
Adaptive Scheduling with Parallelism Feedback

Kunal Agrawal1 Yuxiong He2 Wen-Jing Hsu2 Charles E. Leiserson1

1Massachusetts Institute of Technology 2Nanyang Technological University
32 Vassar Street Nanyang Avenue 639798

Cambridge, MA 02139, USA Singapore
kunal ag@mit.edu yxhe@mit.edu

cel@mit.edu hsu@ntu.edu.sg

Abstract

Multiprocessor scheduling in a shared multiprogram-

ming environment can be structured as two-level schedul-

ing, where a kernel-level job scheduler allots processors to

jobs and a user-level thread scheduler schedules the work of

a job on the allotted processors. In this context, the number

of processors allotted to a particular job may vary during

the job’s execution, and the thread scheduler must adapt to

these changes in processor resources. For overall system

efficiency, the thread scheduler should also provide paral-

lelism feedback to the job scheduler to avoid allotting a job

more processors than it can use productively.

This paper provides an overview of several adaptive

thread schedulers we have developed that provide provably

good history-based feedback about the job’s parallelism

without knowing the future of the job. These thread sched-

ulers complete the job in near-optimal time while guaran-

teeing low waste. We have analyzed these thread sched-

ulers under stringent adversarial conditions, showing that

the thread schedulers are robust to various system envi-

ronments and allocation policies. To analyze the thread

schedulers under this adversarial model, we have devel-

oped a new technique, called trim analysis, which can be

used to show that the thread scheduler provides good behav-

ior on the vast majority of time steps, and performs poorly

on only a few. When our thread schedulers are used with

dynamic equipartitioning and other related job scheduling

algorithms, they are O(1)-competitive against an optimal

offline scheduling algorithm with respect to both mean re-

sponse time and makespan for batched jobs and nonbatched

jobs, respectively. Our algorithms are the first nonclairvoy-

ant scheduling algorithms to offer such guarantees.

This research was supported in part by NSF Grants ACI-0324974 and

CNS-0615215 and the Singapore-MIT Alliance.

1-4244-0910-1/07/$20.00 2007 IEEE

1 Introduction

The scheduling of a collection of parallel jobs onto a mul-

tiprocessor is an old and well-studied topic of research [14,

17, 18, 22, 27, 33, 36, 45, 47, 48]. Schedulers for multipro-

grammed multiprocessors can be implemented using a two-

level strategy [24]: a kernel-level job scheduler which al-

lots processors to jobs, and a user-level thread scheduler

which schedules the threads belonging to a given job onto

the allotted processors. Our research [1–3] has focused on

how the thread scheduler for a job can provide provably

effective feedback to the job scheduler on the job’s paral-

lelism. We also have studied the system behavior of two-

level schedulers that employ this kind of adaptive thread

scheduler [29, 30]. This paper overviews this research.

Most prior work on thread scheduling for multithreaded

jobs deals with nonadaptive scheduling [6, 7, 9, 13, 26, 40],

where the job scheduler allots a fixed number of processors

to the job for its entire lifetime. For jobs whose parallelism

is unknown in advance and which may change during ex-

ecution, this strategy may waste processor cycles [45], be-

cause a job with low parallelism may be allotted more pro-

cessors than it can productively use. Moreover, in a multi-

programmed environment, nonadaptive scheduling may not

allow a new job to start, because existing jobs may already

be using most of the processors.

With adaptive scheduling [4] (called “dynamic” schedul-

ing in many papers), the job scheduler can change the num-

ber of processors allotted to a job while the job is execut-

ing. Thus, new jobs can enter the system, because the job

scheduler can simply recruit processors from the already ex-

ecuting jobs and allot them to the new job. Unfortunately,

as with a nonadaptive scheduler, this strategy may cause

waste, because a job with low parallelism may still be allot-

ted more processors than it can productively use.

The solutions we have studied [1–3, 29, 30] all employ

an adaptive scheduling strategy where the thread scheduler

provides parallelism feedback to the job scheduler so that

when a job cannot use many processors, those processors

can be reallotted to jobs with ample need. Based on this

parallelism feedback, the job scheduler adaptively changes

the allotment of processors according to the availability of

processors in the current system environment and the job

scheduler’s administrative policy.

Various researchers [17, 18, 27, 36, 49] have used the no-

tion of instantaneous parallelism,1 the number of proces-

sors the job can effectively use at the current moment, as

the parallelism feedback to the job scheduler. Although

using instantaneous parallelism for parallelism feedback is

simple, it can cause gross misallocation of processor re-

sources [43]. For example, the parallelism of a job may

change substantially during a scheduling quantum, alter-

nating between parallel and serial phases. The sampling

of instantaneous parallelism at a scheduling event between

quanta may lead the thread scheduler to request either too

many or too few processors depending on which phase is

currently active, whereas the desirable request might be

something in between. Consequently, the job may system-

atically waste processor cycles on the one hand or take too

long to complete on the other.

Our studies explore history-based strategies to provide

parallelism feedback, and investigates adaptive scheduling

schemes that offer both fairness and provable efficiency

without entailing large overhead and requiring prior job in-

formation. This paper provides an overview of our adaptive

scheduling schemes.

We have developed two adaptive thread schedulers, A-

GREEDY [1] and A-STEAL [2, 3], which provide paral-

lelism feedback. A-GREEDY is a greedy thread sched-

uler suitable for centralized scheduling, where each job’s

thread scheduler can dispatch all the ready threads to the

allotted processors in a centralized manner, such as the

scheduling of data-parallel jobs. A-STEAL is a distributed

thread scheduler, where each job is executed by decentral-

ized work-stealing [9, 15, 28, 41]. Instead of using instanta-

neous parallelism, A-GREEDY and A-STEAL provide par-

allelism feedback to the job scheduler based on a single

summary statistic and the job’s behavior on the previous

quantum. Even though they provide parallelism feedback

using only the past behavior of the job, and we assume that

the job’s future parallelism can be completely uncorrelated

with its history of parallelism, our analysis shows that they

schedule the job well with respect to both waste and com-

pletion time.

By combining the dynamic equipartitioning job sched-

uler [36, 47], which uses space sharing, the round-robin

job scheduler, which employs time-sharing, we obtain the

RAD algorithm [29, 30]. When RAD is used in con-

1These researchers actually use the general term “parallelism,” but we

prefer the more descriptive term.

junction with A-GREEDY or A-STEAL, we obtain adap-

tive two-level schedulers that guarantee both fairness and

efficiency. Specifically, these schedulers guarantee O(1)-
competitiveness with respect to makespan and mean re-

sponse time for nonbatched and batched jobs, respectively.

The remainder of this paper is organized as follows. Sec-

tion 2 describes the job model and scheduling model. Sec-

tion 3 describes the thread scheduling and job scheduling

algorithms. Section 4 shows the theoretical and empirical

results of our scheduling algorithms. Section 5 summarizes

related work, and Section 6 gives conclusion remarks.

2 Scheduling Model

Our scheduling input consists of a collection of indepen-

dent jobs J =
{
J1, J2, . . . , J|J |

}
to be scheduled on a

collection of P identical processors. Time is broken into

a sequence of equal-sized scheduling quanta 1, 2, . . ., each

of length L, where each quantum q includes the interval

[L·q, L·q+1, . . . , L(q+1)−1] of time steps. The quantum

length L is a system configuration parameter chosen to be

long enough to amortize scheduling overheads. In this sec-

tion, we formalize the job model, and define the scheduling

model.

We model the execution of a multithreaded job Ji as

a dynamically unfolding directed acyclic graph (DAG, for

short). Each vertex of the DAG represents a unit-time in-

struction. The work T1 (Ji) of the job Ji corresponds to the

total number of vertices in the dag. Each edge represents

a dependency between the two vertices. The span T∞ (Ji)
corresponds to the number of nodes on the longest chain of

the precedence dependencies. The release time r(Ji) of the

job Ji is the time at which Ji becomes first available for pro-

cessing. Each job is handled by a dedicated thread sched-

uler, which operates in an online manner, oblivious to the

future characteristics of the dynamically unfolding DAG.

The job scheduler and the thread schedulers interact as

follows. The job scheduler may reallocate processors be-

tween scheduling quanta. Between quantum q−1 and quan-

tum q, the thread scheduler of a given job Ji determines the

job’s desire d(Ji, q), which is the number of processors Ji

wants for quantum q. Based on the desire of all running

jobs, the job scheduler follows its processor-allocation pol-

icy to determine the allotment a (Ji, q) of the job with the

constraint that a (Ji, q) ≤ d(Ji, q). Once a job is allotted its

processors, the allotment does not change during the quan-

tum.

3 Algorithms

In this section, we present the thread scheduling algorithms

A-GREEDY and A-STEAL, as well as the job scheduling

algorithm RAD. We obtain two-level schedulers GRAD

2

A-GREEDY(Ji, q, δ, ρ)
1 if q is Ji’s first quantum

2 then d(Ji, q)← 1 � base case

3 elseif u(Ji, q − 1) < Lδa (Ji, q − 1)
4 then d(Ji, q)← d(Ji, q − 1)/ρ � inefficient

5 elseif a (Ji, q − 1) = d(Ji, q − 1)
6 then d(Ji, q)← ρd(Ji, q − 1) � eff-and-sat

7 else d(Ji, q)← d(Ji, q − 1) � eff-and-dep

8 Report desire d(Ji, q) to the job scheduler.

9 Receive allotment a (Ji, q) from the job scheduler.

10 Greedily schedule on a (Ji, q) processors for L steps.

Figure 1: Pseudocode for the adaptive greedy algorithm. A-

GREEDY provides parallelism feedback of job Ji to a job sched-

uler in the form of a desire for processors. Before quantum q,

A-GREEDY uses the previous quantum’s desire d(Ji, q − 1), al-

lotment a (Ji, q − 1), and usage u(Ji, q − 1) to compute the cur-

rent quantum’s desire dq based on the utilization parameter δ and

the responsiveness parameter ρ.

and WRAD by combining RAD with A-GREEDY and A-

STEAL respectively.

The A-GREEDY thread scheduler

A-GREEDY [1] is an adaptive greedy thread scheduler

with parallelism feedback. Between quanta, it estimates its

job’s desire, and requests processors from the job sched-

uler. During the quantum, it schedules the ready threads

of the job onto the allotted processors in a greedy fash-

ion [8, 13, 26]. For a job Ji, if there are more than a (Ji, q)
ready threads, A-GREEDY schedules any a (Ji, q) of them.

Otherwise, it schedules all of them.

A-GREEDY classifies quanta as “satisfied” versus “de-

prived” and “efficient” versus “inefficient.” A quantum q
is satisfied if a (Ji, q) = d(Ji, q), in which case Ji’s al-

lotment is equal to its desire. Otherwise, the quantum is

deprived. The quantum q is efficient if A-GREEDY’s uti-

lization u(Ji, q) is no less than a δ fraction of the total allot-

ted processor cycles during the quantum, where δ is named

as utilization parameter. Typical values for δ might be 90–

95%. Otherwise, the quantum is inefficient.

A-GREEDY calculates the desire d(Ji, q) of the cur-

rent quantum q based on the three-way classification of the

quantum q − 1 as inefficient, efficient and satisfied, and ef-

ficient and deprived. The initial desire is d(Ji, 1) = 1. A-

GREEDY uses a responsiveness parameter ρ > 1 to de-

termine how quickly the scheduler responds to changes in

parallelism. Typical values of ρ might range between 1.2
and 2.0. Figure 1 shows the pseudo-code of A-GREEDY

for one quantum. The algorithm takes as input the utiliza-

tion parameter δ, and the responsiveness parameter ρ. Intu-

itively, it operates as follows:

• If quantum q−1 was inefficient, A-GREEDY has over-

estimated the desire. In this case, disregarding to

the quantum is satisfied or deprived, A-GREEDY de-

creases the desire (line 4) for quantum q.

• If quantum q − 1 was efficient and satisfied, the job

has effectively utilized the processors that A-GREEDY

requested on its behalf. Thus, A-GREEDY speculates

that the job can use more processors and increases the

desire (line 6) for quantum q.

• If quantum q−1 was efficient but deprived, the job has

used all the processors it was allotted, but A-GREEDY

had requested more processors for the job than the job

actually received from the job scheduler. Since A-

GREEDY has no evidence whether the job could have

used all the processors requested, it maintains the same

desire (line 7) for quantum q.

A-GREEDY is a centralized thread scheduler, however,

and although it is suitable for scheduling of, for example,

data-parallel jobs, where the central scheduler can be aware

of the available work at the current moment, it does not di-

rectly extend to decentralized thread scheduling.

The A-STEAL thread scheduler

A-STEAL [2,3] is a thread scheduler that works in a decen-

tralized fashion, using randomized work-stealing [4, 9, 25]

to schedule the threads on allotted processors. Unlike A-

GREEDY, it does not need a global view of all the avail-

able work to schedule. A-STEAL applies the same desire-

estimation algorithm as A-GREEDY to calculate its job’s de-

sire.

We now describe A-STEAL’s adaptive work-stealing al-

gorithm. Each processor allotted to a job maintains a local

deque (double-ended queue) of those threads that are ready

for execution. When the allotment of a job increases, the

A-STEAL thread scheduler creates an empty deque for each

newly allotted processor. When the allotment decreases, it

marks the deques from deallotted processors as muggable

deques. Whenever a processor creates new work, it places

the work in its local deque. Whenever a processor finishes a

piece of work, it looks for new work in its deque. If it looks

for work in its deque, but the deque is empty, the proces-

sor becomes a thief . The thief first looks around the system

for a muggable deque. If one is found, the thief mugs the

deque by taking over the entire deque as its own. Otherwise,

it randomly picks a victim processor and steals work from

the bottom of the victim’s deque. If the victim has no avail-

able work, the steal is unsuccessful, and the thief continues

to steal at random from the other processors until it is suc-

cessful and finds work. At all time steps, every processor is

either working, stealing, or mugging.

The RAD job scheduler

The job scheduler RAD [30] unifies the space-sharing

dynamic-equipartitioning job-scheduling algorithm [36,47]

3

with the time-sharing round-robin algorithm. When the

number of jobs is greater than the number of processors,

RAD schedules the jobs in batched round-robin fashion,

which allocates one processor to each job with an equal

share of time. When the number of jobs is at most the num-

ber of processors, RAD uses dynamic equipartitioning to

allot processors to jobs. Dynamic equipartitioning gives all

jobs the same allotment, unless the job requests less than

its fair share, in which case dynamic equipartitioning dis-

tributes the unneeded processors to jobs that need them.

4 Statement of Results

This section overviews our theoretical and experimental

contributions. We use a new analysis technique, called

“trim analysis,” to analyze the behavior of adaptive thread

schedulers. Using trim analysis, we can prove that both A-

GREEDY and A-STEAL complete a job quickly while using

the allotted processors efficiently. We also show that the

RAD algorithm, when used with A-GREEDY or A-STEAL,

is competitive in terms of both makespan for jobs with ar-

bitrary release times and mean response time for batched

jobs.

Analysis of A-GREEDY

To make the thread scheduler robust to different system en-

vironments and administrative policies, our analysis of A-

GREEDY assumes that the job scheduler decides the avail-

ability of processors as an adversary. Suppose that A-

GREEDY schedules a job Ji. In an adaptive setting where

the number of processors allotted to a job can change during

execution, both T1 (Ji) /P and T∞ (Ji) are lower bounds

on the running time, where P (Ji) is the average of the pro-

cessor availability for job Ji during the computation. An

adversarial job scheduler, however, can prevent any thread

scheduler from providing good speedup with respect to the

mean availability P (Ji) in the worst case. For example, if

the adversary chooses a huge number of processors for the

job’s processor availability just when the job has little in-

stantaneous parallelism, no adaptive scheduling algorithm

can effectively utilize the available processors on that quan-

tum.

Our studies introduced a technique called trim analysis

to analyze the time bound of adaptive thread schedulers un-

der these adversarial conditions. From the field of statistics,

trim analysis borrows the idea of ignoring a few “outliers.”

A trimmed mean, for example, is calculated by discarding a

certain number of lowest and highest values and then com-

puting the mean of those that remain. For our purposes,

it suffices to trim the availability from just the high side.

For a given value R, we define the R-high-trimmed mean

availability as the mean availability after ignoring the R
steps with the highest availability. A good thread scheduler

should provide linear speedup with respect to an R-trimmed

availability, where R is as small as possible.

Specifically, our research shows that for each job Ji,

A-GREEDY completes the job in O(T1 (Ji) /P̃ (Ji) +

T∞ (Ji) + L lg P) time steps, where P̃ denotes the

O(T∞ + L lg P)-trimmed availability. Thus, job Ji

achieves linear speed up with respect to P̃ (Ji) when

T1 (Ji) /T∞ (Ji) � P̃ (Ji), that is, when its parallelism

dominates the O(T∞ (Ji) + L lg P)-trimmed availability.

In addition, we prove that the total number of processor cy-

cles wasted by the job is O(T1 (Ji)), representing at most

a constant factor overhead. The details of the A-GREEDY

algorithm and its performance are documented in [1].

Analysis and simulation of A-STEAL

Like A-GREEDY, we analyze the job completion time

produced by A-STEAL by trim analysis. For a job

Ji, A-STEAL guarantees linear speedup with respect to

O(T∞ (Ji) + L lg P)-trimmed availability. In addition, A-

STEAL wastes at most O(T1 (Ji)) processor cycles.

We have implemented A-STEAL in a simulation environ-

ment using the DESMO-J [19] Java simulator. On a large

set of jobs running with a variety of availability profiles,

our experiments indicate that A-STEAL provides nearly

perfect linear speedup when the jobs have ample paral-

lelism. Moreover, A-STEAL typically wastes less than 20%

of the allotted processor cycles. We also compared the per-

formance of A-STEAL with the performance of the adap-

tive scheduler (we call it the ABP scheduler) presented by

Arora, Blumofe and Plaxton [4]. We ran single jobs using

both A-STEAL and ABP with the same availability profiles.

We found that on moderately to heavily loaded large ma-

chines, when P � P , A-STEAL paradoxically completes

almost all jobs about twice as fast as ABP on average, de-

spite the fact that ABP’s allotment on any quantum is never

less than A-STEAL’s allotment on the same quantum. In

most of these job runs, A-STEAL wastes less than 10% of

the processor cycles wasted by ABP.

Analysis and simulation of RAD

The efficiency of RAD can be quantified in terms of

makespan and mean response time. The makespan of a job

set J is the time to complete all jobs in J . The response

time of a job is the duration between its release time and the

completion time. The mean response time of a job set J is

the average response time of all jobs in J .

We use competitive analysis as a tool to evaluate and

compare the scheduling algorithm. Competitive analysis

compares an on-line scheduling algorithm with an optimal

offline algorithm. Let T∗(J) denote the makespan of an ar-

bitrary jobset J scheduled by an optimal scheduler, and let

T(J) denote the the makespan produced by an algorithm A
for the job set J . An algorithm A is said to be c-competitive

4

if there exists a constant b such that T(J) ≤ c ·T∗(J) + b
holds for the schedule of any job set.

Intuitively, if each job provides good parallelism feed-

back and makes productive use of allotted processors, a

good job scheduler can ensure that all jobs make good

progress. The analysis of RAD confirms this intuition.

Based on the “equalized allotment” scheme for processor

allocation, and by using the utilization in the past quan-

tum as feedback, we can show that our two-level sched-

ulers are provably efficient in terms of both makespan and

mean response time. RAD achieves O(1)-competitiveness

with respect to makespan for job sets with arbitrary re-

lease times. It also achieves O(1)-competitiveness with re-

spect to mean response time for batched job sets, where

all jobs are released simultaneously. Unlike previous re-

sults, [16, 31, 32, 34, 39, 42, 48], our analysis does not as-

sume prior knowledge of jobs’ parallelisms. It also does

not assume, as in [12,18], that the parallelism remains rela-

tively constant across a quantum. Since the quantum length

can be adjusted to amortize the cost of context-switching

during processor reallocation, RAD also provides effective

control over the scheduling overhead and ensures efficient

utilization of processors.

Our simulation results suggest that RAD performs well

in practice. In our experiments, for job sets with arbitrary

release times, the average (geometric mean) ratio of RAD’s

makespan to the optimal makespan was 1.39, and the maxi-

mum ratio was less than 4.5. For batched job sets, the aver-

age ratio of RAD’s mean response time to the optimal mean

response time was 2.37, and it the maximum ratio was less

than 5.5.

5 Related Work

This section discusses related work on adaptive schedul-

ing of multithreaded jobs. We first discuss adaptive thread

schedulers and followed with a brief summary of research

on adaptive job schedulers.

Adaptive thread scheduling without parallelism feed-

back has been studied in the context of multithreading, pri-

marily by Blumofe and his coauthors [4, 10, 11]. In this

work, the thread scheduler schedules threads using a “work-

stealing” [9, 37] strategy, but it does not provide feedback

about the job’s parallelism to the job scheduler. The re-

search in [10,11] addresses networks of workstations where

processors may fail, or they may join and leave a computa-

tion while the job is running, showing that work-stealing

provides a good foundation for adaptive thread scheduling.

In theoretical work, Arora, Blumofe, and Plaxton [4] exhibit

a work-stealing thread scheduler that provably completes a

job in O(T1/P + PT∞/P) expected time, where P is the

average number of processor allotted to the job by the job

scheduler. Although they provide no bounds on waste, one

can prove that their algorithm may waste Ω(T1 + PT∞)

processor cycles in an adversarial setting.

Adaptive thread scheduling without parallelism feed-

back has also been studied empirically in the context of

data-parallel languages [20,21]. This work focuses on com-

piler and runtime support for environments where the num-

ber of processors changes while the program executes.

Adaptive thread scheduling with parallelism feedback

has been studied empirically in [43, 44, 46]. These re-

searchers use a job’s history of processor utilization to pro-

vide feedback to dynamic-equipartitioning job schedulers.

These studies use a variety of different strategies for paral-

lelism feedback, and all report better system performance

with parallelism feedback than without, but it is not appar-

ent which strategy is superior.

Adaptive job schedulers have been studied empirically

[33, 35, 36, 47, 49] and theoretically [5, 17, 22, 23, 27, 38].

McCann, Vaswani, and Zahorjan [36] studied many differ-

ent job schedulers and evaluated them on a set of bench-

marks. They also introduced the notion of dynamic equipar-

titioning, which gives each job a fair allotment of proces-

sors, while allowing processors that cannot be used by a

job to be reallocated to other jobs. Their studies indicate

that dynamic equipartitioning may be an effective strategy

for adaptive job scheduling. Gu [27] proved that dynamic

equipartitioning with instantaneous parallelism feedback is

4-competitive with respect to makespan for batched jobs

with multiple phases, where the parallelism of the job re-

mains constant during the phase and the phases are rela-

tively long compared with the length of a scheduling quan-

tum. Deng and Dymond [17] proved a similar result for

mean response time for multiphase jobs regardless of their

arrival times. Song [44] proves that a randomized dis-

tributed strategy can implement dynamic equipartitioning.

Even though using instantaneous parallelism as feedback is

intuitive, it can either cause gross misallocation of proces-

sor resources [43] or introduce significant scheduling over-

head.

6 Conclusions

Currently, our adaptive multithreading model does not sup-

port a full range of multithreaded-programming features —

such as I/O, pipelines, master-slaves. We are currently tack-

ling these problems and hope to explore feedback-driven

policies for making scheduling and resource-allocation de-

cisions in adaptive environments. Our research to date

makes us optimistic that history-based feedback mecha-

nisms can be developed which are theoretically good and

provide practically efficient performance.

References
[1] K. Agrawal, Y. He, W. J. Hsu, and C. E. Leiserson. Adaptive

task scheduling with parallelism feedback. In PPoPP, pages
100 – 109, New York City, NY, USA, 2006.

5

[2] K. Agrawal, Y. He, and C. E. Leiserson. An empirical evalu-
ation of work stealing with parallelism feedback. In ICDCS,
pages 19 – 29, Lisboa, Portugal, 2006.

[3] K. Agrawal, Y. He, and C. E. Leiserson. Work stealing with
parallelism feedback. In PPoPP, San Jose, California, Mar.
2007.

[4] N. S. Arora, R. D. Blumofe, and C. G. Plaxton. Thread
scheduling for multiprogrammed multiprocessors. In SPAA,
pages 119–129, Puerto Vallarta, Mexico, 1998.

[5] N. Bansal, K. Dhamdhere, J. Konemann, and A. Sinha. Non-
clairvoyant scheduling for minimizing mean slowdown. Al-
gorithmica, 40(4):305–318, 2004.

[6] G. E. Blelloch, P. B. Gibbons, and Y. Matias. Provably effi-
cient scheduling for languages with fine-grained parallelism.
In SPAA, pages 1–12, Santa Barbara, California, 1995.

[7] G. E. Blelloch and J. Greiner. A provable time and space
efficient implementation of NESL. In ICFP, pages 213–225,
Philadelphia, Pennsylvania, 1996.

[8] R. D. Blumofe and C. E. Leiserson. Space-efficient schedul-
ing of multithreaded computations. SIAM Journal on Com-
puting, 27(1):202–229, 1998.

[9] R. D. Blumofe and C. E. Leiserson. Scheduling multi-
threaded computations by work stealing. Journal of the
ACM, 46(5):720–748, 1999.

[10] R. D. Blumofe and P. A. Lisiecki. Adaptive and reliable par-
allel computing on networks of workstations. In USENIX,
pages 133–147, Anaheim, California, 1997.

[11] R. D. Blumofe and D. S. Park. Scheduling large-scale par-
allel computations on networks of workstations. In HPDC,
pages 96–105, San Francisco, California, 1994.

[12] T. Brecht, X. Deng, and N. Gu. Competitive dynamic multi-
processor allocation for parallel applications. In Parallel and
Distributed Processing, pages 448 – 455, San Antonio, TX,
1995.

[13] R. P. Brent. The parallel evaluation of general arithmetic
expressions. Journal of the ACM, pages 201–206, 1974.

[14] J. L. Bruno, J. Edward G. Coffman, and R. Sethi. Scheduling
independent tasks to reduce mean finishing time. Communi-
cations of the ACM, 17(7):382–387, 1974.

[15] F. W. Burton and M. R. Sleep. Executing functional pro-
grams on a virtual tree of processors. In FPCA, pages 187–
194, Portsmouth, New Hampshire, 1981.

[16] J. Chen and A. Miranda. A polynomial time approximation
scheme for general multiprocessor job scheduling (extended
abstract). In STOC, pages 418–427, New York, NY, USA,
1999.

[17] X. Deng and P. Dymond. On multiprocessor system schedul-
ing. In SPAA, pages 82–88, Padua, Italy, 1996.

[18] X. Deng, N. Gu, T. Brecht, and K. Lu. Preemptive schedul-
ing of parallel jobs on multiprocessors. In SODA, pages 159–
167, Philadelphia, PA, USA, 1996.

[19] DESMO-J: A framework for discrete-event mod-
elling and simulation. http://asi-www.informatik.uni-
hamburg.de/desmoj/.

[20] G. Edjlali, G. Agrawal, A. Sussman, J. Humphries, and
J. Saltz. Compiler and runtime support for programming in
adaptive parallel environments. Technical Report CS-TR-
3510, University of Maryland, 1995.

[21] G. Edjlali, G. Agrawal, A. Sussman, and J. Saltz. Data par-
allel programming in an adaptive environment. Technical
Report CS-TR-CS-TR-3350, University of Maryland, 1994.

[22] J. Edmonds. Scheduling in the dark. In STOC, pages 179–
188, Atlanta, Georgia, United States, 1999.

[23] J. Edmonds, D. D. Chinn, T. Brecht, and X. Deng. Non-
clairvoyant multiprocessor scheduling of jobs with changing
execution characteristics. Journal of Scheduling, 6(3):231–
250, 2003.

[24] D. G. Feitelson. Job scheduling in multiprogrammed parallel
systems (extended version). Technical report, IBM Research
Report RC 19790 (87657) 2nd Revision, 1997.

[25] M. Frigo, C. E. Leiserson, and K. H. Randall. The imple-
mentation of the Cilk-5 multithreaded language. In PLDI,
pages 212–223, 1998.

[26] R. L. Graham. Bounds on multiprocessing anomalies.
SIAM Journal on Applied Mathematics, pages 17(2):416–
429, 1969.

[27] N. Gu. Competitive analysis of dynamic processor allocation
strategies. Master’s thesis, York University, 1995.

[28] R. H. Halstead, Jr. Implementation of Multilisp: Lisp on a
multiprocessor. In LFP, pages 9–17, Austin, Texas, Aug.
1984.

[29] Y. He, W. J. Hsu, and C. E. Leiserson. Provably efficient two-
level adaptive scheduling. In JSSPP, Saint-Malo, France,
2006.

[30] Y. He, W. J. Hsu, and C. E. Leiserson. Provably efficient on-
line non-clairvoyant adaptive scheduling. In Proceedings of
the International Parallel and Distributed Processing Sym-
posium, Long Beach, California, USA, Mar. 2007.

[31] K. Jansen and L. Porkolab. Linear-time approximation
schemes for scheduling malleable parallel tasks. In SODA,
pages 490–498, Philadelphia, PA, USA, 1999.

[32] K. Jansen and H. Zhang. Scheduling malleable tasks with
precedence constraints. In SPAA, pages 86–95, New York,
NY, USA, 2005.

[33] S. T. Leutenegger and M. K. Vernon. The performance of
multiprogrammed multiprocessor scheduling policies. In
SIGMETRICS, pages 226–236, Boulder, Colorado, United
States, 1990.

[34] W. Ludwig and P. Tiwari. Scheduling malleable and nonmal-
leable parallel tasks. In SODA, pages 167–176, Philadelphia,
PA, USA, 1994.

[35] S. Majumdar, D. L. Eager, and R. B. Bunt. Scheduling in
multiprogrammed parallel systems. In SIGMETRICS, pages
104–113, Santa Fe, New Mexico, United States, 1988.

[36] C. McCann, R. Vaswani, and J. Zahorjan. A dynamic proces-
sor allocation policy for multiprogrammed shared-memory
multiprocessors. ACM Transactions on Computer Systems,
11(2):146–178, 1993.

[37] E. Mohr, D. A. Kranz, and J. Robert H. Halstead. Lazy task
creation: A technique for increasing the granularity of paral-
lel programs. In LFP, pages 185–197, 1990.

[38] R. Motwani, S. Phillips, and E. Torng. Non-clairvoyant
scheduling. In SODA, pages 422–431, Austin, Texas, United
States, 1993.

[39] G. Mounie, C. Rapine, and D. Trystram. Efficient approxi-
mation algorithms for scheduling malleable tasks. In SPAA,
pages 23–32, New York, NY, USA, 1999.

6

[40] G. J. Narlikar and G. E. Blelloch. Space-efficient scheduling
of nested parallelism. ACM Transactions on Programming
Languages and Systems, 21(1):138–173, 1999.

[41] L. Rudolph, M. Slivkin-Allalouf, and E. Upfal. A simple
load balancing scheme for task allocation in parallel ma-
chines. In SPAA, pages 237–245, Hilton Head, South Car-
olina, 1991.

[42] U. Schwiegelshohn, W. Ludwig, J. L. Wolf, J. Turek, and
P. S. Yu. Smart smart bounds for weighted response time
scheduling. SIAM Journal of Computing, 28(1):237–253,
1998.

[43] S. Sen. Dynamic processor allocation for adaptively parallel
jobs. Master’s thesis, Massachusetts Institute of Technology,
2004.

[44] B. Song. Scheduling adaptively parallel jobs. Master’s the-
sis, Massachusetts Institute of Technology, 1998.

[45] M. S. Squillante. On the benefits and limitations of dynamic
partitioning in parallel computer systems. In IPPS, pages
219–238, Oakland, California, United States, 1995.

[46] K. G. Timothy B. Brecht. Using parallel program character-
istics in dynamic processor allocation policies. Performance
Evaluation, 27-28:519–539, 1996.

[47] A. Tucker and A. Gupta. Process control and scheduling is-
sues for multiprogrammed shared-memory multiprocessors.
In SOSP, pages 159–166, New York, NY, USA, 1989.

[48] J. Turek, W. Ludwig, J. L. Wolf, L. Fleischer, P. Tiwari,
J. Glasgow, U. Schwiegelshohn, and P. S. Yu. Scheduling
parallelizable tasks to minimize average response time. In
SPAA, pages 200–209, Cape May, New Jersey, United States,
1994.

[49] K. K. Yue and D. J. Lilja. Implementing a dynamic pro-
cessor allocation policy for multiprogrammed parallel ap-
plications in the Solaris operating system. Concurrency
and Computation-Practice and Experience, 13(6):449–464,
2001.

7

