
access time of the middleware. The impact of the network
latency on the system is thus eliminated.

Fig. 3. A producer/consumer system implemented using AO pattern

The system also implements the Sending Service of the
Message Broker as an AO as shown in Figure 3. A proxy
interface containing the send method is implemented inside
the Message Broker. When the Message Broker invokes the
method to send a message, a method request is created by
the proxy and enqueued on the Activation List of the Sending
Service AO. The send method request in the AO is guarded
when the servant is busy sending the message to the consumer.



This also allows the Message Broker and the Servant to work
asynchronously. The Message Broker relinquishes control of
the message queue after getting the message and invoking
the send command on the proxy. From the Message Broker’s
perspective, because the time taken to complete the send
command is negligible, it retains control of the message queue
only for the time taken to get the message, which is governed
by the internal access time. The AO thus shields the system
from the impact of network latency on the consumer side.

Figure 4 depicts a model of our example in the POSAML
language which allows us to use POSAML’s generative ca-
pabilities to synthesize metadata for back-end analysis tools,
such as simulation and empirical benchmarking.

Fig. 4. A POSAML model of the Producer/Consumer AO System

C. Queuing models

In this section we describe the queuing models of the
producer/consumer system implemented using the MO and
AO patterns. Figure 5 shows the queuing model for system
implementation using the MO pattern. We assume that the
arrival process of messages at the producers is Poisson with
rates λ1 and λ2. The producers then store these incoming
messages in the producer-side buffers PS1 and PS2, with
capacities N1 and N2. The Consumer Handler’s MQ is also
modeled as a buffer with capacity Q. A producer can gain
access to MQ as long as there is spare capacity. When a
producer gains access to MQ, it takes a single message from
the buffer and puts it on the message queue, after which it
relinquishes control of the MQ.

Fig. 5. Queuing model for producer/consumer system w/o AO

We assume that the time taken by a producer to put
a message on the queue is exponentially distributed with

parameter µ. The Message Broker also contends for access
to MQ to get and send messages to the consumer. It can gain
access to MQ as long as the queue is not empty. We assume
that the time taken by the Broker to send a message to the
consumer is also exponentially distributed with parameter µ.
The Broker also sends a single message before relinquishing
control of the MQ. The completion times for put and send
requests are assumed to be identically distributed, because it
is expected that these times will be dominated by the network
characteristics. The queuing discipline at producer-side buffers
and at the MQ is first-come, first-serve.

Figure 6 shows the queuing model for system implemen-
tation using the AO pattern. In this case the producer-side
Activation Lists are modeled as buffers labeled PHAL1

and PHAL2 with capacities N3 and N4, respectively. A
producer can continue to invoke the put method until the
Activation List in its corresponding Producer Handler has
spare capacity to enqueue a Method Request. A producer feeds
its corresponding Activation List at rate µ. The time taken to
enqueue a message on the MQ by executing the put method
request internally by the producer-side servant is exponentially
distributed with parameter τ .

Fig. 6. Queuing model for producer/consumer system with AO

The producer-side side servant can put messages on MQ
as long as it is not full. The consumer-side Activation List
is also modeled as a buffer labeled CHAL1 with capacity
N5. The time taken by the Message Broker to dequeue a
message from MQ by executing the get method request is also
exponentially distributed with parameter τ . The rate at which
the consumer-side servant sends messages to the consumer is
µ. The producer-side servants will not gain access to MQ if
their corresponding activation lists are empty. Similarly, the
message broker will not gain access to MQ if it is empty.

D. SRN implementation

Figure 7 shows the SRN model of the system implemented
using the MO pattern, the model of the system using the AO
pattern is not shown here due to space limitations. In the
figure transitions TArr1 and TArr2 represent the arrival of data
messages at the producers, which are buffered in the queues,
represented by places PS1 and PS2 while they wait to be
sent to the Consumer Handler’s Message Queue. Transitions
TPutAcc1, TPutAcc2, and TGet represent the threads that are
continually contending for access to the Consumer Handler’s
Message Queue. When either TPutAcc1 or TPutAcc2 gain
access to the queue, they place a token in place PPut, which



represents the data message that is currently being put onto
the message queue by transition TPut at a rate of µ. Transition
TGet represents the get function of the Message Broker, which
then uses the Sending Service represented by place PSend and
transition TSend, which fires at the rate of µ.

An inhibitor arc from PS1(PS2) to TArr1(TArr2) has a
multiplicity of NN1(NN2), which sets the capacity of the
producer-side buffers. Additionally, there are inhibitor arcs
from PPut to TPutAcc1 and TPutAcc2 of to allow only one
token into the place PPut, since only one data message can
be put at a time. The final inhibitor arc is from PSend to
TGet with multiplicity TP , allowing as many simultaneous
transmission of the messages as the size of the thread pool.

Fig. 7. SRN model for producer/consumer system w/o AO

E. Model automation

Model automation is achieved by modeling the SRN shown
in Figure 7 in the SRNML modeling language. Figure 8
illustrates a partial model of the SRN in SRNML which
enables the synthesis of metadata used by the SPNP solvers.

IV. BROADER IMPACTS

In this section we outline an example of the broader impact
of our work. It deals with specialization of distributed com-
puting infrastructures, such as middleware, operating systems,
and virtual machines, which are designed to be highly flexible
and feature-rich to support a wide range of applications and
product lines in multiple domains. Applications with stringent
QoS demands (e.g., latency, fault tolerance, and throughput),
however, find this feature richness and flexibility a source of
excessive memory footprint overhead and a lost opportunity
to optimize for significant performance gains.

Fig. 8. Partial SRNML Model for Producer/Consumer System w/o AO

We have leveraged the POSAML capabilities from this
project in novel ways to automate middleware specialization.
We achieve this by integrating model-based and aspect ori-
ented software development (AOSD) techniques [3]. As before
we use POSAML to model the composition and configura-
tion of a middleware systems stack using the patterns-based
building blocks. We have demonstrated how AOSD tools like
AspectC++ [22] can be used to specialize middleware source
code. Our current research is investigating solutions based
on generative tools within POSAML that can automate the
synthesis of AspectC++ directives for specialization.

We used our techniques in the context of specializing
the Reactor pattern in the ACE middleware framework. We
collected empirical data that compared the specialized version
of ACE with the original version along different dimensions
including end to end latency and throughput. We used the
ACE middleware’s performance test suite to conduct these
performance tests and study the impact of AOP on latency
and round-trip throughput changes. Figure 9 demonstrates the
initial set of results we obtained.

V. CONCLUSIONS AND FUTURE RESEARCH

In our collaborative work supported by the CSR-SMA
grant, we have demonstrated an approach for design-time
performance evaluation of complex, QoS-intensive systems by
focusing on their software patterns-driven structure. We have
demonstrated how individual patterns can be evaluated. We
have shown the use of MDE techniques to automate and scale
a number of tedious and error-prone tasks in this process that
results from having to manually develop these performance
models. We also demonstrated the broader impact of our
techniques for middleware specialization.

Our future research is concerned with demonstration of
the second step of the methodology, namely, composition



Fig. 9. Single threaded reactor

of performance models using a composition of Reactor and
MO patterns. We are also working on extending POSAML’s
capabilities to enable pattern composition so that techniques
for performance evaluation of pattern composition can be
automated. Moreover, we are adding behavioral modeling
capabilities in POSAML using the Input/Output Automata to
capture the interactions of patterns (both intra and inter). We
will use these behavioral abstractions to provide model-to-
model transformations so that POSAML models can be au-
tomatically converted to SRNML models, a step we currently
do manually. Our MDE approaches can also broadly apply to
recent NSF focus areas, such as the Cross System Integration.
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