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Abstract 

Data prefetching, where data is fetched before CPU 
demands for it, has been considered as an effective 
solution to mask data access latency. However, the 
current client-initiated prefetching strategies do not work 
well for applications with complex, non-contiguous data 
access patterns. While technology advances continue to 
enlarge the gap between computing and data access 
performance, trading computing power for data access 
delay has become a natural choice. We propose a server-
based data-push approach. In this server-push 
architecture, a dedicated server named Data Push Server 
(DPS) initiates and proactively pushes data closer to the 
client in time. We present the DPS architecture and study 
the issues such as what data to fetch, when to fetch, how 
to push, and data access modeling.  

1. Introduction 

Data access latency is a major contributor to the gap 

between peak performance and sustained performance of 

current high-end computing (HEC) machines. 

Performance of processors and network interconnects are 

increasing multiple times faster than that of memory and 

I/O. This causes large stall times in processors to wait for 

data to arrive. The data access performance must be 

improved to utilize the capacity of large supercomputers 

efficiently. 

Prefetching has been considered as an effective 

technique for masking data access latency. Prefetching 

fetches data before it is requested by a processing unit. 
Prefetching requires an algorithm to predict future 

references spatially (what data to prefetch) and temporally 

(when to issue a prefetch). Current prefetching 

implementations typically predict the address of the next 

load address when a constant stride between successive 

accesses is found. However, many data access patterns are 

complex, which are formed by variable strides that have 

regularity. Various algorithms can predict these patterns, 

but are too complex to implement. Existing prefetchers 

are limited by the complexity of these prediction 

algorithms. They lack adaptability to choose prediction 
algorithms based on the history of data access patterns. 

Using complex algorithms takes a bite of processing 

power and may diminish the benefits of prefetching.  

Emerging multicore processors and high-end 

computing machines with thousands of nodes are good 

candidates for utilizing part of processing power to handle 

the complexity of prefetching. We propose a push-based
prefetching using a server, called Data Push Server 

(DPS), which is dedicated to predict data access pattern 

and push data closer to computing processors in-time. 

Here the term ‘push’ also means that, unlike traditional 

client-initiated prefetching, DPS initiates prefetching. 
DPS can adapt to complex prediction algorithms for more 

aggressive prediction and can push data into multiple 

processing units1. It can adaptively choose a prediction 

method based on the history of accesses and compiler 

hints. This is very beneficial to HEC, where few of the so 

called “grand challenge applications” often running 

repeatedly. We also use temporal data access information 

to predict when to push data. This avoids costly 

synchronization needed by pre-execution strategies [3, 4, 

7, 10, 11, 13] to initiate prefetching in time. DPS can fit at 

multiple levels of memory hierarchy including to perform 
I/O prefetching. We enhance the SimpleScalar simulator 

[1] to provide performance results at cache prefetching 

level. While these results on benchmarks are preliminary, 

they show that DPS has merits and has a real potential. 

2. Related Work  

Data prefetching is a well studied research area in 

computer architecture. Sequential prediction strategies 

                                               
1

The notion of processing unit refers to a processing core in multi-core 

processors and to a computing node in SMP and cluster computers.
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prefetch next k lines of data, while strided prediction 

strategies prefetch future strides based on past accesses 

[12]. With the increasing complexity of these methods, 

the benefits of prefetching diminish in the traditioanl 

client-initiated prefetching. Software-controlled 

prefetching [9] gives control to a developer or a compiler 
to insert prefetching instructions into programs. However, 

software-controlled prefetching puts burden on 

developers and compilers, and is less effective in reducing 

memory stall time on ILP processors due to late 

prefetches and resource contention.  

With the emergence of multithread support in 

processors, many thread-based solutions have been 

proposed to deal with the complexity issue. These 

methods can be roughly classified into two categories: 

pre-execution based and prediction based. Pre-execution 

based methods often use a helper thread to run slices of 

code ahead of main thread. A small list among numerous 
proposals using pre-execution include Luk et al.’s 

Software controlled pre-execution [8], Liao et al.’s 

Software-based speculative precomputation [7], Roth et 

al.’s Data-driven multithreading [10], and Hassanein et 

al.’s data forwarding [4]. Many of these methods often 

rely on compiler support to select slices of code to pre-

execute and to trigger execution of that code. Zhou [13] 

proposed dual-core execution (DCE) and Ganusov et al. 

[3] proposed future execution (FE) to utilize idle cores of 

a CMP to speed up single threaded programs. In contrast 

to pre-execution approaches, our DPS resides on a 
dedicated data server and adaptively chooses stride 

prediction strategies. DPS is designed to serve multiple 

processing cores simultaneously, where as DCE and FE 

are tightly coupled to one core. In DPS, we target to 

predict temporal pattern to provide in-time prefetching, 

while pre-execution approaches require synchronization 

to achieve that. 

Prediction based multi-threaded strategies use helper 

threads to predict future references. Solihin et al. [11] 

propose memory-side prefetching, where a memory 

processor is designed to reside within the main memory to 

observe history of L2 cache misses that pushes data into 
L2 cache. We use a dedicated server outside the main 

memory to observe data accesses at L1 cache level and to 

push predicted data to L1 and L2 caches. DPS also 

predicts when to push data based on temporal pattern of 

data accesses for in-time prefetching.  

3. Data Push Server 

Figure 1 shows the structure of Data Push Server 

(DPS).  Its three primary components are: pattern 
detection manager, prefetch engine, and management 

engine. The pattern detection manager (PDM) collects 

history of data accesses in spatial and temporal 

dimensions. Data access information in spatial dimension 

includes the strides between successive accesses. 

Information in temporal dimension refers to the time of 

accesses, either in clock cycles or inter-reference distance. 

The PDM then classifies patterns of those data accesses. 

The prefetch engine is responsible to predict future 

accesses and the timing. It in turn has three 

subcomponents: prefetch strategy selector, prefetch 

predictor, and request generator. The prefetch Strategy 
Selector (PSS) adaptively selects an appropriate method 

to predict future accesses based on the pattern 

information. The prefetch predictor of the prefetch engine 

decides what data to fetch and the request generator
decides when to push data so that the prefetched data 

arrives at its destination in time. Here by ‘in time’, we 

mean that data is pushed from its source to destination 

within a window of time before it is required, and where it 

does not replace other data blocks from cache falsely. By 

moving data into a cache too early, it may replace data 

blocks that would be accessed in the near future. Our 

strategy aims to avoid such negative effects. Predicted 

prefetch requests are kept in a prefetch queue and data 
propeller in the management engine issues a signal to 

push the data to its destination.  
Source and destination of DPS vary based on where it 

is implemented. In a multi-core processor environment, 

the source is its main memory, and the destination is 

cache memory. In I/O prefetching, the source is a disk and 

the destination is the main memory of a client node. 

Figure 2 shows a scenario of DPS system running on a 

computing core, serving processing cores 1,2, …, m. We 

show that each core in a multicore processor environment 

contains its own L1 and L2 cache memories and shares 

the memory among other cores. The core, on which DPS 

is running, observes the data access patterns of L1 cache 

of cores 1 to m, and predicts the future accesses 
correspondingly. The data (prefetched cache line or PCL) 

is pushed from the shared main memory to the prefetch 

cache (PC) of each client core by issuing prefetch signals 
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Figure 1. Components of Data Push Server 



(PS) to the main memory. Regular memory operations 
related to raw cache misses caused by an application are 

served by main memory directly. These cache lines are 

read or written by L2 cache and this data (CL) is 

transferred between main memory and L2 cache. CPU on 

each core accesses both L1 cache and prefetch cache 

simultaneously. An L1 cache miss is propagated to lower 

level L2 cache. A prefetch cache miss is discarded. 

Similarly, DPS can be placed in computing nodes of 

SMPs and clusters at various levels. In SMPs, data can be 

prefetched from shared memory to compute nodes’ local 

memory. Another scenario is that DPS acting as I/O 

prefetcher to push data from I/O servers to client nodes as 
a part of parallel file systems. In the following section, we 

discuss the functionality of DPS system components in 

detail. 

4. Functionality of DPS 

4.1 Prediction of Future Data Accesses 

In research literature, there are many strategies to 

predict future data references. However, no single 

strategy accurately predicts all data access patterns. 

Sequential and strided strategies can predict regular 

constant and varying strided accesses, while another set of 

strategies try to chase pointers and data structure 

traversals [12] that require compiler and user provided 
hints. Complexity of these strategies varies. Using simple 

strategies cannot capture complex patterns and complex 

strategies suffer from high overhead in predicting simple 

access patterns. An accurate prefetching mechanism 

should support various prediction strategies and should 

adapt to data access patterns of an application at runtime.  

In our DPS, the pattern detection manager (PDM) 

detects data access patterns, and the prefetch strategy 
selector selects an appropriate prediction strategy based 

on the detected pattern. To detect whether a pattern is 

formed by simple strides or complex variable strides, the 

PDM observes the distances (spatial and temporal strides) 
between consecutive data references. We classify data 

access references into contiguous, non-contiguous, and 

combinations of contiguous and non-contiguous patterns. 

We divide these patterns further based on repetition of 

occurrence of each pattern and on variation of strides 

between non-contiguous patterns. Based on this 

classification, the PDM characterizes a pattern and passes 

that information to the prefetch strategy selector.

The prefetch strategy selector (PSS) chooses a 

prediction strategy based on initial information regarding 

a pattern. Many strategies exist to predict future 

references with similar strides or patterns of strides [12]. 
However, patterns with variable strides and repetitions 

need more analysis to find regularity among them. With 

DPS, as dedicated computing power is available for 

prediction, we can use Markov Chain [5] and a novel 

Multi-level Distance Table (MLDT) [2] based predictions 

to find regular patterns with constant stride as well as 

variable stride accesses and repeating patterns.  

4.2. Prediction of When to Prefetch 

The issue of when to prefetch in existing prediction 

based prefetching methods is limited by the occurrence of 

an event such as a cache miss or a page fault (prefetch on 

miss) or the first access to a data block (tagged prefetch) 

etc. However, these strategies do not guarantee that the 
prefetched data will reach its intended destination “in 
time” to overlap the processor stall time. The efficiency of 

prefetching in time depends on three factors (Figure 3): 

the time to predict future accesses (
predT ), the latency of 

initiating and transferring data from its source to 

destination (
latT ), and the gap between current time and 

the next data reference that would cause a demand cache 

miss ( ∆T ) when no prefetching is applied. If (
predT +

latT )

= ∆T , the prefetching is in time and is the most effective. 
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Figure 3. In time prefetching 

…

PS

DPS Core 

(DPS threads) 

Main Memory 

PCL CL

DAP

PCL

Core 1 

L

2 L1 

CL DAP

P

C

CPU 

PCL

Core 2 

L

2

L1 

CL DAP

P

C

CPU 

PCL

Core m 

L

2

L1 

CL DAP

P

C

CPU 

Data 

Prefetch 

server

Figure 2. Data Push Server for Multi-core 
Processors 



If 
miss

T  denotes the penalty caused by a cache miss, there 

is a partial gain of performance improvement based on 

how much of 
missT  is overlapped if ( predT +

latT ) > ∆T

and ( predT +
latT ) < ( ∆T + missT ). If data is prefetched too 

early, i.e. (
predT +

latT ) < ∆T , there is a possibility of 

replacing useful cache lines.  

To benefit from prefetching, a prefetching strategy has 

to be adaptive to decide if a prefetch would be useful or 

not. A useless prefetch increases traffic of the bus, and 

may pollute a location on the destination of that prefetch. 

This necessitates the prediction of ∆T  to make a decision 

whether to prefetch or not.  

In DPS, the request generator decides when to 

prefetch. The request generator chooses what future 
reference (prefetch distance) has to be prefetched based 

on the detected spatial and temporal data access history of 

a cache. Temporal history contains clock ticks of 

processing core to recognize its timing pattern. The 

request generator predicts 
∆T  and adjusts the value of 

prefetch distance so that (
predT +

latT ) is equal to 
∆T . We 

assume that only one application runs on a processing 

core at a time, since it is complex to observe temporal 

pattern of data accesses when multiple tasks are running 

on the same core. We currently use MLDT [2] method to 

identify temporal pattern in order to predict 
∆T . In the 

future we plan to use ARIMA models [5] to predict 

temporal access patterns.  

4.3. Pushing Predicted Data 

The data propellor component of DPS delivers data to 

processing units. After predicting the addresses of future 

references by the prefetch engine, the data at these 

addresses has to be delivered to appropriate processing 

units. In traditional hardware prefetching strategies, 

prefetching instructions are issued by the same processing 

unit that executes a program. In DPS strategy, the 

predicted future data references are stored in a prefetch 

queue. The prefetch engine sends this prefetch queue to 
the data propellor, and the data propellor issues 

prefetching (push) instructions to move the data from the 

memory to processing units that need data. Special 

hardware support is needed to issue instructions to push 

data.  

4.4. Suggestions for Implementation 

In order to implement DPS and obtain the benefits of 

aggressive prediction strategies, special hardware is 

needed to support the implementation of DPS on multi-

core processors. DPS requires to collect data access 

information from processor cores in order to recognize 

their data access pattern. For instance, in a multicore 

processor, the DPS core collects data access history of the 

processing cores. DPS also requires hardware support to 

push data from memory to upper level cache of the 

processing cores. DPS sends prefetch signal to main 
memory to push data into L1 level cache of the processing 

cores. Existing multicore processor architectures do not 

have such support to perform these two operations 

directly. The current cores of processors can issue 

prefetch instructions to fetch data closer to their own core, 

but not to prefetch data to other cores. Emerging chip-

level multiprocessors (IBM’s Cell processor, 

ClearSpeed’s co-processors etc.), have many processing 

cores. These processors show some prospect to implement 

DPS. The cores of a Cell processor have an internal bus, 

which can be used for observing patterns of their local 

memories and for pushing data directly to their local 
memory. Address translation also needs some support. 

TLB misses may occur if address mapping is not updated 

at compute core. This can be solved by providing separate 

virtual prefetch cache. Such provision reduces false 

replacement of data from L1 or L2 caches. As the 

processing unit searches data cache and prefetch cache in 

parallel, the server-based data-push model benefits more 

by reducing data cache misses further.  

5. Experimental Results 

We compare the performance results for three cases: 

base case, strided prefetching and DPS prefetching. Base 

case performs no prefetching. The strided prefetching 

strategy predicts the next stride based on history of recent 

accesses and a prefetch instruction is issued on the 

occurrence of a cache miss. Prefetching distance is 

constant for strided prefetching. Prefetching is initiated by 

the DPS core for DPS strategy. Prefetching distance 

varies based on request generator decisions on when to 
prefetch. 

We evaluate the performance by using an extended 

version of the SimpleScalar toolset v4.0 [1]. The baseline 

simulator configuration consists of a four-issue dynamic 

superscalar cores similar to that of Alpha 21264, with L1 

cache (32 KB, 2-way, 64 byte cache line, and 2 cycle hit 

time) and L2 cache (1MB, 4-way, 64 byte line, 12 cycle 

hit time, and 100 cycle miss penalty) To apply strided 

prefetching, we modified the sim-outorder simulator 

using a 512-entry reference prediction table (RPT) [12]. 

The prefetch distance is constant and set as 8 for strided 
prefetching. Our experiments have shown that this 

prefetch distance has least cache misses for the tested 

benchmarks. To implement DPS prefetching strategy, we 

use a 512-entry Data Access History (DAH) [2] structure 

to collect load instruction information. The DAH is 



similar to RPT, but stores more information. DAH has a 

tag, count, tail and head pointer fields. Tag field records 

the instruction address. Each entry is a doubly linked list, 

which is a queue and keeps track of data access addresses 

and the time of occurrence (in cycles) of the 

corresponding entry instruction. To simulate the DPS 
core, we modified the sim-outorder simulator to add 

another Alpha 21264 core that contains all the 

components of DPS core. Operation of this core does not 

affect the cycles or instructions of the processing core. To 

simulate data prefetching functionality, we modified the 

memory module of the DPS core to introduce an 

instruction to prefetch data into the L1 cache of 

processing core. 

We present performance results of SPEC CPU2000 

benchmarks that have poor L1 cache performance. Figure 

4 shows L1 cache miss rates of these benchmarks. With 

DPS prefetching, L1 miss rates are reduced significantly 
for all the benchmarks. For ammp L1 miss rate reduction 

is 97.05%. For applu it is 48.9%, for art it is 96%, for mcf
it is 32%, and for mgrid benchmark it is 66.5%. These 

miss rates are 40% to 95% less (66% on average) 

compared to strided prefetching.  

Figure 5 shows the values of IPC (instructions per 

cycle) improvement for the above CPU2000 benchmarks. 

The first bar shows the IPC improvement with strided 

prefetching. The second bar represents the IPC 

improvement when DPS prefetching is implemented 

without a dedicated DPS core, i.e. DPS prefetching is 
implemented on the same processing unit, where 

benchmark code is running. The third bar represents the 

IPC improvement, when we use a dedicated DPS core for 

our prefetching strategy. Strided prefetching improves 

IPC slightly, but degrades for applu benchmark. When 

DPS is implemented on the same processing core, the IPC 

improvement is negative for all benchmarks except for 

ammp benchmark. This shows that, even though 

aggressive DPS prefetching is effective, when it is 

implemented on the same processing core, the overall 

performance degrades. With the use of a dedicated 

memory server, the IPC values improve significantly, 

benefiting from aggressive prefetching. 

These performance results show the potential of using 

a dedicated DPS for prefetching. In actual 

implementation, the observation of data access patterns at 
processing cores may involve some overhead. The use of 

a DPS core reduces the actual prefetching overhead at 

processing cores and the performance gain would 

supercede the overhead involved in observing the 

patterns. We plan to study these costs in the future. 

Moreover, DPS has flexibility to choose prediction 

strategies adaptively, to prefetch data in time and to serve 

multiple clients. These functionalities of DPS broadens 

the impact of CMP architectures in bridging the 

divergence gap of HEC. 

6. Conclusions 

In this study, we have presented the server-based data 

push architecture, called Data Push Server (DPS), for 

effectively masking processor stall time. DPS uses a data 

server in parallel with processing core (or cores) to 

predict future data accesses and to push the required data 

to its destination in time. A structured design is presented 

to implement DPS in multi-core processors. Initial 
simulation results show that DPS has a profound potential 

to improve the memory access performance of various 

data access patterns.  

We have only demonstrated some potential of DPS in 

this study. Many research issues remain open. We plan to 

investigate DPS approach further for fast data access and 

to explore its potential in other domains of information 

processing. We plan to extend this work to study detailed 

implementations of DPS and to design a strategy to select 

various pattern prediction strategies based on compiler 

and user-provided hints. This will improve the 
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effectiveness of DPS in predicting irregular patterns such 

as data structure traversals. We intend to explore more 

accurate pattern prediction algorithms, such as time series 

analysis models.  
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