

Scalable Distributed Execution Environment for Large Data Visualization
Micah Beck, Huadong Liu, Jian Huang and Terry Moore

University of Tennessee
Deptment of Computer Science

Knoxville, TN 37996-3450, USA
{mbeck, hliu, huangj, tmoore}@cs.utk.edu

Abstract
To use heterogeneous and geographically

distributed resources as a platform for parallel visualization
is an intriguing topic of research. This is because of the
immense potential impact of the work, and also because of
its use of a full range of challenging technologies. In this
work, we designed an execution environment for
visualization of massive scientific datasets, using network
functional units (NFU) for processing power, logistical
networking for storage management and visualization
cookbook library (vcblib) for visualization operations. This
environment is based solely on computers distributed across
the Internet that are owned and operated by independent
institutions, while being openly shared for free. Those
Internet computers are inherently of heterogeneous
hardware configuration and running a variety of operating
systems. Using 100 such processors, we have been able to
obtain the same level of performance offered by a 64-node
cluster of 2.2 GHz P4 processors, while processing a
75GBs subset of a cutting-edge simulation dataset. Due to
its inherently shared nature, this execution environment for
data-intensive visualization could provide a viable means of
collaboration among geographically separated users.

1. Introduction
The idea to use distributed and heterogeneous

resources for large-scale data intensive applications came
with great promise. Unfortunately, when subjected to real-
world applications, most existing technologies in this venue
fall short in a number of ways. It is now a general belief
that a sufficient solution can only come from close
collaboration by experts from a range of fields, such as
distributed computing, networking, and storage as well as
domain experts.

In this work, we use large-scale visualization as the
driving application to motivate and test the development of
several new technologies. Particularly we focus on devising
a network functional unit (NFU) to provide a coarse-
grained execution primitive for distributed computing, and
to explore logistical networking as a storage fabric. A new
visualization library (visualization cookbook library,
vcblib) has also been developed as a portable primitive for
execution on NFU. Although the scheduler that orchestrates

1-4244-0910-1/07/$20.00 ©2007 IEEE.

parallel computing using vcblib operations on NFU and
logistical networking storage was developed specifically for
large-data visualization, its design and application are
general enough for direct extension to other application
domains.

The real-world potential impact of the execution
environment is the following. Over the years, parallel
visualization has become a crucial tool to understand
cutting-edge simulation datasets. Current popular platforms
of parallel visualization used by computational [1-2]
researchers are primarily computer-clusters of various sizes.
Our newly developed execution environment for large data
visualization is one that is solely based on independent
computers connected by the commodity Internet. The
computers are distributed and shared, administered by
different organizations and heterogeneous in nature. The
following features are met:

First, the current standard functionalities of large-
data visualization are factored into a small number of
standard operations. An application scientist can program a
parallel visualization run by simply editing an XML file
through a text processing program, with issues like parallel
efficiency, results aggregation and fault-tolerance in the
wide-area transparently taken care of.

Second, with the underlying infrastructure shared in
nature, a parallel visualization session can be launched on-
demand, without requiring each job to go through batch
queues and wait an undetermined amount of time before
being launched.

Third, the overall shared infrastructure offers a
performance on par with medium-sized clusters. Using 100
distributed processors, on some of which we were only
allowed to use roughly 10% of the CPU resource, we have
obtained a performance that roughly measures up to a 64-
node 2.4 GHz cluster.

Finally, as a potential use of this distributed
execution environment, application scientists can use the
system as a large-scale cluster virtually replicated on all
local sites. With this support, collaborating could be as
straightforward as sending each other pointers to the data
and a textual description of the visualization run (both in
XML files).

The remainder of the paper discusses each of the
three components after a general summary of the related
background of the subject.

2. Background
The persistent mood of exhilaration in the research
community over exponential increases in the capacity of
computational resources has been tempered recently by the
realization that a torrential influx of data from instruments,
sensors and simulations is growing even faster than the
resources needed to analyze it. The impact of this “data
deluge,” challenging enough by itself, is exacerbated by the
fact that many data intensive projects today involve teams
of collaborators spread out across geographically and
organizationally distinct sites. Under these conditions, the
escalation in data volumes, from giga, to tera, to peta-scale,
raises daunting logistical problems for data management,
both in relation to the people who want to work with the
data and in relation to the resources available to them on
any particular occasion. A system that addressed these
conditions would have to enable a community of
collaborators, distributed throughout the wide area, to get
responsive answers to dynamic queries, analyses and
visualizations applied to terascale or larger data sets.

Logistical Networking (LN) is an effort to
integrate shared storage and processor resources into the
communication fabric in order to address the mounting
problems associated with managing massive data in
application areas like content distribution and distributed
data intensive scientific applications. The initial focus of
LN research was on storage, and the goal was to make
transmission and storage resources coordinate elements in a
unified infrastructure. The Internet Backplane Protocol
(IBP) was created to achieve this goal. IBP is a generic,
best effort storage service that was designed by analogy
with IP in the hope of producing a common storage service
with similar characteristics, especially in regard to
deployment scalability. We defined a “storage stack”,
analogous to the Internet stack, using a bottom-up and
layered design approach that attempts to adhere to the end-
to-end principle. IBP is the lowest layer of the storage stack
that is globally accessible from the network. Just as IP is a
more abstract service based on link-layer datagram
delivery, so IBP is a more abstract service based on blocks
of data (on disk, memory, tape or other media) that are
managed as “byte arrays.” By masking the details of the
storage at the local level — fixed block size, differing
failure modes, local addressing schemes — this byte array
abstraction allows a uniform IBP model to be applied to
storage resources generally. The use of IP networking to
access IBP storage resources creates a globally accessible
storage service.

As the case of IP suggests, in order to scale globally
the service guarantees that IBP offers must also be
weakened. First and foremost, this means that, by default,
IBP storage allocations are time limited. When the lease on
an IBP allocation expires, the storage resource can be
reused and all data structures associated with it can be
deleted. Forcing time limits puts transience into storage

allocation, giving it some of the fluidity of datagram
delivery and making it far more sharable and easier to scale.
Additionally an IBP allocation can be refused by a storage
resource in response to over-allocation, much as routers can
drop packets; such “admission decisions” can be based on
both size and duration. IBP allocation semantics also
assume that a storage resource can become transiently
unavailable, or even be permanently lost. In all cases the
weak semantics of this “best effort” storage service mean
that the level of service must be characterized statistically.

According to prevalent expectations in the
community today, large-scale visualization should handle
data sets at least on the order of tens of gigabytes. The sheer
size of the data sets makes it indispensable to use parallel
platforms. Previous work on parallel rendering algorithms,
data management and parallel I/O abound in the literature.
Very commonly, large-scale visualization is computed
using large-scale parallel clusters of computers.

To date, few existing systems use remote processors
or even un-orchestrated local resources for data intensive
applications on the scale of large data visualization. To
explore the possibility of using such an infrastructure for
visualization, we chose to focus on isosurface extraction
and volume rendering, which are the two predominant
algorithms for volume visualization. The complexity of
existing visualization packages, such as Vtk and Paraview,
made them extremely challenging to deploy on distributed
processors providing a weakened semantic, and require
implementation of the end-to-end principles. In particular,
one should note that we could not assume administrator
privileges on any of those remote processors, making
installed any of those existing visualization packages
burdensome and oftentimes unrealistic. Hence we had to
implement a selected set of standard visualization
operations in a compact and self-containing library. This
library is called the Visualization CookBook Library
(vcblib). More information about vcblib is available at
http://www.cs.utk.edu/~seelab/vcb.php.

3. Visualization Operations (vcblib)
The current vcblib implementation assumes that all

data sets are on a regular grid. Curvilinear grid, irregular
grids or unstructured data are not yet supported. It also
assumes that the entire data set, no matter the
dimensionality (i.e. 2, 3, 4 or more dimensions), is stored in
a serialized continuous memory segment.

vcblib implements the fundamental visualization
algorithms for isosurfacing and volume rendering. A
primary focus in vcblib is to identify a narrow and well-
defined API for each visualization function that is involved.
Our design goal was to have visualization operations using
similar types of semantics as in the standard C library.

In addition, we provide basic operations that can be
used to compose higher-level visualization operations. For
instance, a user may have a need to extract isosurfaces from
only one octant of the entire domain of a volume. It is also

plausible that when handling a time-varying data set, a user
may wish to slice the 4 dimensional space in the direction
of the Z axis and extract isosurfaces in the 3D domain
formed by the X, Y and time axes. To meet this need,
vcblib needs to provide some necessary utility operations.
From our research, we discovered that a core utility
function that can be used in many visualization algorithms
is a function to “grab” a block from within a volume. This
is very useful for all block-based processing, such as
dimension reduction, out-of-core processing and parallel
rendering, etc. The API for this basic “grab” function is
vcbGrablk.

As a fundamental function in vcblib. vcGrablk
grabs a block of data from a volume. Basic descriptions of
the volume include the number of bytes for each variable,
the number of variables on each voxel, the number of
dimensions and the size of each dimension. The target
block to grab is specified by the lower and upper bounds of
the block.

Besides grabbing a sub block from a volume, one
can also use vcbGrablk to take arbitrary axis-aligned slices
in high dimensional volumes. For instance, still using the
example above that slices a 4D data in the direction of the Z
axis, one can just set the lower and upper bounds in the Z
direction to the Z value needed and full ranges for all other
directions. Then the result is a 3D volume, stored in the
default voxel order.

vcbGrablk allows a user to pick and choose which
axis-aligned portion of the volume to focus on when
another vcblib function is invoked. vcbGrablk has been
proven to be simple to use, and very dexterous for different
applications.

For scalar volume visualization, a user would either
perform isosurface extraction (vcbMcube) or software
volume rendering (vcbRaycast). For both, classic
algorithms exist. We implemented the marching cube [9]
algorithm for isosurface extraction. The APIs of the two
functions are just the exact kind of a regular C function.
They are invoked as part of a dynamic library on the remote
processors.

The vcblib implementation is self-contained without
external dependencies. The source code is entirely in C and
is highly portable across platforms. Right now, it runs on all
wide spread operating systems including Linux, various
flavors of Unix, Windows and Mac OS X.

4. Distributed Storage (IBP/LoRS)
The server nodes of the infrastructure on which

vcblib must run are managed by the Internet Backplane
Protocol (IBP) [12]. IBP implements a generic, best effort
network storage service that can scale globally. Two key
characteristics of IBP storage are:

1. Allocations of IBP storage are limited in size and

duration. An IBP allocation request can be refused in
response to over-allocation and the storage resource

can be revoked when the lease expires. Also, an IBP
server may be restricted to use only idle disk resources
(“soft” storage), ensuring that the host machine does
not over commit resources.

2. Semantics of IBP storage are weaker than the typical
storage service. IBP storage resource can be
transiently unavailable or even permanently lost. With
“soft” storage allocation semantics, resource can be
revoked at any time before expiration.

IBP storage is managed by servers called “depots”,
on which clients perform remote storage operations. The
depot was designed for simplicity and robustness by using a
stateless protocol. IBP clients view a depot’s storage
resources as a collection of byte arrays. Clients initially
obtain the use of a byte array by making a storage
allocation on a depot. If the allocation is successful
(depending on size and duration requested as well as the
storage resources available), the depot returns three
cryptographically secure URLs, called capabilities, to the
client: one for reading, one for writing, and one for
management. Capabilities may be passed from client to
client, requiring no notification to the depot. The
synchronous (blocking) IBP client calls fall into three
different groups as shown in Table 1. A corresponding
asynchronous (non-blocking) client API is also available.

 Because of the limitations on allocation size,
duration and semantics, IBP does not directly implement
strong storage services such as conventional files. Instead,
these services must be built on top of IBP. For example, the
XML encoded exNode was created to aggregate and
manage primitive IBP byte arrays. Basic middleware tools
for using this network storage infrastructure have already
been developed and are available at
http://loci.cs.utk.edu. The Logistical Runtime
System (LoRS) consists of a set of tools and associated
APIs that allows users to draw on a pool of depots in order
to enable the implementation of files and other storage
abstractions with a wide range of characteristics, such as
large size (through fragmentation), fast access (through
caching), and reliability (through replication). LoRS tools
also implement some transport layer services such as fault
tolerance, encryption, and compression, at the end-points.

This basic description of IBP summarizes its storage
management capabilities, which our distributed
visualization service uses for state management. To supply
the necessary processor resources, we extended IBP with a
primitive yet powerful model of computation. After
presenting the underlying design of vcblib in the next
section, we describe this computational extension to IBP,
called the Network Functional Unit, in Section 5.

Depot Management IBP_status

Storage Management IBP_manage

Data Transfer IBP_store IBP_load IBP_(m)copy

Table 1. Synchronous IBP client API

5. Distributed Processors (NFU)
Besides vcblib and IBP storage depots, we also need

a viable and scalable support of distributed computing on
un-orchestrated distributed systems. It is general to treat
computation as transforming data stored in byte arrays.
Since we already have IBP to manage byte array storage,
we have designed an extension to IBP to provide data
transformation services. This extension is called Network
Functional Unit (NFU), which is generic and best effort.
The design of NFU adheres to the end-to-end principles
[13-14] so that it can be shared across the network. Without
the NFU mechanism, it would be extremely difficult to
deploy the vcblib over several hundred of processors in the
wide area network.

The NFU is an abstract service based on managing
the underlying computational capabilities of the depot as
“operations”. Similar to IBP storage allocations, NFU
operations are by default limited in size and duration. This
means that there is a bound on the size of byte arrays that
are arguments to any computation and a bound on the
duration of execution. Semantics of NFU operations are
weaker than typical process creation or procedure call on a
local processor, as is necessary in order to model
computations accessed across the network. Because of the
restricted and weak semantics of NFU operations,
abstractions with strong properties, such as reliability,
unbounded size, and unbounded duration, must be
constructed at a higher layer that aggregates primitive NFU
operations below it. This is currently implemented through
the use of scheduling for performance and fault tolerance
algorithms implemented as part of the code that invokes
NFU operations (e.g. vcblib).

5.1 NFU Operations
 NFU operations are usually grouped as libraries so

that they can be managed hierarchically. Libraries of NFU
operations are classified as either static or dynamic as
shown in Figure 2. Static NFU operations are built-in
modules that are highly standard and useful to many
applications in general. For instance, we have already
deployed an NFU library of optimized BLAS operations as
a static library. Static libraries are deployed by being
compiled and linked as part of an IBP depot, and so require
no further deployment action to be usable by that depot’s
clients. The processing logic of a static operation is defined
by the operation provider and accepted/verified by the
depot owner before deployment.

In contrast, dynamic NFU operations are
implemented by code that is executed or interpreted by a
particularly general static NFU operation. The code that
defines a dynamic NFU operation is stored in an IBP
allocation and passed to the appropriate static operation as
an argument. Because of the dynamic nature of the
operation, the code is not in general known to the depot
owner before it is invoked, and may be delivered from an
arbitrary client across the network. Thus the code that

defines a dynamic NFU operation is a kind of mobile code,
which we refer to as an “oplet”.

A static NFU library that loads and executes oplets
from an IBP allocation, acting on arguments stored in other
IBP allocations defines the NFU exec library. There are two
generic static NFU operations to load and run oplets stored
as machine dependent native code (native oplets,
nfu_exec_native) and oplets stored as machine
independent Java bytecode (Java oplets,
nfu_exec_jbytecode). As we will discuss, the
requirement of weak semantics means that the actions
allowed by the execution environments must be restricted.

Deploying or updating a static NFU library is a
manual administrative procedure that involves verifying the
library and installing the executable image to a depot
directory. The depot process will automatically load that
library at runtime. Note that this is a heavyweight process
since a level of trust must be established between the
library provider and the depot owner. Further, each
installation of an additional library takes some resources on
the depot, whether a member operation is invoked or not,
potentially diminishing the space available for other
purposes such as caching, and complicating the
management of the depot. Moreover, because static
operations execute with the full privileges of the depot, the
greater the number of statically installed operations the
higher is the risk of depot misbehavior due to design or
programming errors. For this reason the number of static
operations deployed on a depot should be minimized.
Scalability can be improved by constructing a minimally
necessary set of operations comprised of generic functions
that are basic and thus more likely to be reliable. It is up to
the client to compose those base operations to implement
all needed computations.

Figure 2. A taxonomy of NFU operations

 Right now, we are deploying vcblib as a dynamic
library, i.e. NFU native oplets. As the process of production
visualization gets further standardized and accepted by the
field, we would like to eventually make vcblib part of the
static library. This potential is facilitated by the low
software complexity of the vcblib library. For instance, the
entire binary vcblib library for a typical linux system only
requires ~ 440 KB storage.

5.2 Resource Discovery
Partitions of the shared data set can be simply

uploaded and replicated to available IBP depots using the
LoRS tools that abstract and hide the underlying platform
dependent details. However, the vcblib needs to be
distributed to the set of IBP depots where it can be loaded
to execution. Once we have the exNode representation of
the data set, we make an IBP_status query to every depot
pointed to by the exNode to get platform information of the
depot, and also to check whether nfu_exec_native is
installed. The client then constructs a list of matched depots
for every platform, against which the vcblib has been cross-
compiled, and uses lors_upload to distribute vcblib --
one complete copy per depot. This procedure is similar to
how a RPM package is cross-compiled and downloaded to
a target host.

6. Results and Discussion
In a distributed environment, fault-tolerance is

crucial, and, hence, redundancy must be inherently
incorporated. To do so, we employ k-way replication
scheme [11], with k being a small number, e.g. 3.
Supposing there are 100 depots in total, in this way, each
data partition will be available on k randomly selected
depots, and each depot will hold k% of the entire dataset.
Each depots only processes job partitions that it has data
for. This data distribution mechanism is built on top of IBP.

Then, the operations supported by vcblib on NFUs
provide the visualization functions. An NFU-enabled depot
accepts a visualization request (i.e. a vizSpec file and an
exNode file, both in XML) across the Internet, performs the
operation and returns the results to the requester.

With a means to process one single partition of the
dataset, it is then the job of a scheduler, run on the client
machine, to orchestrate a parallel run with parallel
scalability and fault-tolerance. Fortunately, for many
visualization applications, embarrassingly parallelism is
often sufficient. In that scenario, the scheduler is rather
straightforward to implement. In fact, in all of our
experiments the schedulers have always been written in
Unix Shell scripts. Details of our scheduler
implementations have been published in [15].

Right now, we do not have any distributed resource
provisioned specifically for distributed data-intensive
visualization. However, just by using PlanetLab [3]
resources heavily shared by a large community for diverse
applications, we have achieved rather significant results.

For instance, with the latest TSI (Terascale Supernova
Initiative) simulation dataset at 864 × 864 × 864 spatial
resolution, the time it takes to render a 30 time-step subset
of the TSI dataset on 100 depots is about 240 seconds on
average and 480 seconds in the worst-case, at a step size of
0.5 and an image resolution of 800 by 800. The same
rendering takes 219 minutes on a dedicated 2.2 GHz P4
CPU. In other words, this performance is equivalent to that
offered by a 32 to 64-node cluster of 2.2 GHz P4
processors, assuming a 90% parallel utilization (Figure 3.)

Most of the 100 NFU-enabled depots are hosted on
PlanetLab nodes. PlanetLab nodes are server-class
machines meeting a periodically revised hardware
requirement. They are virtualized as “slices” and shared
among a large user community [3]. In order to enable large
scale sharing of PlanetLab nodes, each slice has limited
storage and CPU share. Our tests were run without
reserving CPU share through the PlanetLab Sirius Calendar
Service, and thus there is no lower bound on the cycles
available to us on any PlanetLab nodes in any runs.

Acknowledgement
This work was supported in part by NSF grant CNS-

0437508. The authors thank the TSI project for motivating
our research and providing our main test datasets. We also
thank Larry Peterson for PlanetLab access.

References
[1] D. Keyes, "SCaLeS: Science Case for Large-scale

Simulation," Office of Science, DOE June 2003.
[2] "Scientific Discovery through Advanced Scientific

Computing," Office of Science, U. S. Department of
Energy, Washington, D.C. March 24 2000.

[3] "http://www.planet-lab.org/."
[4] The Visualization Toolkit User's Guide, 4.2 ed: Kitware Inc.,

2003.
[5] "Vis5d+. http://vis5d.sourceforge.net/."
[6] W. Bethel and J. Shalf, "Cactus and Visapult: An Ultra-High

Performance Grid-Distributed Visualization Architecture
Using Connectionless Protocols," IEEE Computer Graphics
and Applications, 2003.

[7] VisIt, "http://www.llnl.gov/visit/home.html."
[8] A. Henderson, The ParaView Guide: A Parallel

Visualization Application: Kitware Inc., 2004.

Figure 3. Sample images of the TSI data set,
rendered with two different transfer functions.

[9] W. Lorensen and H. Cline, "Marching Cubes: a high
resolution 3D surface construction algorithm," presented at
Proc. of SIGGRAPH, 1987.

[10] M. Meissner, J. Huang, D. Bartz, K. Mueller, and R.
Crawfis, "A Practical Evaluation of the Four Most Popular
Volume Rendering Algorithms," presented at IEEE/ACM
Symposium on Volume Visualization, Salt Lake City, Utah,
2000.

[11] R. Samanta, T. Funkhouser, and K. Li, "Parallel Rendering
with K-Way Replication," presented at IEEE Symposium on
Parallel and Large-Data Visualization and Graphics, 2001.

[12] M. Beck, T. Moore, and J. S. Plank, "An End-to-end
Approach to Globally Scalable Network Storage," presented
at ACM Sigcomm 2002, Pittsburgh, PA, 2002.

[13] M. Beck, T. Moore, and J. S. Plank, "An End-to-End
Approach to Globally Scalable Programmable Networking,"
presented at Future Directions in Network Architecture
(FDNA-03), an ACM SIGCOMM 2003 Workshop,
Karlsruhe, DE, 2003.

[14] J. H. Saltzer, D. P. Reed, and D. D. Clark, "End-to-End
Arguments in System Design," ACM Transactions on
Computer Systems, vol. 2, pp. 277-288, 1984.

[15] H. Liu, M. Beck, J. Huang, "Dynamic Co-Scheduling of
Distributed Computation and Repliation," presented at
IEEE/ACM CCGrid, Singapore, May 2006.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

