

Rethinking Automated Synthesis of
MPSoC Architectures

Brett H. Meyer and Donald E. Thomas
Department of Electrical and Computer Engineering

Carnegie Mellon University
Pittsburgh, PA 15213 USA

{bhm, thomas}@ece.cmu.edu

ABSTRACT
Emerging heterogeneous multiprocessors will
have custom memory and bus architectures
that must balance resource sharing and
system partitioning to meet cost constraints.
We propose an augmented simulated
annealing synthesis tool that uses system
performance and layout evaluation to drive
simultaneous data mapping, memory
allocation and bus synthesis. A detailed look
at the resulting automated design process
reveals an approach that, contrary to prior
approaches, optimizes bus topology first
rather than last, providing design insight for
the development of future tools.

1. INTRODUCTION
The future of most embedded applications
lies in single-chip low-power heterogeneous
multiprocessors. These systems-on-chips will
consist of tens of individually programmable
processing elements (PEs). These systems
will be heavily customized to obtain the best-
tuned architecture for the set of applications
specified. Given that both the underlying
technology and the size of systems being
designed are adding complexity to the design
process, new synthesis techniques are needed
to address design productivity. We present

and analyze the foundation of a synthesis tool
aimed at the architectural design of single-
chip multiprocessor systems optimized for
low latency and manufacturing cost.
Prior work has suggested a variety of
approaches to exploring this design space.
Many of the prior tools, however, impose
limitations on the design space exploration by
dividing synthesis into multiple exploration
phases or iteration loops, exploring a different
axis of the space in each. This approach
makes the assumption that decisions made in
earlier phases won’t prevent exploration from
finding globally optimal solutions.
We present and analyze a novel synthesis tool
that searches for optimal embedded
multiprocessor systems without the above
limitation. Given a set of concurrent tasks and
their processor assignments and a library of
components, our augmented simulated
annealing approach simultaneous performs
data mapping, memory allocation, and bus
architecture synthesis, all within a single
iteration loop.
This unconstrained, single-phase approach
allows our tool to consider a wider range of
designs than the prior work. Our analysis
reveals that as a result, our tool consistently
approaches design in an unconventional
fashion, providing insight into best practices
for embedded multiprocessor design and for
the development of future exploration tools.

This work was supported by the National Science
Foundation through Grant CNS-0509193. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of the NSF.

1-4244-0910-1/07/$20.00 ©2007 IEEE

2. PRIOR WORK
A large body of work has already been done
to optimize both system memory organization
and system interconnect. [1][2][3] all perform
bus topology exploration, but require a
description of the memories in the system and
the data assigned to them (derived from
memory allocation and data mapping,
respectively) as inputs. [4] performs bus
topology exploration after deriving a data
mapping and memory allocation in a separate
phase. [5] also explores bus topology after
data mapping and memory allocation, but if
constraints can’t be satisfied with a mapping
and allocation, the tool derives a new one
before returning to bus topology exploration.
Unlike our approach, these approaches all
conduct bus topology exploration in isolation
from data mapping and memory allocation.
While [6][7] propose simultaneous mapping,
allocation, and topology exploration, unlike
our tool they do not floorplan to jointly
optimize systems for performance and cost.

Many of the above approaches perform data
mapping and memory allocation separately
from bus topology exploration, or require
mapping and allocation as input parameters.
This makes the assumption that data mapping
and memory allocation can be decided
independently of bus topology without
limiting design optimality. Our tool makes no
such assumption, freeing it to best optimizing
performance and cost for the target system.

3. SYNTHESIZING MPSOC
ARCHITECTURES
This section defines the trade-offs in bus and
memory system organization at this level and
describes our synthesis formulation.

3.1 Design Space
There are two basic memory system
organizations for handling the concurrency
inherent in multiprocessor systems, the
extremes of which are partitioning a system
into a collection of subsystems to reduce

contention, and globally sharing all resources
to enable more cost effective implementation.
Optimal bus and memory system design
strikes a balance between resource sharing
and system partitioning, driven by the
conflicting goals of sharing to reduce cost
(e.g., area) and partitioning to improve
performance (e.g., bus utilization, execution
time). Our synthesis approach meets this need
by optimally distributing, sharing and
segregating memory and interconnect
resources to balance performance and cost in
concurrent embedded systems.

3.2 Formulation
We have developed a synthesis tool that
augments simulated annealing techniques
with closed-form decision-making that prunes
the design space and legalizes initially illegal
system modifications. This formulation is
intended to lay the groundwork for the
development of more sophisticated and direct
solutions by identifying the critical issues in
the optimal design of embedded
multiprocessor memory architectures.
Our simulated annealing approach iteratively
permutes and evaluates the system in search
of the global optimal design. Each
exploration iteration (1) selects and performs
a move, (2) prunes the system and
redistributes data, and (3) evaluates the
objective function and probabilistically
accepts or rejects the permutation.
There are three basic move types, two of
which are further broken into sub-types. Data
mapping randomly moves a data array from
one memory to another, enlarging the
destination memory as necessary. Bus moves
randomly change the bus topology by:
connecting (disconnecting) a processor or
memory to (from) a bus in the system or,
splitting a highly utilized bus into two buses.
Memory moves randomly change memory
allocation by: absorbing a small,
underutilized memory (and its data) into
another larger memory, or splitting a large

underutilized memory (and its data) into two
smaller, better-utilized memories. Unlike the
prior work, we allow all system modification
steps in a single exploration phase.

Any move that modifies the system topology
is followed by pruning. Pruning adjusts the
size of memories that are too large for the
data they contain and removes unutilized
memories and buses, eliminating unnecessary
cost. Any move that changes which bus(es) a
memory (or processor) is connected to is
followed by redistribution. Redistribution
applies a simple heuristic to reassign data to
memories, legalizing any illegal data
mappings, since for example, when a
processor is arbitrarily moved it may not be
able to access all of its data.

3.3 Modeling System Cost
System cost, the objective function minimized
by our annealing approach, is evaluated after
each move is completed (possibly including
pruning and redistribution) and is used to
probabilistically determine if the move in
question should be accepted or rejected.
System cost is the weighted combination of
total execution cost, or latency, and the
system’s physical cost:

where α determines the relative importance of
latency and physical cost. The goal of our
synthesis tool is to minimize system cost for a
given α. Unlike the prior work, cost and
performance are evaluated after each system
modification.
Latency is evaluated by determining the total
system execution time. The total system
execution time is calculated by performing
trace-based discrete event simulation (DES)
on the dependency graph generated by
combining memory access traces for each
task in the system.

Physical cost is itself a weighted combination
of system layout area, total bus wire length,

and a penalty factor that increases the cost of
systems with aspect ratios greater than one:

where β has been chosen so that system area
and total bus wire length contribute equally to
physical cost. Area, wire length and the
aspect ratio are all determined with
floorplanning. Area is the bounding box of
the design and wire length is the sum of half-
perimeter wire lengths of all buses.
Floorplanning is performed by annealing a
slicing tree representation of the system.

4. EXPERIMENTS AND RESULTS
We conducted a set of experiments to
evaluate our technique and gain insight into
effective embedded multiprocessor design
practices. Using an example workload and
fixed task-processor assignments, we
explored the design space in search of pareto-
optimal systems composed of elements from
a component library. We performed design
space exploration for a variety of α values
and then examined the exploration process for
a subset of the resulting design points.

Figure 1: Software pipeline and task-
processor mapping.

4.1 Workload
Our experimental workload is a DSP software
pipeline executing on a concurrent hardware
pipeline, illustrated in Figure 1. Data is
introduced to the system by a hardware DMA
engine (P0), and fed to a least-mean-squared
(LMS) adaptive filter (on processor P1) for
noise cancellation. Two different FIR filters
are then separately applied (P2 and P3),
followed by an FFT transform and more

filtering (P4). IFFT is then applied to each
filtered stream (P5 and P6) before the output
is collected and sent off-chip by another
hardware DMA engine (P7). Processors that
execute more than one task execute each task
to completion before starting the next.
Memory access traces were generated for
each task from optimized assembly kernels.

4.2 Library Components
The library of components used in our
experiment consists of a small collection of
processors, memories, and interconnect
modules in a 90 nm process.

The basic processing element is an ARM7; all
processors except P0 and P7, the DMA
engines, are ARM7s. The DMA engines are
modeled as small buffers for area
consumption purposes. Processing elements
are allowed multiple bus connections, but
with a fixed area penalty applied for each
connection after the first. All memories are
SRAMs with a single read/write port, and are
allowed only a single bus connection. The
library contains SRAMs varying in size from
256B to 32kB by powers of two. There is
only one bus in the component library, a
single-transaction bus with no data buffering.

4.3 Design Space Exploration
To find a set of latency-cost pareto-optimal
architectures, we conducted nine experiments
over which we manipulated α, and therefore
the relative importance of execution latency
and physical cost. We selected α values over
a range of 9e-4 to 1.1e-5, covering latency-
cost ratios of 9:1 to 1:9. The results are
summarized in Figure 2, which plots latency
vs. cost for each resulting design.
Nearly all of the resulting design points are
pareto-optimal, indicated with black
diamonds. The non-pareto points are
indicated with red squares. The designs have
area ranging from 1.81-2.5 mm2, and all have
an aspect ratio under 1.25. The low cost
designs experience heavy bus utilization, up

to 94%, while the high performance designs
experience much lower bus utilization, as low
as 66%.
Despite the obvious differences between
designs implementing anywhere from two to
five buses, the systems have much in
common. This stems from the common goal
of balancing performance and cost in some
proportion. Each system takes advantage of
the structure of the given workload in some
way, the most obvious of which is spatial
partitioning into three macro pipeline stages:
input (DMA, LMS), processing (FIR, FFT,
FILT), and output (IFFT, DMA).

Figure 2: Latency vs. physical system cost
for variable α .

When only two buses are available (low α),
the input and output stages share a bus, while
the processing stage makes use of the second.
In systems with more resources (up to four
buses), the partitioning is more obvious; e.g.,
input and output stages have their own bus,
while the processing stage shares two buses.
When five buses are available (high α), the
partitioning is less strict in order to minimize
bus utilization (therefore maximizing
performance), but remains present.

4.4 Move Acceptance Trends
To gain insight into embedded multiprocessor
design, we will now look more closely at
three specific design points from the previous
section: cost-centric design when α = 1.1e-5,
balanced cost-performance design when
α = 1e-4, and performance-centric design

when α = 9e-4. If design exploration
proceeded in a consistent fashion for these
three very different design points, we may
gain insight into principles of effective design
for embedded multiprocessors. Figure 3
illustrates the change in move acceptance for
each of these three different design points.

Figure 3: Accepted moves per iteration for
three design points.
The lettered markers in Figure 3 indicate
specific events in the course of design space
exploration. For all three of the graphs, A
marks the point when bus split moves are no
longer accepted, B, when bus moves are no
longer accepted, C, when memory moves are
no longer accepted, and D, when the system
is beginning to "freeze", i.e., accepted moves
no longer appreciably change the system cost.

It is immediately clear from Figure 3 that
exploration at the three design points exhibit
the same basic progression: bus topology is
fixed before memory allocation, which is
fixed before data mapping. First, bus moves
are no longer accepted, setting the number of
buses in the system and the assignment of
nodes to buses. At this point, the number of
memories per bus can still change through
local reallocation. Next, memory moves are
no longer accepted, fixing the number of
memories per bus, though data mapping
moves and pruning may still change the size
of the existing memories.
With only slight variations between them, this
occurs for all three design points, in spite of
the very different optimization targets (low
cost, top; balanced cost and performance,
middle; and high performance, bottom). For
the low-cost and balanced designs, bus split
moves stop being accepted before bus moves
in general are no longer accepted. This
means that the number of buses in the system
is fixed before the location of nodes in the
system, unlike what occurs in the high-
performance design.

5. DISCUSSION
The results in section 4.3 illustrate our tool’s
ability to incrementally trade performance
and cost, balancing system partitioning and
resource sharing. Our investigation in section
4.4 makes it clear that this balancing and
sharing proceeded in a consistent fashion for
very different design points: first the bus
topology was fixed, then the memory
allocation, and finally the data mapping. This
approach, however, is contrary to the
literature. For most bus synthesis approaches,
allocation and mapping are fixed before bus
topology exploration and not revisited later.
The historical synthesis approach makes a
critical assumption: data mapping and
memory allocation can be selected
independently of bus topology without any
impact on design optimality. This is the same

as assuming that optimal allocation and
mapping can be performed without
knowledge of the cost of system organization.
If this were the case for our workload and
component library, then we would expect to
see the acceptance of all basic move types
converge to zero at approximately the same
time, implying parallel optimization. Instead,
for three very different design points, at least
partially serial optimization occurs. Further,
bus topology is finalized first and within the
context of allocation and mapping, rather than
last and in isolation. This implies a co-
dependence of allocation and mapping with
bus topology, rather than independence.
In the context of our application and design
space, there are several reasons not to fix
memory allocation before bus topology.
Physical cost is a function both of wire length
and area. Selecting a particular memory
allocation early assumes that a different
allocation couldn't improve the system
significantly. For example, [4] breaks the
memory space into pieces based on usage
alone: memory shared by two processors is
allocated to a single node, and each processor
gets a single local memory. This assumes that
breaking one shared memory into two or
combining multiple scratch-pad memories
into one is inherently a worse solution, where
the realities of floorplanning may prove
otherwise.
Our approach makes no assumptions about
the order in which parts of the system should
be optimized. As a result, in the discussed
design points the average system cost was
optimized up to an additional 24% after the
bus topology was fixed. This provides the
insight that optimization order matters, and
optimizing the bus topology in isolation may
not be the best approach. Rather, because of
the implicit codependence of optimal
allocation and mapping with topology,
approaches that are sensitive to this are more
likely to find truly globally optimal solutions.

6. CONCLUSIONS
We presented a synthesis tool targeting
multiprocessor embedded system memory
and bus architecture. Our tool uses an
augmented simulated annealing approach to
simultaneously explore the design space of
data mapping, memory allocation, and bus-
based interconnect, given a target application,
task-processor mapping and component
library, and is driven by the joint optimization
of latency and cost.
Our tool effectively balance global resource
sharing and system partitioning. Further, our
results suggest a design approach contrary to
the literature: resolve the bus topology first,
followed by memory allocation and data
mapping. This insight into the design process
for such systems will help shape future design
automation approaches.

7. REFERENCES
[1] J. Guo, et al. Energy/area/delay Trade-
offs in The Physical Design of On-chip
Segmented Bus Architecture. SLIP 2006.
[2] K. Lahiri, A. Raghunathan, S. Dey.
Efficient exploration of SoC communication
architecture design space. ICCAD 2000.
[3] H Jincao, et al. System-level point-to-
point communication synthesis using
floorplanning information. ASP-DAC 2002.
[4] S. Pasricha, et al. Floorplan-Aware
Automated Synthesis of Bus-based
Communication Architectures. DAC 2005.
[5] N. Thepayasuwan, A Doboli. Layout
Conscious Approach and Bus Architecture
Synthesis for Hardware/Software Codesign of
Systems on Chip Optimized for Speed. IEEE
Trans. on VLSI Sys., 13(5), May 2005.
[6] S. Pasricha, N. Dutt. COSMECA:
application specific co-synthesis of memory
and communication architectures for MPSoC.
DATE 2006.
[7] Sungchan Kim, et al. Efficient
Exploration of On-Chip Bus Architectures
and Memory Allocation. CODES+ISSS 2004.

