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Abstract 
 

With the rapid growth of servers and applications 
spurred by the Internet, the power consumption of servers 
has become critically important and must be efficiently 
managed. High energy consumption also translates into 
excessive heat dissipation which in turn, increases 
cooling costs and causes servers to become more prone to 
failure. This paper presents a theoretical and 
experimental framework and general methodology for 
hierarchical autonomic power & performance 
management in high performance distributed data 
centers. We optimize for power & performance 
(performance/watt) at each level of the hierarchy while 
maintaining scalability. We adopt mathematically-
rigorous optimization approach to provide the 
application with the required amount of memory at 
runtime. This enables us to transition the unused memory 
capacity to a low power state. Our experimental results 
show a maximum performance/watt improvement of 
88.48% compared to traditional techniques. We also 
present preliminary results of using Game Theory to 
optimize performance/watt at the cluster level of a data 
center. Our cooperative technique reduces the power 
consumption by 65% when compared to traditional 
techniques (min-min heuristic). 

 
 

1. Introduction 
 
Automatic modeling and online analysis of multiple 

objectives and constraints such as power consumption and 
performance of large-scale distributed data centers is a 
challenging research problem due to the dynamic and 
heterogeneous nature of workloads & applications, 
continuous changes in topology, the variety of services & 
software modules being offered and deployed, and the 

extreme complexity & dynamism of their computational 
workloads.  In order to develop an effective autonomic 
control and management system for power & performance 
management, it becomes highly essential for the system to 
have the functionality of online monitoring; adaptive 
modeling and analysis tailored for real-time processing 
and proactive management mechanisms. As part of this 
work, we develop innovative management techniques that 
address the following research challenges:  

1. How do we efficiently and accurately model power 
and energy consumption from a system level perspective 
that involves the complex interactions of different classes 
of devices such as processor, memory, network and I/O?  

2. How can we predict in real-time the behavior of 
system resources and their power consumptions as 
workloads change dynamically by orders of magnitude 
within a day or a week? 

3. How to design efficient and self-adjusting 
optimization mechanisms that can continuously and 
endlessly learn, execute, monitor, and improve themselves 
in meeting the collective objectives of power & 
performance improvement?  

The development of the models and solution methods 
consist of the following steps: First, a mixed programming 
model is developed to minimize the power consumption 
while maintaining performance requirements of a memory 
system which is at the lower-most layer (component-level) 
in a data center. Based on this model a game model is 
constructed which takes the competition of the different 
systems/platforms within the data-center taking into 
account the limited available electric power budget. Non-
cooperative and cooperative solutions are determined and 
compared in order to find the most satisfying outcome for 
the entire system. In the next step each element of each 
data center will be considered as an agent in an agent-
based gaming approach. Using simulation and sensitivity 
analysis, the most satisfying strategies of the agents will be 
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determined with respect to the overall performance of the 
entire system. In addition to developing a practical 
methodology, several theoretical issues have to be 
examined such as existence and uniqueness of non-
cooperative Nash equilibrium and cooperative solution 
concepts. Since different solution concepts would lead to 
different outcomes, one objective of the proposed research 
going forward would be to find the solution concepts 
which fit best the particular problems under investigation. 

The rest of the paper is organized as follows. In 
Section 2, we present a brief overview of the main 
methods used to address power issues in computing 
systems. In Section 3 we introduce the hierarchical 
framework and discuss how we achieve autonomic 
performance/watt management for a memory system at 
the component-level and for a cluster of machines at the 
system-level (using Game Theory). In Section 4 we 
discuss experimental results and conclude in Section 5. 

 
2. Background and Related Work 

 
Most power management techniques exploit the over-

provisioning of components, devices or platforms for 
power savings. This technique also known as Dynamic 
Power Management (DPM) is extensively used for 
reducing power dissipation in systems by slowing or 
shutting-down components when they are idle or 
underutilized.  

Most DPM techniques utilize power management 
features supported by the hardware. For example, 
frequency scaling, clock throttling, and dynamic voltage 
scaling (DVS) are three processor power management 
techniques [1] that are extensively utilized by DPM. [2] for 
example, extends the operating system's power manager by 
an adaptive power manager (APM) that uses the 
processor's DVS capabilities to reduce or increase the CPU 
frequency thereby minimizing the overall energy 
consumption. [3] combines the DVS technique at the 
processor-level together with a turn on/off technique at the 
cluster-level to achieve high power savings while 
maintaining the response time. [4] introduces a scheme to 
concentrate the workload on a limited number of servers in 
a cluster such that the rest of the servers can remain 
switched-off. for a longer time. [5] proposes power-aware 
QoS management in web servers where the algorithms 
reduce processor voltage and frequency as much as 
possible but not enough to cause per-class response time 
constraint violations. Other techniques use a utilization 
bound for schedulability of a-periodic tasks [6] [7] to 
maintain the timeliness of processed jobs while conserving 
power. Similarly, for dynamic memory power management 
[8] uses multiple power modes of RDRAM memory and 
dynamically turns off memory chips with power-aware 
page allocation in operating system.  

Researchers have also explored joint power 
management techniques that involve techniques to jointly 
maintain power consumption of multiple system 
components such as the memory and the hard disk. For 
example, [9] has used the relationship between memory 
and disk (smaller the memory size, the higher the page 
misses and the higher the disk accesses) to achieve power 
savings by proactively changing disk I/O by expanding or 
contracting the size of the memory depending on the 
workload. [10] addresses base power consumption for web 
servers by using a power-shifting technique that 
dynamically distributes power among components using 
work-load sensitive polices.  

Most techniques for dynamic power management 
justify the need to consider components in isolation. For 
example, [11] makes the case that processor is the major 
power consuming factor in servers. Following this thread 
[12] presents a request-batching scheme where jobs are 
forwarded to the processor in a batch after certain time 
such that the response time constraint is met for all classes 
of customers. This lets the processor be in a lower power 
state for a longer period of time. [13] on the other hand 
states that data center storage devices can consume over 
25% power. This has spawned research in memory power 
management. However there has not been much effort to 
exploit these existing techniques for different classes of 
resources (processor, memory, cache, disk, network card 
etc) in a unified framework from a whole system 
perspective. While the closest to combining device power 
models to build a whole system has been presented in [14], 
our approach aims at building a general framework for 
autonomic power and performance management where we 
bring together and exploit existing device power 
management techniques from a whole system’s 
perspective. We introduce a hierarchical framework for 
power management that starts at individual devices within 
a server to server clusters and cluster of clusters enabling 
power management at every level of the hierarchy of a data 
center with the solutions being more and more refined as 
we travel down the hierarchy from cluster of heterogeneous 
servers to independent devices. The closest to our 
approach is the work done by [15] that solves the problem 
of hierarchical power management for an energy managed 
computer (EMC) system with self-power managed 
components while exploiting application level scheduling.  

While most power management techniques are either 
heuristic-based approaches [16] or stochastic optimization 
techniques [17] we explore Game Theory to seek radically 
fast and efficient solutions compared with the traditional 
approaches (e.g., heuristics, genetic algorithms, linear and 
dynamic programming, branch-and-bound etc) that are 
either impractical or are applicable only in a static fashion. 
With game theoretical techniques the solution may not be 
globally optimal in the traditional sense, but would be 
optimal in given circumstances [18]. This fits perfectly in 
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the context of large-scale distributed data centers since we 
find the best solution given the state of the system; we do 
not acquire global solutions, which are meaningless given 
the dynamic nature of distributed systems. With the aid of 
Game Theory we can use lower level information to 
dynamically tune the high-level management policies 
freeing the need to execute complex algorithms [19].  

 
3. Autonomic Management Framework 
(AMF): Hierarchical Power and Performance 
Management 

 
We define an Autonomic Management System (AMS) 

as a system augmented with intelligence to manage and 
maintain itself under changing circumstances impacted by 
the internal or external environment. In previous work we 
have laid the foundation for an Autonomic Computing 
System [20].  

We apply our general AMF for power and 
performance management of a network of geographically 
dispersed Internet data centers with Autonomic Managers 
(AMs) at each level going from the inter-data center level 
to the intra-data center level, cluster-level, server-level 
and finally the component-level within a single server. 
This is shown in Figure 1. The MS (Managed System) 
changes depending on the domain being managed. For 
example the MS could be a network of data centers, a 
single data center, a Front End server cluster, a Web 
Server or a Memory System within a Web Server. The 
AMs may share a distributed or hierarchical management 
relationship (based on the MS and its parent if any). For 
example, in Figure 1 an AM managing a whole data center 
may share a distributed relationship with another AM at 
the data center level such that they compete for power 
budget. However, with a single data center the AMs share 
a hierarchical relationship where it tries to work within the 
allocated power budget while maintaining the application-
level performance. As shown in Figure 1, within a data 
center the MS can be logically organized into three 
distinguishable hierarchies i) cluster level, where the 
whole data center is modeled as collection of networked 
clusters ii) server level, where each cluster is modeled as a 
collection of networked servers and iii) device level, 
where each server is modeled as a collection of networked 
devices. The top-level AM deals with the incoming data 
center workload. It consists of three sub-components. The 
Profiler profiles the power and performance 
characteristics of the incoming workload based on the 
current data center system configuration. It performs the 
statistical analysis and forwards the results of the analysis 
to the Analyzer.  The Analyzer is responsible for 
predicting the power budget for the data center for the 
next observation interval based on the statistical analysis 
forwarded by Profiler as well as history-based knowledge. 

The Regulator regulates the distribution of incoming 
workload onto the system such that the system can meet 
the power budget determined by the Analyzer. Each 
lower-level AM in the hierarchy performs similar tasks to 
maintain the system within the allocated power budget 
(from the top-level) and still deliver the required 
performance. 

In this work, we model the MS (at any hierarchy) as a 
set of states and transitions. Each state is associated with 
power consumption and performance values. A transition 
takes MS from one state to another. It is the task of the 
AM to enable MS to transition to a state where power 
consumption is minimal without violating any 
performance constraints. Our autonomic management 
approach relies on MS states at each level of the hierarchy 
to proactively manage power consumption and also 
maintain the QoS requirements. 

In what follows, we first discuss a specific scenario of 
power and performance management at the 
component/device level for an FBDIMM memory system 
using optimization technique. We then discuss system-
level (cluster-level) power and performance management 
using Game Theory. 

 
3.1. AMF: Power and Performance Component 
Manager 

 
 

 
 
 

 
 

 
 
 
 

 
Figure 1: Hierarchical Power and Performance 

Management 
 

We apply the autonomic computing paradigm to 
architect an intelligent memory controller (MC) that 
continuously reconfigures and scales the memory system 



 4

active

offline

suspend standby

5.3W at 
0% access

0W

.389W 2W

2.8ms

5ms

125ns

for maintaining power and performance. The objective of 
the MC is to always maintain the size and configuration of 
the memory system in a state where power consumed is 
minimal and the system still meets the threshold values for 
the performance parameters. Scaling the memory size to 
the minimum would give huge savings in power but may 
impact performance by increasing the miss ratio as well as 
the delay experienced by a single memory access time. 
Hence, the task of the MC is to allocate as much memory 
as is required by the application and the unused amount of 
memory can then be transitioned to one of the low-power 
states as supported by an FBDIMM (Figure 2). We can 
estimate the application’s memory requirement at runtime 
by measuring the application’s current heap usage and the 
total number of memory accesses going to each Rank. 
Based on the monitored values, at the end of each time 
epoch the MC maintains the system at the maximum 
performance/watt by determining 1) what is the minimum 
number of memory Ranks to be maintained in an active 
state? 2) Which Ranks should be selected to be active? 

We formulate the MC decision-making process as an 
optimization problem where we index time into equidistant 
epochs of value tobs. The MC searches for an optimal 
solution at the beginning of each epoch. Let us consider a 
state transition from state Sj to state Sk where Sj has nj 
Ranks (Rank0 to Rankj) and Sk has nk Ranks (Rank0 to 
Rankk). The data migration process during this state 
transition involves a Rank pair, one from the source pool 
of Ranks in state Sj and the other from the destination pool 
of Ranks in state Sk. In 
what follow, we discuss 
how to determine the 
target state Sk among all 
possible states. Data is 
then migrated from a 
source Rank to a 
destination Rank.  

 
                                                 

                                  Figure 2: FBDIMM  
                                  Power States [21]  

 
3.1.1. Formulating the Optimization Problem. At the 
beginning of time epoch i the MC searches for the state 
where the sum of the transition energy consumed 
(

jktransjk *tc ) and the energy consumed in the target state 

( obsk t*n*p ) by the memory system is the smallest 
given that in the target state Sk , the system can meet all the 
constraints. The objective function is given by Minimize 
energy for interval i ,  

∑
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Where, 
N:            Maximum Ranks in the system 
nk:          Total Ranks in state Sk 
p:                              Power consumed per Rank 
tobs:          Unit of time epoch 
cjk:           Power consumed in transition 

jktranst :                     Time taken to transition 

xjk:                Decision variable for transition Sj to Sk. 
 chBWch, arrTimeRank  : Ch BW and inter-arrival  time in state Sk 

threshold_chBW ,  threshold_arrTimeRank  :Threshold values  
pageSize                   : Size of a single page (4KB for our system) 
Nopt:                                         :Optimal pages for maximum hit ratio [22] 
Size/Rank                    : 512 MB for our system. 

 
The first constraint states that the target state should 

have enough memory to hold all the Nopt pages. The second 
constraint states that in the target state, the maximum of the 
percent channel BW on a channel should be smaller than 
the threshold value set for the channel BW. Ideally it can 
be the theoretical upper limit. The third constraint states 
that in the target state, the minimum request inter-arrival 
among all the active Ranks should be larger than the 
threshold value set for the Rank where the threshold value 
is a percentage of the access time. This is to be 
experimentally determined. The fourth constraint states 
that the optimization problem leads to one and only one 
solution. The decision variable corresponding to that is 1 
the rest are 0. The fifth constraint states that the decision 
variable is a 0-1 integer.  

Evaluation of Migration Time, jktranst and Energy jkc . 

During migration, the MC stalls all memory access 
requests and consequently, the time for data migration is a 
sum of the data migration time (read time, transfer time and 
write time) and the time needed to make power transition. 
Given that, fraction of a page per Rank is given by 

 
CLSize][pageSize/

]2/[n
 ppr k=  

The migration time per Rank (MTR) pair (Rankj , 
Rankk) is given by  

MTR =  
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Power State Transition Overhead. Figure 2 gives the 
power state transition overhead per DIMM. Migration 
Energy is the sum of the power consumed by two sources,  
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Where ptrans: Transition power consumed by a Rank  
pMC: Power consumed in buffers during data migration. 
 
3.2. AMF: System-level Autonomic Power and 
Performance Management using Game Theory 

 
In this Section we discuss how we apply Game 

Theory for system-level power/performance management. 
 

3.2.1. Use Case: Power and Performance Optimization 
of a Computing Cluster. Consider a cluster consisting of 
a set of machines, M = {m1, m2 , …, mm}. Each machine is 
equipped with a DVS module. Each machine is described 
by the following characteristics: 
1. The frequency of the CPU, fj, in cycles per unit time. 

With the help of DVS, fj can vary from fj
min to fj

max, 
where 0 < fj

min < fj
max. CPU speed, Sj, is simply the 

inverse of the frequency. 
2. The specific machine architecture, A(mj) for machine mj 

. The architecture includes the type of CPU (Intel, 
AMD), bus types and speeds in GHz, I/O, and Memory 
in Bytes.  

Consider a meta-task, T = {t1, t2, …, tn}, where ti is a 
task. Each task is characterized by:  
1. Computational cycles ci that it needs to complete. 
2. Machine architecture, A(ti), that it needs to complete its 

execution. 
3. The deadline, di, before it has to complete its execution. 
It is obvious that the meta-task, T, also has a deadline, D, 
which is met if and only if the deadlines of all its tasks are 
met. Now suppose we are given a cluster and a meta-task, 
T, and we are required to map T on the cluster such that 
all the characteristics of the tasks and the deadline 
constraint of T are fulfilled. We term this fulfillment as a 
feasible task to machine mapping. A feasible task to 
machine mapping happens when:  
1. Each task ti∈T can be mapped to at least one mj subject 

to the fulfillment of all the constraints associated with 
each task: a) Computational cycles b) Architecture c) 
Deadline.  

2. The deadline constraint of T is also satisfied, such that 
no task finishes after its deadline. 

The number of cycles required by ti to execute on Mj is 
assumed to be a finite positive number, denoted by cij, and 
is known a priori. The execution time of ti under a 
constant speed Sij, given in cycles per second is tij = cij/Sij.  

A task, ti, when executed on machine mj draws, pij 
amount of power. Lowering the power, will lower the 
CPU frequency and consequently will decrease the speed 
of the CPU, and hence cause ti to possibly miss its 
deadline. For simplicity assume that the overhead of 
switching the CPU frequency is minimal and hence 
ignored. The architectural requirements of each task is 

recorded as a tuple with each element bearing a specific 
requirement, such as what does the task require for its 
execution, the architectural affinity matching of the task to 
the machine. We assume that the mapping of architectural 
requirements is a Boolean operation i.e. the architectural 
mapping is only fulfilled when all of the architectural 
constraints are satisfied, otherwise not. 

 
3.2.2. Management Solution Using Game Theory. 
Game theory has two major branches namely, cooperative 
and non-cooperative games. Based on these two types of 
games we classify our solutions as 
1. Static, centralized & controlled approach using 

cooperative games. 
2. Dynamic, distributed & autonomous approach using 

non-cooperative games. 
The system-level AM will decide on the mapping of 

tasks onto each and every machine. The AM has all the 
necessary information to execute such a decision. The 
necessary information about each machine includes: (a) 
Load of the CPU, i.e., what tasks are currently scheduled 
on the CPU; (b) The range of CPU clock frequency, [fj

min, 
fj

max]; (c) The architecture of the machine. 
To fully utilize the computing cluster, the AM has to 

arrive at a decision (mapping of tasks onto machines) in a 
controlled environment, which is pareto-optimal, 
beneficial and fair to all of the machines. This can be 
achieved very efficiently using cooperative games. The 
AM will simulate a cooperative game among the 
machines. The goal of such a game would be to find task 
to machine mapping such that the system as a whole can 
benefit. Although, some machines may not be satisfied 
with their particular allocation of tasks, but they overlook 
that since the goal is for the system to prosper. The 
prosperity of the system is measured by its ability to 
execute tasks within their deadlines and also minimize the 
power used by the machines.  

Let us consider a scenario where an AM manages a 
data center cluster. It optimizes power consumption while 
maintaining a high task turn-around time often completing 
the tasks before the deadline. Given a computing cluster 
and a meta-task T the AM has to find the task to machine 
mapping where the total power utilized is minimized such 
that the makespan of the meta-task, T, is minimized. 

Mathematically, the above scenario can be stated as: 

1

min
n m

ij ij
i j i

p x
= =
∑∑  such that  

1 1

min max
n

ij ijj m i

t x
≤ ≤

=
∑ subject to 

1. {0,1}, 1, 2,..., ; 1, 2,... .ijx i n j m∈ = =                                                         
2. if   , , ,  such that ( ) ( ),  then 1i j i j ijt m i j A t A m x→ ∀ ∀ = =                         
3. , , , 1ij ij i ijt x d i j x≤ ∀ ∀ =                                                                              
4. ( ) {0,1}ij ij it x d≤ ∈                                                                                     
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5. 
1

( ) 1, , , 1
n

ij ij i ij
i

t x d i j x
=

≤ = ∀ ∀ =∏                                                                                              

Constraint 1 is the mapping constraint, such that xij 
=1, if a task, ti, is mapped to machine, mj. Constraint 2 
expands on this mapping in conjunction to the 
architectural requirements and it states that a mapping can 
only exists if the architecture is mapped. Constraint 3 
relates to the fulfillment of the deadline of each task and 
constraint 4 tells us about the Boolean relationship 
between the deadline and the actual time of execution of 
the tasks. Constraints 5 relates to the deadline constraints 
of the meta-task, which will hold if and only if all the 
deadlines of the tasks, ti, i =1, 2, …n, are satisfied.  

 
4. Experimental Results 

 
4.1. Memory Power and Performance 
Management 

 
We evaluate the performance of the autonomic 

component manager on a server with four different 
memory configurations running SPEC JBB 2005 
benchmark [23]. For each configuration we measured the 
percent active pages, percent channel BW utilization and 
request inter-arrival time at the end of each additional 
warehouse launched by the SPEC JBB benchmark. We 
used the percent active pages and current memory 
configuration to compute the migration overhead in going 
to a target memory configuration. Notice that our 
performance management scheme individually maintains 
the applications hit ratio and the system’s memory access 
time. However that maintains the application-level 
performance as can be seen in Figure 4. Our power and 
performance management scheme gives the maximum 
performance/watt for the platform during the entire run of 
SPEC JBB.  

 
4.1.1. Analysis of Performance/Watt. Figure 4 gives the 
performance/watt of a power and performance managed 
memory system (Scheme 2) as we discussed in Section 3.1 
compared to one without (Scheme 1). Clearly Scheme 2 
outperforms Scheme 1 at all points during the run of 
SPEC JBB.  

 

In summary, the dynamic data migration yields energy 
savings of about 48.8 % (26.7 kJ) compared to traditional 
techniques (without migration) measured at a meager 
4.5%.  Furthermore, the transition overhead is about 18.6 
ms which leads to energy savings of 1.44 kJ per 
millisecond of transition overhead time.  Consequently, our 
scheme gives additional savings of another 50% (2 GB) for 
an overhead of 16.9 ms during zero workload and gives the 
maximum performance/watt at all points during the run of 
the application with a maximum improvement of 88.48%. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: Performance/Watt Comparison 

 
4.2. Game Theory 

 
Based on the size of the problems, the experiments 

were divided in two parts. For small size problems, we 
used an Integer Linear Programming tool called LINDO 
[24]. LINDO is useful to obtain optimal solutions, 
provided the problem size is relatively small. Hence for 
small problem sizes, the performance of the cooperative 
game is compared against 1) the optimal solution using 
LINDO and 2) the min-min heuristic [25]. The min-min 
heuristic does not consider power as an optimization 
constraint; however, it is very effective for the 
optimization of the makespan. Thus, the comparison 
provides us with a wide range of results. On one extreme 
we have the optimal algorithm, on the other a technique 
which focuses on the optimization of makespan. For large 
size problems, it becomes impractical to compute the 
optimal solution by LINDO. Hence, we only consider 
comparisons against the min-min heuristic.  

The system heterogeneity is captured by the 
distribution of the number of CPU cycles, cij, required by 
different tis on different mjs. Let C denote the matrix 
composed by cij, where i = 1, 2, …, n and j = 1, 2, …,m. 
The C matrix was generated using a Gamma distribution 
based method [26]. The Gamma distribution method 
requires input of mean value along the task axis, w, which 
we set to 200. di, the deadline task ti was generated based 
on the C matrix. Let wi be the largest value among the 
elements in the i-th row of C and let X = n/m, where n is 
the number of tasks and m is the number of mjs. di is 
calculated as K × wi × X, where K is a pre-specified 
positive value for adjusting the relative deadlines of tasks. 

For small size problems, the number of mjs was fixed 
at 5, while the number of tasks, ti, varied from 20 to 40. 
The number of DVS levels per mj was set to 4. The 
maximum CPU speed of each mj was set to 1.0 and the 
minimum speed was set to 0.25. It is assumed that other 
CPU speeds are distributed uniformly between the 
maximum and minimum speeds. Therefore, the other two  
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Figure 5: Comparison with Optimal (K=1.5, 1.0) 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6(a): Power Savings (K=1.5) 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 6(b): Power Savings (K=1.0) 
 

levels of CPU speed are set to 0.75 and 0.5. For large size 
problems, the number of mjs was fixed at 10, while the 
number of tasks varied from 50 to 100. The number of 
DVS levels per mj was set to 8. Other parameters were the 
same as those for small size problems. The experimental 
results for small size problems when K is set to 1.5 and 
1.0 are shown in Figure 5. It shows the ratio of the overall 
system power consumption obtained from the two 
techniques and the optimal. Each case was run several 

times so as to gain enough confidence in the results 
reported here. The plots clearly show that the cooperative 
technique performs extremely well and achieves a 
performance level of 10%-15% of the optimal, when the 
relative deadline factor K was set at very tight bound 1.0.   

 
 
 
 
 
 
 
 
 
 
 

 
Figure 7(a): Makespan Comparison (K=1.5) 

 
 
 
 
 
 
 
 
 
 
 

 
      Figure 7(b): Makespan Comparison (K=1.0) 
 

Figures 6(a) and 6(b) show the relative performance 
of the cooperative technique and the min-min heuristic for 
large size problems when K = 1.5 and 1.0, respectively. 
From these plots, we can clearly see the savings in power. 
The min-min heuristic maps tasks onto machines which 
are running on full throttle whereas the cooperative 
technique is continuously optimizing power. Finally, we 
compare (for the same setup) the makespan found by the 
cooperative and min-min heuristic. It can be seen that the 
cooperative technique brings the power consumption 
down to 65% of the min-min heuristic, identifies a task to 
machine mapping that produces a makespan that is within 
10% of min-min. The results are shown in Figure 7. 

 
5. Conclusions 
 

In this paper, we presented a theoretical and 
experimental framework to optimize power and 
performance at runtime for e-business data centers. We 
presented performance/watt management of a memory 
system using optimization technique. Our scheme gives a 
maximum performance/watt improvement of 88.48%. We 
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also develop a Game Theory model for performance/watt 
optimization in a data center server cluster. Our 
cooperative technique brings the power consumption 
down to 65% of traditional techniques. 

We are currently performing comprehensive 
modeling and analysis of large-scale e-business data 
centers. We are also analyzing the comparative 
performance of stochastic, predictive and heuristic 
techniques on power and performance management 
applied to the data center domain.  

 
References 

 
1. A. Miyoshi , C. Lefurgy , E. Van Hensbergen , R. 

Rajamony , R. Rajkumar, Critical power slope: 
understanding the runtime effects of frequency scaling, 
Proceedings of the 16th international conference on 
Supercomputing, June 22-26, 2002, New York, New York, 
USA 

2. Application Specific and Automatic Power Management 
Based on Whole Program Analysis, 
http://cslab.snu.ac.kr/~egger/apm/final-report.pdf, August 
20th, 2004 

3.  E. N. Elnozahy, M. Kistler, R. Rajamony. Energy-Efficient 
Server Clusters. In Proceedings of the 2nd Workshop on 
Power-Aware Computing Systems, February 2002.  

4. E. Pinheiro, R. Bianchini, E. V. Carrera, and T. Heath, 
“Load Balancing and Unbalancing for Power and 
Performance in Cluster-Based Systems,” Proceedings of 
the Workshop on Compilers and Operating Systems for 
Low Power, September 2001; Technical Report DCS-TR-
440, Department of Computer Science, Rutgers University, 
New Brunswick, NJ, May 2001.  

5. V. Sharma , A. Thomas , T. Abdelzaher , K. Skadron , Z. 
Lu, Power-aware QoS Management in Web Servers, 
Proceedings of the 24th IEEE International Real-Time 
Systems Symposium, p.63, December 03-05, 2003 

6. T. Abdelzaher and V. Sharma. “A synthetic utilization 
bound for aperiodic tasks with resource requirements”. In 
Euromicro Conference on Real Time Systems, Porto, 
Portugal, July 2003. 

7. T. F. Abdelzaher and C. Lu. “Schedulability analysis and 
utilization bounds for highly scalable real-time services”. 
In IEEE Real-Time Technology and Applications 
Symposium, TaiPei, Taiwan, June 2001. 

8. A. R. Lebeck, X. Fan, H. Zeng, and C. Ellis. Power Aware 
Page Allocation. In ASPLOS, pages 105{116, 2000. 

9. Cai, L., Yung L., Joint Power Management of Memory and 
Disk, IEEE, 2005       

10. W. Felter, K. Rajamani, T. Keller (IBM ARL), and C. 
Rusu, A Performance-Conserving Approach for Reducing 
Peak Power Consumption in Server Systems, ACM 
International Conference on Supercomputing (ICS), 
Cambridge, MA, June 2005  

11. P. Bohrer, E. Elnozahy, T. Keller, M. Kistler, C. Lefurgy, 
C. McDowell, and R. Rajamony. The case for power 
management in web servers. Power Aware Computing, 
2002. Klewer Academic Publishers.      

12. M. Elnozahy, M. Kistler, and R. Rajamony. “Energy 
Conservation Policies for Web Servers”. In Proceedings of 
the 4th USENIX Symposium on Internet Technologies and 
Systems, March 2003. 

13. Q. Zhu, F. M. David, C. Devaraj, Z. Li, Y. Zhou, and P. 
Cao. “Reducing Energy Consumption of Disk Storage 
Using Power-Aware Cache Management”. In HPCA, pages 
118-129, 2004.       

14. S. Gurumurthi, A. Sivasubramaniam, M.J. Irwin, N. 
Vijaykrishnan, M. Kandemir, T. Li, L.K. John, “Using 
Complete Machine Simulation for Software Power 
Estimation: The SoftWatt Approach,” In Proceedings of the 
International Symposium on High Performance Computer 
Architecture (HPCA-8), Cambridge, MA, pages 141-150, 
February, 20. 

15. P. Rong, M. Pedram, “Hierarchical Power Management 
with Application to Scheduling”, ISLPED (International 
Symposium on Low Power Electronics and Design) 2005.   

16. M. Srivastava, A. Chandrakasan, and R. Brodersen, 
"Predictive system shutdown and other architectural 
techniques for energy efficient programmable 
computation," IEEE Trans. VLSI Systems,Vol. 4, pp. 42–
55, Mar. 1996. 

17. Paleologo, L. Benini, A. Bogliolo, and G. De Micheli, 
“Policy optimization for dynamic power management,” 
IEEE Trans. Computer-Aided Design, Vol. 18, pp. 813–33, 
Jun. 1999. 

18. S.U. Khan and I. Ahmad, "A Powerful Direct Mechanism 
for Optimal WWW Content Replication," in 19th IEEE 
International Parallel and Distributed Processing 
Symposium (IPDPS), Denver, CO, U.S.A., April 2005, p. 
86. 

19. S.U. Khan and I. Ahmad, "Non-cooperative, Semi-
cooperative, and Cooperative Games-based Grid Resource 
Allocation," in 20th IEEE International Parallel and 
Distributed Processing Symposium (IPDPS), Rhodes 
Island, Greece, April 2006. (To appear) 

20. S. Hariri, Bithia Khargharia, Manish Parashar and Zhen Li, 
``The Foundations of Autonomic Computing, edited by 
Albert Zomaya, CHAPMN, 2005.                                                                   

21. DDR2 FBDIMM Technical Product Specifications,  
http://www.samsung.com/Products/Semiconductor/DDR_D
DR2/DDR2SDRAM/Module/FBDIMM/M395T2953CZ4/d
s_512mb_c_die_based_fbdimm_rev13.pdf 

22. P. Zhou , V. Pandey , J. Sundaresan , A. Raghuraman , Y. 
Zhou , S. Kumar, Dynamic tracking of page miss ratio 
curve for memory management, ASPLOS 11, October 07-
13, 2004, Boston, MA, USA. 

23. SPEC JBB 2005, 
http://www.spec.org/jbb2005/docs/WhitePaper.html 

24. L. Schrage, Linear, Integer, and Quadratic Programming 
with LINDO, The Scientific Press, Redwood city, CA, 1986 

25. T. D. Braun, S. Ali, H. J. Siegel and A. A. Maciejewski, 
“Using the Min-Min Heuristic to Map tasks onto 
Heterogeneous High-performance Computing Systems,” in 
2nd Symposium of the Los Alamos Computer Science 
Institute, Oct. 2001. 

26. S. Ali, H. J. Siegel, M. Maheswaran, D. Hensgen  and S. 
Ali, “Task Execution Time Modeling for Heterogeneous 
Computing Systems,”  in 9th Heterogeneous Computing 
Workshop, May 2000 , pp. 185-199. 


