
 1

1

Autonomic Power & Performance Management for Large-Scale Data Centers

Bithika Khargharia1, Salim Hariri1, Ferenc Szidarovszky1, Manal Houri2, Hesham El-Rewini2,

Samee Ullah Khan3, Ishfaq Ahmad3, and Mazin S. Yousif4

Email: 1{bithikak, hariri,}@ece.arizona.edu,1szidar@sie.arizona.edu, 2{mhouri,
rewini}@engr.smu.edu, 3{sakhan,iahmad}@cse.uta.edu, 4 mazin.s.yousif@intel.com

1 1-4244-0910-1/07/$20.00 2007 C IEEE

Abstract

With the rapid growth of servers and applications
spurred by the Internet, the power consumption of servers
has become critically important and must be efficiently
managed. High energy consumption also translates into
excessive heat dissipation which in turn, increases
cooling costs and causes servers to become more prone to
failure. This paper presents a theoretical and
experimental framework and general methodology for
hierarchical autonomic power & performance
management in high performance distributed data
centers. We optimize for power & performance
(performance/watt) at each level of the hierarchy while
maintaining scalability. We adopt mathematically-
rigorous optimization approach to provide the
application with the required amount of memory at
runtime. This enables us to transition the unused memory
capacity to a low power state. Our experimental results
show a maximum performance/watt improvement of
88.48% compared to traditional techniques. We also
present preliminary results of using Game Theory to
optimize performance/watt at the cluster level of a data
center. Our cooperative technique reduces the power
consumption by 65% when compared to traditional
techniques (min-min heuristic).

1. Introduction

Automatic modeling and online analysis of multiple

objectives and constraints such as power consumption and
performance of large-scale distributed data centers is a
challenging research problem due to the dynamic and
heterogeneous nature of workloads & applications,
continuous changes in topology, the variety of services &
software modules being offered and deployed, and the

extreme complexity & dynamism of their computational
workloads. In order to develop an effective autonomic
control and management system for power & performance
management, it becomes highly essential for the system to
have the functionality of online monitoring; adaptive
modeling and analysis tailored for real-time processing
and proactive management mechanisms. As part of this
work, we develop innovative management techniques that
address the following research challenges:

1. How do we efficiently and accurately model power
and energy consumption from a system level perspective
that involves the complex interactions of different classes
of devices such as processor, memory, network and I/O?

2. How can we predict in real-time the behavior of
system resources and their power consumptions as
workloads change dynamically by orders of magnitude
within a day or a week?

3. How to design efficient and self-adjusting
optimization mechanisms that can continuously and
endlessly learn, execute, monitor, and improve themselves
in meeting the collective objectives of power &
performance improvement?

The development of the models and solution methods
consist of the following steps: First, a mixed programming
model is developed to minimize the power consumption
while maintaining performance requirements of a memory
system which is at the lower-most layer (component-level)
in a data center. Based on this model a game model is
constructed which takes the competition of the different
systems/platforms within the data-center taking into
account the limited available electric power budget. Non-
cooperative and cooperative solutions are determined and
compared in order to find the most satisfying outcome for
the entire system. In the next step each element of each
data center will be considered as an agent in an agent-
based gaming approach. Using simulation and sensitivity
analysis, the most satisfying strategies of the agents will be

 2

determined with respect to the overall performance of the
entire system. In addition to developing a practical
methodology, several theoretical issues have to be
examined such as existence and uniqueness of non-
cooperative Nash equilibrium and cooperative solution
concepts. Since different solution concepts would lead to
different outcomes, one objective of the proposed research
going forward would be to find the solution concepts
which fit best the particular problems under investigation.

The rest of the paper is organized as follows. In
Section 2, we present a brief overview of the main
methods used to address power issues in computing
systems. In Section 3 we introduce the hierarchical
framework and discuss how we achieve autonomic
performance/watt management for a memory system at
the component-level and for a cluster of machines at the
system-level (using Game Theory). In Section 4 we
discuss experimental results and conclude in Section 5.

2. Background and Related Work

Most power management techniques exploit the over-

provisioning of components, devices or platforms for
power savings. This technique also known as Dynamic
Power Management (DPM) is extensively used for
reducing power dissipation in systems by slowing or
shutting-down components when they are idle or
underutilized.

Most DPM techniques utilize power management
features supported by the hardware. For example,
frequency scaling, clock throttling, and dynamic voltage
scaling (DVS) are three processor power management
techniques [1] that are extensively utilized by DPM. [2] for
example, extends the operating system's power manager by
an adaptive power manager (APM) that uses the
processor's DVS capabilities to reduce or increase the CPU
frequency thereby minimizing the overall energy
consumption. [3] combines the DVS technique at the
processor-level together with a turn on/off technique at the
cluster-level to achieve high power savings while
maintaining the response time. [4] introduces a scheme to
concentrate the workload on a limited number of servers in
a cluster such that the rest of the servers can remain
switched-off. for a longer time. [5] proposes power-aware
QoS management in web servers where the algorithms
reduce processor voltage and frequency as much as
possible but not enough to cause per-class response time
constraint violations. Other techniques use a utilization
bound for schedulability of a-periodic tasks [6] [7] to
maintain the timeliness of processed jobs while conserving
power. Similarly, for dynamic memory power management
[8] uses multiple power modes of RDRAM memory and
dynamically turns off memory chips with power-aware
page allocation in operating system.

Researchers have also explored joint power
management techniques that involve techniques to jointly
maintain power consumption of multiple system
components such as the memory and the hard disk. For
example, [9] has used the relationship between memory
and disk (smaller the memory size, the higher the page
misses and the higher the disk accesses) to achieve power
savings by proactively changing disk I/O by expanding or
contracting the size of the memory depending on the
workload. [10] addresses base power consumption for web
servers by using a power-shifting technique that
dynamically distributes power among components using
work-load sensitive polices.

Most techniques for dynamic power management
justify the need to consider components in isolation. For
example, [11] makes the case that processor is the major
power consuming factor in servers. Following this thread
[12] presents a request-batching scheme where jobs are
forwarded to the processor in a batch after certain time
such that the response time constraint is met for all classes
of customers. This lets the processor be in a lower power
state for a longer period of time. [13] on the other hand
states that data center storage devices can consume over
25% power. This has spawned research in memory power
management. However there has not been much effort to
exploit these existing techniques for different classes of
resources (processor, memory, cache, disk, network card
etc) in a unified framework from a whole system
perspective. While the closest to combining device power
models to build a whole system has been presented in [14],
our approach aims at building a general framework for
autonomic power and performance management where we
bring together and exploit existing device power
management techniques from a whole system’s
perspective. We introduce a hierarchical framework for
power management that starts at individual devices within
a server to server clusters and cluster of clusters enabling
power management at every level of the hierarchy of a data
center with the solutions being more and more refined as
we travel down the hierarchy from cluster of heterogeneous
servers to independent devices. The closest to our
approach is the work done by [15] that solves the problem
of hierarchical power management for an energy managed
computer (EMC) system with self-power managed
components while exploiting application level scheduling.

While most power management techniques are either
heuristic-based approaches [16] or stochastic optimization
techniques [17] we explore Game Theory to seek radically
fast and efficient solutions compared with the traditional
approaches (e.g., heuristics, genetic algorithms, linear and
dynamic programming, branch-and-bound etc) that are
either impractical or are applicable only in a static fashion.
With game theoretical techniques the solution may not be
globally optimal in the traditional sense, but would be
optimal in given circumstances [18]. This fits perfectly in

 3

Autonomic
Manager

.. …

.. . …

Cluster

Autonomic
Manager

.. . … … …

..…

Server1

Autonomic
Manager

Server1

Autonomic
Manager

Device1

Autonomic
Manager

Devicen

Autonomic
Manager

Profiler Analyzer Regulator

Cluster

Autonomic
Manager ..… …

Incoming
workload

Autonomic Manager

Inner
Control

Loop
Effecter

Data center
workload

Cluster
workload

Node
workload

Device
workload

Outer
Control
Loop

Effecter

Data
Center 1

Autonomic
Manager

Data
Center 2

Autonomic
Manager

Data
Center n

the context of large-scale distributed data centers since we
find the best solution given the state of the system; we do
not acquire global solutions, which are meaningless given
the dynamic nature of distributed systems. With the aid of
Game Theory we can use lower level information to
dynamically tune the high-level management policies
freeing the need to execute complex algorithms [19].

3. Autonomic Management Framework
(AMF): Hierarchical Power and Performance
Management

We define an Autonomic Management System (AMS)

as a system augmented with intelligence to manage and
maintain itself under changing circumstances impacted by
the internal or external environment. In previous work we
have laid the foundation for an Autonomic Computing
System [20].

We apply our general AMF for power and
performance management of a network of geographically
dispersed Internet data centers with Autonomic Managers
(AMs) at each level going from the inter-data center level
to the intra-data center level, cluster-level, server-level
and finally the component-level within a single server.
This is shown in Figure 1. The MS (Managed System)
changes depending on the domain being managed. For
example the MS could be a network of data centers, a
single data center, a Front End server cluster, a Web
Server or a Memory System within a Web Server. The
AMs may share a distributed or hierarchical management
relationship (based on the MS and its parent if any). For
example, in Figure 1 an AM managing a whole data center
may share a distributed relationship with another AM at
the data center level such that they compete for power
budget. However, with a single data center the AMs share
a hierarchical relationship where it tries to work within the
allocated power budget while maintaining the application-
level performance. As shown in Figure 1, within a data
center the MS can be logically organized into three
distinguishable hierarchies i) cluster level, where the
whole data center is modeled as collection of networked
clusters ii) server level, where each cluster is modeled as a
collection of networked servers and iii) device level,
where each server is modeled as a collection of networked
devices. The top-level AM deals with the incoming data
center workload. It consists of three sub-components. The
Profiler profiles the power and performance
characteristics of the incoming workload based on the
current data center system configuration. It performs the
statistical analysis and forwards the results of the analysis
to the Analyzer. The Analyzer is responsible for
predicting the power budget for the data center for the
next observation interval based on the statistical analysis
forwarded by Profiler as well as history-based knowledge.

The Regulator regulates the distribution of incoming
workload onto the system such that the system can meet
the power budget determined by the Analyzer. Each
lower-level AM in the hierarchy performs similar tasks to
maintain the system within the allocated power budget
(from the top-level) and still deliver the required
performance.

In this work, we model the MS (at any hierarchy) as a
set of states and transitions. Each state is associated with
power consumption and performance values. A transition
takes MS from one state to another. It is the task of the
AM to enable MS to transition to a state where power
consumption is minimal without violating any
performance constraints. Our autonomic management
approach relies on MS states at each level of the hierarchy
to proactively manage power consumption and also
maintain the QoS requirements.

In what follows, we first discuss a specific scenario of
power and performance management at the
component/device level for an FBDIMM memory system
using optimization technique. We then discuss system-
level (cluster-level) power and performance management
using Game Theory.

3.1. AMF: Power and Performance Component
Manager

Figure 1: Hierarchical Power and Performance

Management

We apply the autonomic computing paradigm to
architect an intelligent memory controller (MC) that
continuously reconfigures and scales the memory system

 4

active

offline

suspend standby

5.3W at
0% access

0W

.389W 2W

2.8ms

5ms

125ns

for maintaining power and performance. The objective of
the MC is to always maintain the size and configuration of
the memory system in a state where power consumed is
minimal and the system still meets the threshold values for
the performance parameters. Scaling the memory size to
the minimum would give huge savings in power but may
impact performance by increasing the miss ratio as well as
the delay experienced by a single memory access time.
Hence, the task of the MC is to allocate as much memory
as is required by the application and the unused amount of
memory can then be transitioned to one of the low-power
states as supported by an FBDIMM (Figure 2). We can
estimate the application’s memory requirement at runtime
by measuring the application’s current heap usage and the
total number of memory accesses going to each Rank.
Based on the monitored values, at the end of each time
epoch the MC maintains the system at the maximum
performance/watt by determining 1) what is the minimum
number of memory Ranks to be maintained in an active
state? 2) Which Ranks should be selected to be active?

We formulate the MC decision-making process as an
optimization problem where we index time into equidistant
epochs of value tobs. The MC searches for an optimal
solution at the beginning of each epoch. Let us consider a
state transition from state Sj to state Sk where Sj has nj
Ranks (Rank0 to Rankj) and Sk has nk Ranks (Rank0 to
Rankk). The data migration process during this state
transition involves a Rank pair, one from the source pool
of Ranks in state Sj and the other from the destination pool
of Ranks in state Sk. In
what follow, we discuss
how to determine the
target state Sk among all
possible states. Data is
then migrated from a
source Rank to a
destination Rank.

 Figure 2: FBDIMM
 Power States [21]

3.1.1. Formulating the Optimization Problem. At the
beginning of time epoch i the MC searches for the state
where the sum of the transition energy consumed
(

jktransjk *tc) and the energy consumed in the target state

(obsk t*n*p) by the memory system is the smallest
given that in the target state Sk , the system can meet all the
constraints. The objective function is given by Minimize
energy for interval i ,

∑
=

+=
N

0k
jkobsktransjki x*)t*n*p *tc (e

jk

Such that,

pageSizeNRanksizen optk */* >=
chBWthresholdchBWMax ch

CAch
_)(

,:
<=∨

rankrank

n

rank
arrTimethresholdarrTimeMin

n

_)(
2/

0:
>=∨

∑
=

=
n

k
jkx

0
1

1|0=∨ jkx
Where,
N: Maximum Ranks in the system
nk: Total Ranks in state Sk
p: Power consumed per Rank
tobs: Unit of time epoch
cjk: Power consumed in transition

jktranst : Time taken to transition

xjk: Decision variable for transition Sj to Sk.
 chBWch, arrTimeRank : Ch BW and inter-arrival time in state Sk

threshold_chBW , threshold_arrTimeRank :Threshold values
pageSize : Size of a single page (4KB for our system)
Nopt: :Optimal pages for maximum hit ratio [22]
Size/Rank : 512 MB for our system.

The first constraint states that the target state should

have enough memory to hold all the Nopt pages. The second
constraint states that in the target state, the maximum of the
percent channel BW on a channel should be smaller than
the threshold value set for the channel BW. Ideally it can
be the theoretical upper limit. The third constraint states
that in the target state, the minimum request inter-arrival
among all the active Ranks should be larger than the
threshold value set for the Rank where the threshold value
is a percentage of the access time. This is to be
experimentally determined. The fourth constraint states
that the optimization problem leads to one and only one
solution. The decision variable corresponding to that is 1
the rest are 0. The fifth constraint states that the decision
variable is a 0-1 integer.

Evaluation of Migration Time, jktranst and Energy jkc .

During migration, the MC stalls all memory access
requests and consequently, the time for data migration is a
sum of the data migration time (read time, transfer time and
write time) and the time needed to make power transition.
Given that, fraction of a page per Rank is given by

CLSize][pageSize/

]2/[n
 ppr k=

The migration time per Rank (MTR) pair (Rankj ,
Rankk) is given by

MTR =

jk

jRank

j

a
Ch

opt

Rank

opt

Rank

opt

t
MaxThPut

*N*ppr

1024**2/C
*N*ppr

1024*Re*2/C
*N*ppr

ct

k

pgSize

tWriteLSize
pgSize

adtLSize
pgSize

+

++

Power State Transition Overhead. Figure 2 gives the
power state transition overhead per DIMM. Migration
Energy is the sum of the power consumed by two sources,

 5

 p* t* +p *n =c MCtranstransk jk
jk

Where ptrans: Transition power consumed by a Rank
pMC: Power consumed in buffers during data migration.

3.2. AMF: System-level Autonomic Power and
Performance Management using Game Theory

In this Section we discuss how we apply Game

Theory for system-level power/performance management.

3.2.1. Use Case: Power and Performance Optimization
of a Computing Cluster. Consider a cluster consisting of
a set of machines, M = {m1, m2 , …, mm}. Each machine is
equipped with a DVS module. Each machine is described
by the following characteristics:
1. The frequency of the CPU, fj, in cycles per unit time.

With the help of DVS, fj can vary from fj
min to fj

max,
where 0 < fj

min < fj
max. CPU speed, Sj, is simply the

inverse of the frequency.
2. The specific machine architecture, A(mj) for machine mj

. The architecture includes the type of CPU (Intel,
AMD), bus types and speeds in GHz, I/O, and Memory
in Bytes.

Consider a meta-task, T = {t1, t2, …, tn}, where ti is a
task. Each task is characterized by:
1. Computational cycles ci that it needs to complete.
2. Machine architecture, A(ti), that it needs to complete its

execution.
3. The deadline, di, before it has to complete its execution.
It is obvious that the meta-task, T, also has a deadline, D,
which is met if and only if the deadlines of all its tasks are
met. Now suppose we are given a cluster and a meta-task,
T, and we are required to map T on the cluster such that
all the characteristics of the tasks and the deadline
constraint of T are fulfilled. We term this fulfillment as a
feasible task to machine mapping. A feasible task to
machine mapping happens when:
1. Each task ti∈T can be mapped to at least one mj subject

to the fulfillment of all the constraints associated with
each task: a) Computational cycles b) Architecture c)
Deadline.

2. The deadline constraint of T is also satisfied, such that
no task finishes after its deadline.

The number of cycles required by ti to execute on Mj is
assumed to be a finite positive number, denoted by cij, and
is known a priori. The execution time of ti under a
constant speed Sij, given in cycles per second is tij = cij/Sij.

A task, ti, when executed on machine mj draws, pij
amount of power. Lowering the power, will lower the
CPU frequency and consequently will decrease the speed
of the CPU, and hence cause ti to possibly miss its
deadline. For simplicity assume that the overhead of
switching the CPU frequency is minimal and hence
ignored. The architectural requirements of each task is

recorded as a tuple with each element bearing a specific
requirement, such as what does the task require for its
execution, the architectural affinity matching of the task to
the machine. We assume that the mapping of architectural
requirements is a Boolean operation i.e. the architectural
mapping is only fulfilled when all of the architectural
constraints are satisfied, otherwise not.

3.2.2. Management Solution Using Game Theory.
Game theory has two major branches namely, cooperative
and non-cooperative games. Based on these two types of
games we classify our solutions as
1. Static, centralized & controlled approach using

cooperative games.
2. Dynamic, distributed & autonomous approach using

non-cooperative games.
The system-level AM will decide on the mapping of

tasks onto each and every machine. The AM has all the
necessary information to execute such a decision. The
necessary information about each machine includes: (a)
Load of the CPU, i.e., what tasks are currently scheduled
on the CPU; (b) The range of CPU clock frequency, [fj

min,
fj

max]; (c) The architecture of the machine.
To fully utilize the computing cluster, the AM has to

arrive at a decision (mapping of tasks onto machines) in a
controlled environment, which is pareto-optimal,
beneficial and fair to all of the machines. This can be
achieved very efficiently using cooperative games. The
AM will simulate a cooperative game among the
machines. The goal of such a game would be to find task
to machine mapping such that the system as a whole can
benefit. Although, some machines may not be satisfied
with their particular allocation of tasks, but they overlook
that since the goal is for the system to prosper. The
prosperity of the system is measured by its ability to
execute tasks within their deadlines and also minimize the
power used by the machines.

Let us consider a scenario where an AM manages a
data center cluster. It optimizes power consumption while
maintaining a high task turn-around time often completing
the tasks before the deadline. Given a computing cluster
and a meta-task T the AM has to find the task to machine
mapping where the total power utilized is minimized such
that the makespan of the meta-task, T, is minimized.

Mathematically, the above scenario can be stated as:

1

min
n m

ij ij
i j i

p x
= =
∑∑ such that

1 1

min max
n

ij ijj m i

t x
≤ ≤

=
∑ subject to

1. {0,1}, 1, 2,..., ; 1, 2,... .ijx i n j m∈ = =
2. if , , , such that () (), then 1i j i j ijt m i j A t A m x→ ∀ ∀ = =
3. , , , 1ij ij i ijt x d i j x≤ ∀ ∀ =
4. () {0,1}ij ij it x d≤ ∈

 6

5.
1

() 1, , , 1
n

ij ij i ij
i

t x d i j x
=

≤ = ∀ ∀ =∏

Constraint 1 is the mapping constraint, such that xij
=1, if a task, ti, is mapped to machine, mj. Constraint 2
expands on this mapping in conjunction to the
architectural requirements and it states that a mapping can
only exists if the architecture is mapped. Constraint 3
relates to the fulfillment of the deadline of each task and
constraint 4 tells us about the Boolean relationship
between the deadline and the actual time of execution of
the tasks. Constraints 5 relates to the deadline constraints
of the meta-task, which will hold if and only if all the
deadlines of the tasks, ti, i =1, 2, …n, are satisfied.

4. Experimental Results

4.1. Memory Power and Performance
Management

We evaluate the performance of the autonomic

component manager on a server with four different
memory configurations running SPEC JBB 2005
benchmark [23]. For each configuration we measured the
percent active pages, percent channel BW utilization and
request inter-arrival time at the end of each additional
warehouse launched by the SPEC JBB benchmark. We
used the percent active pages and current memory
configuration to compute the migration overhead in going
to a target memory configuration. Notice that our
performance management scheme individually maintains
the applications hit ratio and the system’s memory access
time. However that maintains the application-level
performance as can be seen in Figure 4. Our power and
performance management scheme gives the maximum
performance/watt for the platform during the entire run of
SPEC JBB.

4.1.1. Analysis of Performance/Watt. Figure 4 gives the
performance/watt of a power and performance managed
memory system (Scheme 2) as we discussed in Section 3.1
compared to one without (Scheme 1). Clearly Scheme 2
outperforms Scheme 1 at all points during the run of
SPEC JBB.

In summary, the dynamic data migration yields energy
savings of about 48.8 % (26.7 kJ) compared to traditional
techniques (without migration) measured at a meager
4.5%. Furthermore, the transition overhead is about 18.6
ms which leads to energy savings of 1.44 kJ per
millisecond of transition overhead time. Consequently, our
scheme gives additional savings of another 50% (2 GB) for
an overhead of 16.9 ms during zero workload and gives the
maximum performance/watt at all points during the run of
the application with a maximum improvement of 88.48%.

Figure 4: Performance/Watt Comparison

4.2. Game Theory

Based on the size of the problems, the experiments

were divided in two parts. For small size problems, we
used an Integer Linear Programming tool called LINDO
[24]. LINDO is useful to obtain optimal solutions,
provided the problem size is relatively small. Hence for
small problem sizes, the performance of the cooperative
game is compared against 1) the optimal solution using
LINDO and 2) the min-min heuristic [25]. The min-min
heuristic does not consider power as an optimization
constraint; however, it is very effective for the
optimization of the makespan. Thus, the comparison
provides us with a wide range of results. On one extreme
we have the optimal algorithm, on the other a technique
which focuses on the optimization of makespan. For large
size problems, it becomes impractical to compute the
optimal solution by LINDO. Hence, we only consider
comparisons against the min-min heuristic.

The system heterogeneity is captured by the
distribution of the number of CPU cycles, cij, required by
different tis on different mjs. Let C denote the matrix
composed by cij, where i = 1, 2, …, n and j = 1, 2, …,m.
The C matrix was generated using a Gamma distribution
based method [26]. The Gamma distribution method
requires input of mean value along the task axis, w, which
we set to 200. di, the deadline task ti was generated based
on the C matrix. Let wi be the largest value among the
elements in the i-th row of C and let X = n/m, where n is
the number of tasks and m is the number of mjs. di is
calculated as K × wi × X, where K is a pre-specified
positive value for adjusting the relative deadlines of tasks.

For small size problems, the number of mjs was fixed
at 5, while the number of tasks, ti, varied from 20 to 40.
The number of DVS levels per mj was set to 4. The
maximum CPU speed of each mj was set to 1.0 and the
minimum speed was set to 0.25. It is assumed that other
CPU speeds are distributed uniformly between the
maximum and minimum speeds. Therefore, the other two

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 1 2 3 4 5 6 7 8 9

Warehouses

P
P

W

PPW (Scheme 1) PPW (Scheme 2)

 7

Figure 5: Comparison with Optimal (K=1.5, 1.0)

Figure 6(a): Power Savings (K=1.5)

Figure 6(b): Power Savings (K=1.0)

levels of CPU speed are set to 0.75 and 0.5. For large size
problems, the number of mjs was fixed at 10, while the
number of tasks varied from 50 to 100. The number of
DVS levels per mj was set to 8. Other parameters were the
same as those for small size problems. The experimental
results for small size problems when K is set to 1.5 and
1.0 are shown in Figure 5. It shows the ratio of the overall
system power consumption obtained from the two
techniques and the optimal. Each case was run several

times so as to gain enough confidence in the results
reported here. The plots clearly show that the cooperative
technique performs extremely well and achieves a
performance level of 10%-15% of the optimal, when the
relative deadline factor K was set at very tight bound 1.0.

Figure 7(a): Makespan Comparison (K=1.5)

 Figure 7(b): Makespan Comparison (K=1.0)

Figures 6(a) and 6(b) show the relative performance
of the cooperative technique and the min-min heuristic for
large size problems when K = 1.5 and 1.0, respectively.
From these plots, we can clearly see the savings in power.
The min-min heuristic maps tasks onto machines which
are running on full throttle whereas the cooperative
technique is continuously optimizing power. Finally, we
compare (for the same setup) the makespan found by the
cooperative and min-min heuristic. It can be seen that the
cooperative technique brings the power consumption
down to 65% of the min-min heuristic, identifies a task to
machine mapping that produces a makespan that is within
10% of min-min. The results are shown in Figure 7.

5. Conclusions

In this paper, we presented a theoretical and
experimental framework to optimize power and
performance at runtime for e-business data centers. We
presented performance/watt management of a memory
system using optimization technique. Our scheme gives a
maximum performance/watt improvement of 88.48%. We

 8

also develop a Game Theory model for performance/watt
optimization in a data center server cluster. Our
cooperative technique brings the power consumption
down to 65% of traditional techniques.

We are currently performing comprehensive
modeling and analysis of large-scale e-business data
centers. We are also analyzing the comparative
performance of stochastic, predictive and heuristic
techniques on power and performance management
applied to the data center domain.

References

1. A. Miyoshi , C. Lefurgy , E. Van Hensbergen , R.

Rajamony , R. Rajkumar, Critical power slope:
understanding the runtime effects of frequency scaling,
Proceedings of the 16th international conference on
Supercomputing, June 22-26, 2002, New York, New York,
USA

2. Application Specific and Automatic Power Management
Based on Whole Program Analysis,
http://cslab.snu.ac.kr/~egger/apm/final-report.pdf, August
20th, 2004

3. E. N. Elnozahy, M. Kistler, R. Rajamony. Energy-Efficient
Server Clusters. In Proceedings of the 2nd Workshop on
Power-Aware Computing Systems, February 2002.

4. E. Pinheiro, R. Bianchini, E. V. Carrera, and T. Heath,
“Load Balancing and Unbalancing for Power and
Performance in Cluster-Based Systems,” Proceedings of
the Workshop on Compilers and Operating Systems for
Low Power, September 2001; Technical Report DCS-TR-
440, Department of Computer Science, Rutgers University,
New Brunswick, NJ, May 2001.

5. V. Sharma , A. Thomas , T. Abdelzaher , K. Skadron , Z.
Lu, Power-aware QoS Management in Web Servers,
Proceedings of the 24th IEEE International Real-Time
Systems Symposium, p.63, December 03-05, 2003

6. T. Abdelzaher and V. Sharma. “A synthetic utilization
bound for aperiodic tasks with resource requirements”. In
Euromicro Conference on Real Time Systems, Porto,
Portugal, July 2003.

7. T. F. Abdelzaher and C. Lu. “Schedulability analysis and
utilization bounds for highly scalable real-time services”.
In IEEE Real-Time Technology and Applications
Symposium, TaiPei, Taiwan, June 2001.

8. A. R. Lebeck, X. Fan, H. Zeng, and C. Ellis. Power Aware
Page Allocation. In ASPLOS, pages 105{116, 2000.

9. Cai, L., Yung L., Joint Power Management of Memory and
Disk, IEEE, 2005

10. W. Felter, K. Rajamani, T. Keller (IBM ARL), and C.
Rusu, A Performance-Conserving Approach for Reducing
Peak Power Consumption in Server Systems, ACM
International Conference on Supercomputing (ICS),
Cambridge, MA, June 2005

11. P. Bohrer, E. Elnozahy, T. Keller, M. Kistler, C. Lefurgy,
C. McDowell, and R. Rajamony. The case for power
management in web servers. Power Aware Computing,
2002. Klewer Academic Publishers.

12. M. Elnozahy, M. Kistler, and R. Rajamony. “Energy
Conservation Policies for Web Servers”. In Proceedings of
the 4th USENIX Symposium on Internet Technologies and
Systems, March 2003.

13. Q. Zhu, F. M. David, C. Devaraj, Z. Li, Y. Zhou, and P.
Cao. “Reducing Energy Consumption of Disk Storage
Using Power-Aware Cache Management”. In HPCA, pages
118-129, 2004.

14. S. Gurumurthi, A. Sivasubramaniam, M.J. Irwin, N.
Vijaykrishnan, M. Kandemir, T. Li, L.K. John, “Using
Complete Machine Simulation for Software Power
Estimation: The SoftWatt Approach,” In Proceedings of the
International Symposium on High Performance Computer
Architecture (HPCA-8), Cambridge, MA, pages 141-150,
February, 20.

15. P. Rong, M. Pedram, “Hierarchical Power Management
with Application to Scheduling”, ISLPED (International
Symposium on Low Power Electronics and Design) 2005.

16. M. Srivastava, A. Chandrakasan, and R. Brodersen,
"Predictive system shutdown and other architectural
techniques for energy efficient programmable
computation," IEEE Trans. VLSI Systems,Vol. 4, pp. 42–
55, Mar. 1996.

17. Paleologo, L. Benini, A. Bogliolo, and G. De Micheli,
“Policy optimization for dynamic power management,”
IEEE Trans. Computer-Aided Design, Vol. 18, pp. 813–33,
Jun. 1999.

18. S.U. Khan and I. Ahmad, "A Powerful Direct Mechanism
for Optimal WWW Content Replication," in 19th IEEE
International Parallel and Distributed Processing
Symposium (IPDPS), Denver, CO, U.S.A., April 2005, p.
86.

19. S.U. Khan and I. Ahmad, "Non-cooperative, Semi-
cooperative, and Cooperative Games-based Grid Resource
Allocation," in 20th IEEE International Parallel and
Distributed Processing Symposium (IPDPS), Rhodes
Island, Greece, April 2006. (To appear)

20. S. Hariri, Bithia Khargharia, Manish Parashar and Zhen Li,
``The Foundations of Autonomic Computing, edited by
Albert Zomaya, CHAPMN, 2005.

21. DDR2 FBDIMM Technical Product Specifications,
http://www.samsung.com/Products/Semiconductor/DDR_D
DR2/DDR2SDRAM/Module/FBDIMM/M395T2953CZ4/d
s_512mb_c_die_based_fbdimm_rev13.pdf

22. P. Zhou , V. Pandey , J. Sundaresan , A. Raghuraman , Y.
Zhou , S. Kumar, Dynamic tracking of page miss ratio
curve for memory management, ASPLOS 11, October 07-
13, 2004, Boston, MA, USA.

23. SPEC JBB 2005,
http://www.spec.org/jbb2005/docs/WhitePaper.html

24. L. Schrage, Linear, Integer, and Quadratic Programming
with LINDO, The Scientific Press, Redwood city, CA, 1986

25. T. D. Braun, S. Ali, H. J. Siegel and A. A. Maciejewski,
“Using the Min-Min Heuristic to Map tasks onto
Heterogeneous High-performance Computing Systems,” in
2nd Symposium of the Los Alamos Computer Science
Institute, Oct. 2001.

26. S. Ali, H. J. Siegel, M. Maheswaran, D. Hensgen and S.
Ali, “Task Execution Time Modeling for Heterogeneous
Computing Systems,” in 9th Heterogeneous Computing
Workshop, May 2000 , pp. 185-199.

