
J-Sim: An Integrated Environment for Simulation and Model Checking
of Network Protocols

Ahmed Sobeih, Mahesh Viswanathan, Darko Marinov, and Jennifer C. Hou

University of Illinois at Urbana-Champaign
Department of Computer Science

Urbana, IL 61801 USA
{sobeih, vmahesh, marinov, jhou}@cs.uiuc.edu

Abstract

In this paper, we report our work [24, 26] on extending
the J-Sim network simulator [13] to be an integrated envi-
ronment for both simulation and model checking of network
protocols. We also present a case study in which we model-
checked AODV in J-Sim.

1. Introduction

One major deficiency of traditional network simulators
is that they only evaluate the performance of network proto-
cols in scenarios provided by the protocol designer but can
not exhaustively analyze possible scenarios for correctness.
For example, a network simulator can evaluate the perfor-
mance of a routing protocol but cannot check whether this
protocol may suffer from routing loops. In the current prac-
tice, to check whether or not a network protocol contains
any errors, a prototype that was solely written for verifica-
tion purposes has to be built (e.g., in an interactive theorem
prover and/or a model checker). In general, this process is
an onerous, time-consuming and error-prone task. An in-
teresting question is then whether or not we can employ a
single, integrated tool to provide both the performance eval-
uation (e.g., via simulation) and verification (e.g., via model
checking) of network protocols. With such a tool, only one
prototype will be built and used for the two purposes, thus
saving both the time and effort of network protocol design-
ers.

Motivated thus, we have extended J-Sim [13, 27, 28]—
a composable and extensible open-source network simula-
tion environment that is developed entirely in Java—with
the model checking [4] capability to explore the state space

1-4244-0910-1/07/$20.00 c©2007 IEEE.

created by a network protocol up to a (configurable) max-
imum depth in order to find violations of a safety property
(e.g., the absence of routing loops in a routing protocol).
The basic idea is to execute the simulation code in order
to pinpoint errors in the network protocol. Specifically, we
have implemented a model checker (written in Java so that
it can be readily integrated with J-Sim), and incorporated
this model checker into J-Sim.

Design of special-purpose model checkers for network
simulator code enjoys several benefits over using general-
purpose verification tools. First, it saves the protocol de-
signer the task of building a special-purpose model of the
protocol for verification and a separate model for perfor-
mance analysis. Since building a formal model of a pro-
tocol is an onerous, time-consuming and error-prone task,
by designing special-purpose model checkers for network
simulator code, we ensure that verifying a protocol is easier
for the designer (and hence something he/she is more likely
to perform). Second, using a model checker for C or Java
(like [9, 18, 1, 3, 10, 7]) to verify the protocol code along
with the simulator code might likely be intractable due to
the complexity of the general-purpose simulator code.

To extend J-Sim with the model checking capability, we
have addressed several issues. First, we have laid a frame-
work that enables the model checker to take control of the
simulation of a network protocol in order to explore the (en-
tire) state space, rather than just exploring one single exe-
cution path as J-Sim traditionally does. Second, we ensured
that the implementation of this model checking framework
did not require the core design and implementation of J-Sim
to be altered. Third, we instrumented the model checker to
make use of a best-first search (BeFS) strategy, which ex-
ploits properties inherent to the network protocol and the
safety property being checked, in order to guide the search
towards paths that can potentially locate errors in less time
before running out of memory due to the well-known state

space explosion problem in model checking.
The rest of the paper is organized as follows. In Sec-

tion 2, we give an overview of network simulation in J-Sim.
In Section 3, we give an overview of the model checking
framework in J-Sim. In Section 4, we present the perfor-
mance results of one of our case studies. In Section 5, we
discuss related work. Finally, we conclude the paper in Sec-
tion 6.

2. Network Simulation in J-Sim

J-Sim is implemented on top of a component-based soft-
ware architecture, called the autonomous component ar-
chitecture (ACA), that closely mimics the integrated circuit
(IC) design. The basic entities in the ACA are components,
which communicate with one another via sending/receiving
data at their ports. When data arrives at a port of a compo-
nent, the component processes the data immediately in an
independent execution context (e.g., thread in Java).

The software architecture of the ACA is motivated by the
belief that software design cannot achieve the same level
of modularity as IC design due to the fact that the object-
oriented (OO) programming paradigm is fundamentally dif-
ferent from hardware design in component binding. Specif-
ically, in OO programming, a class makes direct references
to other class instances and makes function calls to those
exposed by other class instances. The binding is “strong”
in the sense that the caller has to know the exact names of
the callees. In the course of debugging, one cannot obtain a
clear view of binding relations without delving into the im-
plementation details and tracing codes line by line. This
yields unpredictability in software development and high
maintenance cost, and is usually termed as software crisis.
In contrast, an IC chip is a blackbox fully specified by the
function specification and the input/output signal patterns in
the databook. Changes in input signals trigger an IC chip to
perform certain function, and change, after a certain delay,
its outputs according to the chip specification. The fact that
an IC chip is interfaced with other chips/modules/systems
only through its pins (and is otherwise shielded from the
rest of the world) allows IC chips to be designed, imple-
mented, and tested, independently of everything else. In
other words, at design time, an IC chip is bound with a cer-
tain specification in the databook, instead of being bound
to components that interact with it. Component binding is
thus deferred to the time when a system (e.g., ALU) is being
composed.

Following the same line of design principles, how com-
ponents in the ACA behave (in terms of how a component
handles and responds to data that arrives at a port) is speci-
fied at system design time in contracts, but component bind-
ing does not take place until the system integration time
when the system is being “composed.” A contract specifies

how an initiator (caller) and a reactor (callee) fulfill a cer-
tain function. It simply specifies the causality of informa-
tion exchange between components but not the components
that may participate in information exchange. Two com-
ponents, acting respectively as the initiator and the reactor,
are bound at system integration time to fulfill the contract.
In some sense, the ACA realizes the notion of software IC
where an IC corresponds to a component, pins correspond
to ports, signals correspond to data that arrives at a port of
a component, and an IC specification corresponds to a con-
tract.

With the separation of contract binding (at system de-
sign time) from component binding (at system integration
time), J-Sim provides a loosely-coupled component archi-
tecture, i.e., a component can be individually designed, im-
plemented and tested independently [27]. By closing the
gap between hardware and software ICs, the ACA realizes
the objectives of composability and extensibility of network
simulation [28]. All of these features enable new compo-
nents to be included into J-Sim in a plug-and-play fashion.
On top of the ACA, a generalized packet-switched inter-
networking framework (called INET) has been laid based
on common features extracted from the various layers in
the protocol stack. Both the ACA and the INET have been
implemented in Java, and the resulting code, along with its
scripting framework and GUI interfaces, is called J-Sim. Fi-
nally, an essential suite of wired and wireless network com-
ponents and protocols have been implemented in J-Sim.

3. Model Checking Framework in J-Sim

The model checker, that we implemented as a component
in J-Sim, is an explicit-state model checker [4] that checks a
network protocol by executing the J-Sim simulation code of
that network protocol directly and exploring the state space
on-the-fly until either a counterexample disproving a safety
property is found or the state space is explored up to a max-
imum depth (MAX DEPTH).

In order to explore the state space created by a network
protocol, the notion of the “state” has to be adequately de-
fined. To this end, the model checker makes use of the Glob-
alState class. A state is an instance of GlobalState. The
model checking procedure modelCheck, shown in Fig-
ure 1, interacts via ports with three instances of Global-
State; namely, initialState (the initial state of the network
protocol), currentState (the current state being explored)
and nextState (one of the possible successors of the current
state). As shown in Figure 1, the two major data structures
are NonVisitedStates (which stores the states that have not
yet been visited) and AlreadyVisitedStates (which stores the
states that have already been visited). Figure 1 presents a
stateful search that avoids visiting a state if another equiva-
lent state has already been visited before (i.e., a state that al-

ready exists in AlreadyVisitedStates). AlreadyVisitedStates
stores concrete states, and two states s1 and s2 are consid-
ered equivalent if s1.equals(s2) returns true.

In each state in the state space, some transitions (i.e.,
events) may or may not be enabled, and an enabled transi-
tion may generate multiple successor states. For instance, a
packet arrival event may generate multiple successor states.
This is because if the network contains two packets m1 and
m2 whose destination is node n, two successor states can
be generated depending on whether node n receives m1

first and then m2 or receives m2 first and then m1. In
modelCheck, the enabling function (Figure 1, line 9) re-
turns the number of possible successor states (zero if the
event is disabled). For each state being explored (cur-
rentState), modelCheck generates all the possible succes-
sor states (nextState) by executing the event handlers of the
events that are enabled in currentState. However, since an
event handler is only invoked from modelCheck but actu-
ally executed inside the protocol entities (i.e., the classes
that implement the network protocol being model-checked)
themselves, modelCheck must first restore the state of the
protocol entities to the state reflected in currentState before
the execution of the event handler. This is achieved by the
CopyFromModelToEntities() function call (line 11) where
the model checker interacts via ports with the protocol enti-
ties.

After the execution of the event handler (line 14), the
CopyFromEntitiesToModel() function is called (line 15) to
extract the new state information from the protocol enti-
ties and copy them to nextState. If nextState has not been
visited before (line 16), modelCheck then checks whether
nextState violates a safety property (line 17). (The network
protocol designer specifies the safety property that needs to
be checked as a Java method whose output is true/false.) If
so, a counterexample is printed by calling the printPath()
function (line 18); otherwise, nextState is added to NonVis-
itedStates (line 20) in order to be explored later if its depth is
strictly less than MAX DEPTH . Adding a state to Non-
VisitedStates (line 20) or AlreadyVisitedStates (line 6) needs
a function that creates a copy of a state (e.g., clone()).

For more implementation details, the interested reader is
referred to [24]. It should be mentioned that the user needs
to do a specific set of a few programming tasks (e.g., pro-
viding an implementation of GlobalState) before initiating
the model checking process [26].

4. Evaluation and Results

In [26], we demonstrated the ability of the model check-
ing framework in J-Sim to model-check two network pro-
tocols: (a) Ad-Hoc On-Demand Distance Vector (AODV)
routing [22, 23] for wireless ad hoc networks, and (b) Di-
rected Diffusion [12] for wireless sensor networks. These

procedure modelCheck()
1. AlreadyVisitedStates = { } ;
2. NonVisitedStates = { initialState } ;
3. while (| NonVisitedStates | > 0) {
4. currentState = NonVisitedStates.remove() ;
5. if (currentState does not exist in AlreadyVisitedStates) {
6. AlreadyVisitedStates = AlreadyVisitedStates ∪ { currentState } ;
7. for (all protocol entities p) { /* for all protocol entities */
8. for (all possible events e) { /* for all events */
9. NumberOfNextStates = e.EnablingFunction(p) ;

10. for (int i = 0 ; i < NumberOfNextStates ; i++) {
11. CopyFromModelToEntities(currentState) ;

/* Start with nextState equal to currentState */
12. nextState = currentState ;

/* Increment the depth of nextState */
13. nextState.depth += 1 ;
14. e.EventHandler(p) ; /* Invoke e’s event handler */
15. CopyFromEntitiesToModel(nextState) ;
16. if (nextState does not exist in AlreadyVisitedStates) {
17. if (nextState.verifySafety() == false) {
18. printPath(nextState) ; exit ;

} /* end if safety property is violated at nextState */
19. else if (nextState.depth < MAX_DEPTH)
20. NonVisitedStates = NonVisitedStates ∪ { nextState } ;

}
}

}
}

}
}

Figure 1. Stateful model checking procedure.

are reasonably complex network protocols whose J-Sim im-
plementations (not including the J-Sim library) have about
1200 and 1400 lines of code, respectively. Our choice of
AODV and directed diffusion was motivated by their poten-
tial to become representative routing and data dissemina-
tion protocols, respectively, in ad hoc networks and sensor
networks. In this section, we give an overview of model-
checking AODV in J-Sim. We ran all experiments on a
Pentium 4 1.6 GHz machine with Microsoft Windows XP
2002 SP2 with 1 GB memory. We used Sun’s Java 2
SDK 1.4.2 JVM with 512 MB allocated memory.

4.1. Overview of AODV

The implementation of AODV [22] in J-Sim is based on
the AODV Draft (version 11) [23]. In AODV, each node n

in the ad hoc network maintains a routing table. A rout-
ing table entry (RTE), at node n, to a destination node
d contains, among other fields: nexthopn,d (the address
of the node to which n forwards packets destined for d),
hopsn,d (the number of hops needed to reach d from n) and
seqnon,d (a measure of the freshness of the route informa-
tion). Each RTE is associated with a lifetime. Periodically,
a route timeout event is triggered invalidating (but not delet-
ing) all the RTEs that have not been used (e.g., to send or
forward packets to the destination) for a time interval that is
greater than the lifetime. Invalidating a RTE involves incre-
menting seqnon,d and setting hopsn,d to ∞.

When a node n requires a route to a destination d, it
broadcasts a route request (RREQ) packet. When a node
receives the RREQ, if it has a fresh enough route to d (or it
is d itself), it satisfies the RREQ by unicasting a route re-
ply (RREP) packet back to n; otherwise, it rebroadcasts the
RREQ. The unicast RREP travels back to n. Each interme-
diate node along the path of RREP sets up a forward pointer

to the node from which the RREP came, thus establishing
a forward route to d, and forwards the RREP packet to the
next hop towards n. If node m offers node n a new route to
d, n compares seqnom,d of the offered route to seqnon,d,
and accepts the route with the greater sequence number. If
the sequence numbers are equal, the offered route is ac-
cepted only if hopsn,d > hopsm,d.

Each node maintains two monotonically increasing
counters: seqnon and bidn. When node n broadcasts a
RREQ packet, it includes the current value of bidn in the
RREQ packet and then increments bidn. Therefore, the
pair < n, bidn > uniquely identifies a RREQ packet. Each
node, receiving the RREQ packet from node n, keeps the
pair < n, bidn > in a broadcast ID cache so that it can
later check if it has already received a RREQ with the same
source address and broadcast ID. Each entry in this cache
has a lifetime. Periodically, a broadcast ID timeout event
is triggered causing the deletion of entries in the cache that
have expired.

4.2. Model-checking AODV

Three steps constitute a generic methodology for model-
checking a network protocol in J-Sim.

(1) Definitions of the global state, the initial state, state
equality and safety property: We define GlobalState as
a tuple that has two components; namely, the protocol state
and the network cloud. The protocol state of a node n in-
cludes n’s routing table, broadcast ID cache, seqnon and
bidn. The network cloud models the network as an un-
bounded set that contains AODV packets, and also main-
tains the neighborhood information. A broadcast AODV
packet whose source is node s is modeled as a set of pack-
ets, each of which is destined for one of the neighbors (i.e.,
the nodes that are within the transmission range) of s.

In the initial global state, the network does not contain
any packets and the AODV process at each node is initial-
ized as specified by the constructor of the AODV class in
J-Sim. Specifically, the AODV process starts with an empty
routing table, empty broadcast ID cache, seqnon = 2 and
bidn = 1.

Two states, s1 and s2, are considered equal if they have
the same (unordered) set of AODV packets, the same neigh-
borhood information, and for each node n, s1 and s2 have
equal corresponding values for seqnon, bidn, and node n’s
routing table and broadcast ID cache (each viewed as an
unordered set of entries).

An important safety property in a routing protocol such
as AODV is the loop-free property; i.e., data packets are
not routed through loops. Consider two nodes n and m

such that m is the next hop of n to some destination d; i.e.,
nexthopn,d = m. The loop-free property can be expressed
as follows [18]:

((seqnon,d < seqnom,d) ∨ (seqnon,d ==
seqnom,d ∧ hopsn,d > hopsm,d))

(2) Specifying the set of events, when each event is en-
abled, and how each event is handled. We specify six
events as follows:
T0 Initiation of a route request to a destination d: This

event is enabled if the node does not have a valid RTE
to the destination d. The event is handled by broad-
casting a RREQ.

T1 Delivering an AODV packet to node n: This event is
enabled if the network contains at least one AODV
packet such that n is the destination (or the next hop
towards the destination) of the packet and n is one of
the neighbors of the source of the packet. The event is
handled by removing this packet from the network and
forwarding it to node n.

T2 Restart of the AODV process at node n: This event
may take place because of a node reboot. The event
is always enabled and is handled by reinitializing the
state of the AODV process at node n.

T3 Loss of an AODV packet destined for node n: This
event is enabled if the network contains at least one
AODV packet that is destined for node n. The event is
handled by removing this packet from the network.

T4 Broadcast ID timeout at node n: This event is enabled
if there is at least one entry in the broadcast ID cache
of node n. The event is handled by deleting this entry.

T5 Timeout of the route to destination d at node n: This
event is enabled if n has a valid RTE to d. The event is
handled by invalidating this RTE.

(3) Use of protocol-specific properties to facilitate a
BeFS strategy: A suitable BeFS strategy for exploring
the state space of AODV can be obtained by inspecting the
loop-free property. A node, which does not have a valid
RTE to the destination d, does not affect the truth value of
the loop-free property. Therefore, a suitable BeFS strategy
(which we call AODV-BeFS) is to consider a state s1 better
than a state s2 if the number of valid RTEs to any node in s1

is greater than that in s2. We devised other BeFS strategies
in [26].

4.3. Errors discovered

We consider an initial state of an ad hoc network consist-
ing of 3 nodes: n0, n1 and n2 (the only destination node)
arranged in a chain topology where each node is a neighbor
of both the node to its left and the node to its right (if any ex-
ists). Although this initial state is simple, it ensures that n0

requires a multihop route to reach n2; i.e., AODV multihop
routing is needed. (We studied larger network topologies

in [26].) In the course of model checking, we have discov-
ered an error (which we call Counterexample 1) in the J-Sim
implementation of AODV caused by not following part of
the AODV specification. Conceptually, if nexthop0,2 = 1
and the AODV process at n1 restarts, the net effect is that all
the RTEs stored at n1 will be deleted. As a result, n1 may
later accept a route that was offered by n2 with a lower se-
quence number than that of n0 (i.e., seqno0,2 > seqno1,2),
hence violating the loop-free property. We also manually
injected two errors (which we call Counterexamples 2 and
3 respectively): in Counterexample 2, seqnon,d is not incre-
mented when a RTE is invalidated and in Counterexample
3, a RTE is deleted (instead of invalidated) when its lifetime
expires. The model checking framework was able to find
these two errors too. (For Counterexamples 2 and 3, we re-
quire that the counterexample contain at least one state that
is generated due to the route timeout event, T5.) A routing
loop may occur due to either of these two errors because if
nexthop0,2 = 1 and a route timeout event takes place at n1,
in either Counterexample 2 or 3, if n1 is later offered a route
to n2 by n0, this route will be accepted (because in Coun-
terexample 2, hops1,2 = ∞; hence, hops1,2 > hops0,2;
whereas in Counterexample 3, seqno0,2 > seqno1,2). The
interested reader is referred to [25] for a detailed account
(along with the traces) of the three counterexamples.

Table 1 gives the performance evaluation criteria: (i)
time, (ii) space, and (iii) number of transitions explored
for finding the three counterexamples using several search
strategies, including breadth-first (BFS) and depth-first
(DFS). As shown in Table 1, AODV-BeFS achieves an or-
der of magnitude reduction with respect to the performance
criteria when compared to BFS. In [26], we devised other
BeFS strategies, studied their performance and discovered
that the choice of the BeFS strategy has a significant impact
on the performance. Based on our results. we provided rec-
ommendations for good search heuristics to model-check
network protocols similar to AODV.

5. Related Work

Our work is inspired by previous work on model-
checking the implementation code directly for C and C++
(e.g., CMC [18, 17] and VeriSoft [8]). Although CMC has
been applied to model-check Linux implementations of net-
working code (e.g., AODV and TCP), the major distinction
between our approach and CMC is that CMC uses protocol-
independent properties in guiding the best-first search. It
does so by attempting to focus on states that are the most
different from previously explored states. However, our ap-
proach uses protocol-dependent properties, which exploit
properties inherent to the network protocol and the safety
property being checked, to guide the best-first search strat-
egy. Likewise, VeriSoft uses protocol-independent tech-

niques, namely partial-order reduction (POR) using the per-
sistent/sleep sets [8].

In contrast to model-checking the implementation code
directly, conventional model checkers (e.g., SPIN [11],
SMV [16], Murphi [6]) require that the system be first spec-
ified using a high-level modeling language. This may not
be desirable, as the process of describing the system in a
high-level modeling language is time-consuming, painstak-
ing, and error-prone. To deal with this problem, there has
been recent work (e.g., [21, 9, 5, 7]) on translating pro-
gramming languages (e.g., Java) into the input modeling
languages of several conventional model checkers. How-
ever, this may not be always feasible because some features
of C or Java (e.g., bit operations) do not have corresponding
ones in the destination modeling language. Therefore, our
approach of model-checking the simulation code, which has
to be written by a network protocol designer anyway for the
purpose of performance evaluation, directly reduces the net-
work protocol designer’s effort and avoids the limitations of
the input languages of conventional model checkers. This
also provides an important advantage when compared to
previous work on testing and verification of network proto-
cols (e.g., [15, 19]), which requires building another model
for verification purposes.

Java PathFinder (JPF) [29] performs model checking at
the bytecode level. This involved building a new Java Vir-
tual Machine that is called from the model checker to in-
terpret Java bytecode. In contrast, our approach does not
require any modifications to the Java Virtual Machine. Our
approach, however, requires the user to provide the code for
state manipulation. JPF provides automatic manipulation of
the entire Java states (including stack and heap).

As far as formal analysis of network simulation is con-
cerned, Verisim [2] is a tool that was developed based on a
collection of pre-existing tools; namely, ns-2 [20] and the
MaC monitoring and checking framework [14]. Verisim re-
places the monitor component of MaC by ns-2 and uses the
checker component of MaC to verify user-defined proper-
ties on traces produced by ns-2. It should be noted, how-
ever, that not all errors may manifest themselves in a trace
because ns-2 does not explore all possible execution paths
during a simulation run.

6. Conclusions and Future Work

This paper documents our work on extending the J-
Sim network simulator with the capability of finding bugs
in network protocols using on-the-fly model checking.
We demonstrated the effectiveness of the model checking
framework in J-Sim to model-check AODV, a widely used
and fairly complex network protocol. Experimental results
show that the model checking framework in J-Sim is able to
find violations of a safety property within acceptable time

Table 1. Time (in seconds) and space (in number of states explored) requirements and the number of
transitions explored for finding the three counterexamples in a 3-node chain ad-hoc network using
different search strategies. MAX DEPTH = 10.

Counterexample 1 Counterexample 2 Counterexample 3
Time Space Transitions Time Space Transitions Time Space Transitions

BFS 4262.039 19886 40445 4231.124 20072 40781 4094.928 19056 39489
DFS 940.672 1844 21135 962.935 1833 20979 893.896 1817 20814
AODV-BeFS 139.310 1156 7493 137.168 1151 7440 127.053 1150 7431

and space requirements, thus making J-Sim an integrated
environment for both simulation and model checking of net-
work protocols.

In our future work, we intend to make use of JPF to
model-check the network protocols in J-Sim, and compare
the model checking framework in J-Sim with that of JPF.
The purpose of this comparative study is to assess the pros
and cons of building a model checker in J-Sim instead of
using an existing model checker such as JPF.

References

[1] T. Ball and S. K. Rajamani. The SLAM toolkit. In Proc. of
CAV’01.

[2] K. Bhargavan, C. A. Gunter, M. Kim, I. Lee, D. Obradovic,
O. Sokolsky, and M. Viswanathan. Verisim: Formal analysis
of network simulations. IEEE Trans. on Software Engineer-
ing, 28(2):129–145, February 2002.

[3] S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Mod-
ular verification of software components in C. In Proc. of
ICSE’03.

[4] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking.
MIT Press, 1999.

[5] J. Corbett, M. Dwyer, J. Hatcliff, C. Păsăreanu, Robby,
S. Laubach, and H. Zheng. Bandera: Extracting finite state
models from Java source code. In Proc. of ICSE’00.

[6] D. L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang. Proto-
col verification as a hardware design aid. In Proc. of IEEE
ICCD’92.

[7] A. Farzan, F. Chen, J. Meseguer, and G. Rosu. Formal anal-
ysis of Java programs in JavaFAN. In Proc. of CAV’04.

[8] P. Godefroid. Model checking for programming languages
using VeriSoft. In Proc. of ACM POPL’97.

[9] K. Havelund. Java Pathfinder, A translator from Java to
Promela. In Proc. of SPIN’99.

[10] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy
abstraction. In Proc. of POPL’02.

[11] G. J. Holzmann. The model checker SPIN. IEEE Trans. on
Software Engineering, 23(5):279–295, May 1997.

[12] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed
diffusion: A scalable and robust communication paradigm
for sensor networks. In Proc. of ACM MobiCom’00.

[13] J-Sim. http://www.j-sim.org/.

[14] M. Kim, M. Viswanathan, H. Ben-Abdallah, S. Kannan,
I. Lee, and O. Sokolsky. Formally specified monitoring of
temporal properties. In Proc. of ECRTS’99.

[15] D. Lee, D. Chen, R. Hao, R. E. Miller, J. Wu, and X. Yin.
A formal approach for passive testing of protocol data por-
tions. In Proc. of IEEE ICNP’02.

[16] K. McMillan. Symbolic Model Checking. Kluwer Academic
Publishers, 1993.

[17] M. Musuvathi and D. R. Engler. Model checking large net-
work protocol implementations. In Proc. of NSDI’04.

[18] M. Musuvathi, D. Y. Park, A. Chou, D. R. Engler, and D. L.
Dill. CMC: A pragmatic approach to model checking real
code. In Proc. of OSDI’02.

[19] G. N. Naumovich, L. A. Clarke, and L. J. Osterweil. Verifi-
cation of communication protocols using data flow analysis.
In Proc. of ACM SIGSOFT’96.

[20] Ns-2. http://www.isi.edu/nsnam/ns/.
[21] D. Y. Park, U. Stern, J. U. Skakkebæk, and D. L. Dill. Java

model checking. In Proc. of IEEE ASE’00.
[22] C. E. Perkins and E. M. Royer. Ad-hoc on-demand distance

vector routing. In Proc. of IEEE WMCSA’99.
[23] C. E. Perkins, E. M. Royer, and S. Das. Ad hoc on demand

distance vector (aodv) routing. IETF Draft, January 2002.
[24] A. Sobeih, M. Viswanathan, and J. C. Hou. Check and

Simulate: A case for incorporating model checking in net-
work simulation. In Proc. of ACM-IEEE MEMOCODE’04.

[25] A. Sobeih, M. Viswanathan, and J. C. Hou. Incorporat-
ing bounded model checking in network simulation: The-
ory, implementation and evaluation. Technical Report
UIUCDCS-R-2004-2466, Department of Computer Sci-
ence, University of Illinois at Urbana-Champaign, July
2004.

[26] A. Sobeih, M. Viswanathan, D. Marinov, and J. C. Hou.
Finding bugs in network protocols using simulation code
and protocol-specific heuristics. In Proc. ICFEM’05,
Springer-Verlag LNCS 3785.

[27] H.-Y. Tyan. Design, Realization and Evaluation of a
Component-based Compositional Software Architecture for
Network Simulation. PhD thesis, Department of Electrical
Engineering, The Ohio State University, 2002.

[28] H.-Y. Tyan., A. Sobeih, and J. C. Hou. Towards composable
and extensible network simulation. In Proc. of IPDPS’05,
NSF Next Generation Software Program Workshop.

[29] W. Visser, K. Havelund, G. Brat, and S. Park. Model check-
ing programs. In Proc. of IEEE ASE’00.

