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Abstract

Programmability is the key hurdle towards effectively
utilizing next-generation high-performance computing sys-
tems. Current trends in CMP processor design point to the
emergence of many-core architectures, in which a single
chip will support tens to potentially hundreds of cores. Sys-
tems constructed by aggregating these processors can en-
able parallel execution of thousands of threads.

Transactional memory (TM) has been the subject of sig-
nificant interest in both academia and industry because it
offers a compelling alternative to existing concurrency con-
trol abstractions, making it especially well-suited for pro-
gramming applications on scalable multi-core platforms.
TM abstractions permit logically concurrent access to
shared regions of code, but ensure through some combina-
tion of hardware, compiler, and runtime support that such
accesses do not violate intended serializability invariants.
By doing so, transaction-based abstractions eliminate per-
nicious errors such as data races that can easily occur using
locks, without compromising performance.

While the atomicity and isolation guarantees provided by
transactions lead to greater composability and modularity
than available using locks, these guarantees may require
severe constraints on programmability. In this paper, we
describe compiler and runtime techniques that allow struc-
tured communication among atomic regions to take place,
thus selectively relaxing isolation invariants. Unlike ex-
isting proposals, our techniques are completely transpar-
ent, and provide a rational semantics for the interplay be-
tween transactions, message-passing abstractions, and ex-
ceptions.

1This material is based on work supported by the National Science
Foundation under Grant No. CSR-AES 050937.
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1 Introduction

Next-generation microprocessors built on multi-core
processor designs promise the availability of commodity
scalable parallel systems on the desktop. Effectively and
safely programming these systems is a subject of much re-
cent interest. The language community has developed new
abstractions to safely extract concurrency from programs
without increasing coding complexity. Atomic or transac-
tional regions are a simple method for specifying sections of
code which may have potential conflicts at runtime. The un-
derlying compiler or runtime system enforces safety guar-
antees on such regions of code, removing the burden from
the programmer.

Transactional memory has been the subject of signifi-
cant interest in both academia and industry because it of-
fers a compelling alternative to existing concurrency control
abstractions, making it especially well-suited for program-
ming applications on scalable platforms. Because transac-
tional memory implementations often support an optimistic
concurrency model, they can be used to safely allows specu-
lative access to data by a large number of processors without
requiring global program analysis. TM abstractions permit
logically concurrent access to shared regions of code, but
ensure through some combination of hardware, compiler,
and runtime support that such accesses do not violate in-
tended serializability invariants.

Atomic regions improve composability over locks. For
instance, if two pieces of code using locks are combined
(e.g., through function calls), the resulting behavior can be
undesirable (e.g., deadlocks, data races, etc.) unless all de-
tails about the locks are used is known (e.g., in which or-
der are the locks acquired and released, what data do they
protect, etc.). This lack of composability severly degrades
programmability. The problem is exacerbated for programs
intended to execute on highly-parallel architectures which
may support hundreds of threads accessing large complex
shared data structures.

Transactions improve composability by ensuring that the



read and write accesses of one transaction do not conflict
with the operations provide by another concurrently execut-
ing transaction. When such conflicts are detected, one of
the transactions is aborted, and required to re-execute. By
making state changes globally visible only when a transac-
tion successfully commits, programmers can reason using a
simple execution model, in which transactions execute in a
serial, one-at-a-time order.

Serializability, through atomicity and isolation con-
straints, is the key underlying property for any transactional
semantics. Unfortunately, many programs require threads
to communicate in ways that inherently violate isolation,
the property that gives at most one transaction executes at a
time. For instance, consider two transactions involved in a
two-way communication where one produces data that is to
be consumed by the other, which in turn produces data (or
sends a signal) to be consumed by the first. The existence of
such communication may be hidden by several layers of ab-
stractions, and may not even be apparent at the point where
the transactions are defined.

Current solutions cannot guarantee correct behavior for
these programs. Most implementations that uncompromis-
ingly enforce isolation would cause transactions to defer
deliver of data until commit-time, forcing neither transac-
tion to make progress. What is in fact needed is the ability
to selectively relax isolation by allowing actions performed
within the transaction to be made globally visible before the
transaction commits. The net effect of this relaxation is to
weave a larger atomic scope from a collection of smaller
ones. If a transaction T1 produces data that is consumed by
another transaction T2 and T2 subsequently aborts, any of
T1’s actions that may have implicitly depended on T2’s con-
sumption may not be reverted as well. In other words, the
effect of the communication is tantamount to the dynamic
construction of a larger atomic region comprising both T1

and T2.
In this paper, we describe compiler and runtime tech-

niques that can be used to reconcile notions of atomicity
and isolation with inherently non-isolated actions such as
message-based communication, signals, and exceptions.

2 Motivation

Our design is motivated by issues of composability and
programmability. Composability is difficult to achieve in
concurrent programs especially in the presence of errors,
synchronizaiton, or exceptions. Suppose a thread t1 in-
tended to execute atomically propagates data to thread t2. If
t1 raises an exception or encounters an error prior to com-
pletion, t2’s execution is indirectly affected, and may allow
t2 to see stale or inconsistent values. To deal with such pos-
sibilities, exceptional conditions and errors must be coordi-
nated between both t1 and t2. Modularity and abstraction is

thus negatively impacted.
Current research in software transactions[6, 7, 8, 17, 23,

21] address some of these issues through the use of open-
nesting [11, 14]. Here, the effects of an open (inner) nested
transaction are made globally visible on commit, even if
the outer (parent) transaction has not yet committed. This
semantics is in contrast to the semantics of closed nested
transactions in which the effects of a nested transaction
are only made visible once the top-most enclosing trans-
action commits. Open nesting permits relaxed isolation.
However, if the parent transaction aborts, atomicity prop-
erties are violated: the effect of the inner transaction has
already been visible to computations outside the transac-
tion. To remedy the violation, a compensation action can be
associated with each open-nested transaction. These user-
defined actions are executed upon abort of the parent, and
are intended to undo (semantically) the global effects of the
nested transaction. Unfortunately, because compensations
are user-defined, there is no guarantee that the compensa-
tion will in fact undo all necessary effects, or even feasible.

Our approach can be viewed as a middle-ground between
the restrictive programming model of closed-nested trans-
actions and the overly general model supported by open-
nested transactions. We are interested in exploring the ex-
tent to which compiler and runtime techniques can provide
relaxed isolation. While we concede that in certain cases,
semantic knowledge about a transaction’s effects are nec-
essary in order to validate isolation and atomicity proper-
ties, we believe that in most instances, efficient dynamic
dependency tracking techniques can provide the benefits
of relaxed isolation without imposing any burden on pro-
grammability.

3 Programming Model

We consider a programming model in which operations
on shared data are protected within an atomic region. Be-
sides reads and writes to shared memory, a thread may in-
duce effects via a communication or signal, raise an ex-
ception, or spawn other threads within the dynamic context
of an atomic region. For the purposes of exposition, we
consider data transmitted via a communication event (e.g.,
sends or receives on a channel) as being non-isolated; all
other data values read or written by a transaction are con-
sidered isolated. The receipt of non-isolated data by one
transaction produced by another results in a dependency
between the two transactions. If the producer aborts due
to a serializability violation of its isolated data, all depen-
dent transactions established as a result of communication
of non-isolated data must also abort. If the recipient of non-
isolated data aborts, the producer is also obligated to abort,
although it may be possible to limit the extent of the abort
to the point immediately prior to the communication that
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established the dependency. Observe that before the com-
munication was established, the producer had executed in
isolation.

While our design generalizes the behavior of transac-
tions (i.e., communication within transactions is supported),
the underlying implementation is more complicated be-
cause of the need to (a) effectively track dependencies
among transactions, and (b) provide mechanism to revert
potentially many concurrently executing dependent trans-
actions to preserve global atomicity properties.

(a)

(b)

Figure 1. (a) Transactions can interact in non-
trivial ways through the transmission of non-
isolated data. (b) When a transaction aborts,
the state of all threads that have witnessed
its effects must also be reverted.

To illustrate these ideas, consider Fig. 1(a) that shows the
interaction of a collection of transactions. Transaction initi-
ates a non-isolated communication action that is witnessed
by Transaction 1. Transaction 1 subsequently initiates com-
munication that is seen by transaction 3. Further communi-
cation between 1 and 3 occur before transaction 3 aborts. At
this point, all of transaction 3’s dependent actions executed
by other transactions must also be aborted (see Fig. 1(b)).

The shaded blocks in memory show the locations affected,
and the gray boxes in the transactions highlight the compu-
tations that must be reverted. It is clear that transactions 1
and 2 can no longer attempt to commit because of the abort
of transaction 3. Whether they are forced to abort com-
pletely, i.e., whether the transactions must be re-executed
in their entirety, or whether they need only be reverted to
the point of the initial communication which established a
dependency is an artificat of the implementation. Our cur-
rent implementation will in fact avoid reverting the entire
transaction.

4 Motivating Example

fun h() =

let fun g() =

...; x = recv(ch1)5;

...; send(ch2,x+1)6; ...

fun f(v) =

spawn(g())3

in ...;

send(ch1,v)4;

...;

end

in ...;

spawn(f(v) handle Retry => f(v’));)1

...; y = recv(ch2)2; ...

end

spawn(h())

Figure 2. Concurrent programs compose
poorly and violate atomicity in the presence
of exceptions. The super scripts represent
transition edges given in Fig. 3

To further motivate the need for relaxed isolation, con-
sider the example shown in Fig. 4. In this program, the
thread evaluating function h spawns a new thread to evalu-
ate f(v) . Function f in turn spawns a thread to evaluate
g . In addition to these function calls, these three threads
communicate with one another using synchronous message
passing. For example, f sends value v on channel ch1 ,
and blocks until g reads that value (recv(ch1) ). Sim-
ilarly, g sends a value (the result of x+1 , where x is
bound to the value previously read from ch1 ) along chan-
nel ch2 . The outermost thread computing h synchronizes
on this channel and reads the value deposited by g . When
all goes well, the value y in h is simply v+1 . The control
and data flow for this simple example are given in Fig. 3(a).
Control flow is depicted as solid arrows and data flow as
dashed. Threads are modeled as downward growing stacks
and channels as a list of ordered list of values.
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Issues become substantially more complicated in the
presence of exceptions and errors. Suppose that in the
course of evaluating f(v) an exception is thrown. If the
exception is thrown before value v is deposited on chan-
nel ch1 , both the threads evaluating g() and h() block.
Simply terminating the thread spawned from within f is in-
sufficient to unblock the outer thread. Therefore, the excep-
tion handler must pass some value to g through channel
ch1 . In this situation a simple re-execution of f would
suffice.

(a)

(b)
Figure 3. Control and data flow when (a) no
exception is raised, and (b) when an excep-
tion is raised after f sends value v on chan-
nel ch1 .

Suppose the exception is thrown after the message is sent
(see Fig.3(b). Since the exception handler simply retries
the call (supplying a new argument v’ ), there now exists a
race condition on channels ch1 and ch2 from two threads
both computing g() . In this case it is unclear which value
will eventually be received by h() . Only one value from
the two threads executing g() will be read, resulting in
the other producer thread blocking. Of course, the handler
could attempt to terminate the thread computing g() be-
fore it retries, but the race condition still exists as observed
by h() since the message send on channel ch2 may or
not have happened at the time the thread is terminated. If
the send has not occurred, the receipt on channel ch2 ob-
serves v’+1 , and if it has, the receipt observes v+1 .

To ensure that f ’s effects are atomic with respect to g

fun h() =

let fun g() = atomic (as before)
fun f(v) =

let as before
end

in ...;

spawn( atomic (f(v))

handleAbort Retry => f(v’))

...;)

end

spawn( atomic(h()))

Figure 4. Ensuring atomicity using safe spec-
ulative threads.

and h requires weaving a complex exception handling pro-
tocol through these procedures. What is really required is
a mechanism that allows the Retry exception to effec-
tively roll-back any read performed on channel ch2 by the
outer thread, since such reads depend on the publication of
a stale value v from the inner thread. In the absence of such
a mechanism, the actions performed by f in the presence
of exceptions are no longer atomic. Remedying the atom-
icity failure thus requires not only revocation of all threads
spawned within f , but also any effects on other threads that
were propagated either directly by f or indirectly through
other spawned threads.

Using transactions that support non-isolation, we can im-
plement a composable and safe version of our example pro-
gram.

The modifications to the original program are slight.
Program regions that must be executed atomically are
marked as such. The nested atomic region for the call f(v)
is a nested transaction. If the Retry exception is raised
during its evaluation, the current transaction is aborted, and
a new transaction to evaluate f(v’) is instantiated. Ob-
serve that these changes do not entail propagation of error
handling protocols among the different transactions in the
example. The implementation of ensures the restoration of
a consistent global state that is untainted by any of f ’s ef-
fects. In this example, this entails termination of the thread
spawned within f , and resetting the control state for the
thread computing h to be that immediately prior to the read
on channel ch2 (assuming earlier operations in h do not
operate over channel ch1 or ch2 ). From the perspective
of the outer transaction there is no visible effect as a result
of the revocation that occurs within the Retry handler in
f . Composability and atomicity is thus maintained.

5 Implementation
Our implementation is incorporated within MLton [10],

a whole-program optimizing compiler for Standard ML.
The implementation is focused around a dynamic depen-
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dency graph which tracks dependencies among transactions
that exercise relaxed isolation. We utilize light-weight per-
thread checkpointing to revert aborted speculations [25] and
synthesize safe state based on the dependency graph. The
main change to the underlying infrastructure is the insertion
of write barriers to track updates to shared data. Per-thread
checkpoints are established by capturing first=class contin-
uations. State restoration is thus a combination of restoring
continuations as well as reverting references. The imple-
mentation is roughly 2K lines of code to support our data
structures, checkpointing, and restoration code.

All experiments are performed on an Intel P4 2.4 GHz
machine with one GByte of memory running Gentoo Linux,
compiled and executed using MLton release 20051202.

5.1 Dependence Graph
Ou implementation tracks how transactions are depen-

dent on one another. We can model a transaction’s exe-
cution as a sequence of nodes; each node stores a trans-
action’s continuation. The initial node corresponds to the
transaction’s creation point, and subsequent nodes refer to
points within its execution. The last node within the chain
is the most recently monitored action for the transaction.
We impose an ordering on nodes to define a global time-
line. Each successive node within a transaction’s chain is
dependent on previous nodes within the chain. We define
a transaction’s current node as the last node within its exe-
cution chain. A communication action establishes an edge
between two nodes belonging to different transactions.

The purpose of monitoring such inter-thread dependen-
cies is to dynamically determine who has been affected by a
transaction’s execution. When a transaction is aborted, we
traverse the graph through a depth first search starting from
the current node of the transaction to identify non-isolated
actions. Such a search will correctly discover all transac-
tions (and the precise point in their execution) which depend
on the values the aborting transaction has modified and/or
created. This depedence graph thus enables a sequence of
cascading aborts to be effected based on the dynamic com-
munication behavior of the program.

5.2 Graph Representation and Optimiza-
tions

The main challenge in the implementation was develop-
ing a compact representation of the communication graph.
We have implemented a number of node/edge compaction
algorithms allowing for fast culling of redundant informa-
tion. For instance, any two nodes that share a backedge can
be collapsed into a single node. We also ensure that there
is at most one edge between any pair of nodes. Any addi-
tion to the graph affects at most two transactions. We use
transaction-local meta-data to find the most recent node for

each transaction. The graph is thus never traversed in its
entirety. Furthermore, we do not need to store the entire
graph for the duration of program execution. As the pro-
gram executes, parts of the graph will become unreachable.
The graph is implemented using weak references to allow
unreachable portions to be safely reclaimed by the garbage
collector, thus greatly reducing memory overheads.

6 Case Study - Swerve

Swerve [10] (see Fig. 5) is an open-source third-party
Web server wholly written in Concurrent ML (CML) [15].
The server is composed of five separate interacting modules.
Communication between modules and threads makes exten-
sive use of CML message passing semantics. Threads com-
municate over explicitly defined channels on which they
can either send or receive values. We consider the interac-
tions of three of Swerve ’s modules: the Listener, the
File Processor , and the Timeout Manager . The
Listener module receives incoming HTTP requests and
delegates file serving requirements to concurrently execut-
ing processing threads. For each new connection, a new
listener is spawned; thus, each connection has one main
governing entity. The File Processor module handles
access to the underlying file system. Each file that will be
hosted is read by a file processor thread that chunks the file
and sends it via message-passing to the thread delegated by
the Listener to host the file. Timeouts are processed by
the Timeout Manager through the use of timed events
on channels. Threads can poll these channels to check if
there has been a timeout. In the case of a timeout, the chan-
nel will hold a flag signaling time has expired, and is empty
otherwise.

Each request is processed through many communicating
threads located in separate modules, and its completion de-
pends on the timeout quantum. We can model this execu-
tion behavior through transactions which are managed by
a timer resource. Transactions created by the Listener
and File Processor are closed over a timer resource.
If at the point of commit, the resource has expired, a se-
rializability violation is observed, and the transaction is
aborted. The web server is then ready to process another
request, or alternatively re-process the same request. If the
request completes, the timer is reset, and the transaction
commits the data it has received. Utilizing transaction thus
avoids explicit thread clean-up code when a timeout occurs.
Such procedures break modularity and composability be-
cause they span multiple modules (see the dashed lines in
Fig. 5). Note that relaxed isolation is critical to the im-
plementation: while each module should execute transac-
tionally, the complex interactions among them make it in-
feasible to assume a closed-nested transaction model. Data
can be communicated by the File Processor to the
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Figure 5. Swerve module interactions for
processing a request (solid lines) and error
handling control and data flow (dashed lines)
for timeouts. The number above the lines in-
dicates the order in which communication ac-
tions occur.

Listener provided that a timeout does not occur before
all file chunks are transmitted. The atomicity invariant is
that all chunks are sent from the File Processor to
the Listener or none are.

6.1 Evaluation
To measure the cost of injecting speculations into

Swerve , we hosted and requested the javaDocs API in
HTML format. We manually injected timeouts every ten
requests and made sure no other request is timed-out by
setting the timeout quantum large enough for the remain-
ing nine requests. Our measurements are an average of one
hundred runs. The average file sized per request was about
10K.

The results are shown in Table 1; the most notable are
total overheads for runtime and memory. The cost of moni-
toring transactions and their transitive dependencies adds on
average about three percent runtime overhead and about five
percent memory overhead. On average about nine trans-
actions are affected when a timeout occurs, a regular re-
quest usually utilizes about fifteen transactions. Of the 247
channels Swerve uses to communicate between threads,
on average 4 must be cleared of non-isolated values when
the request is aborted. Similarly, about four shared mem-
ory locations must be reverted per revoked transaction and
12 memory location induce dependencies between transac-
tions.

7 Related Work
Recent work on safe futures for Java [22] bear some sim-

ilarity to the non-isolated transactions defined here insofar
as both provide a revocation mechanism based on tracking
dynamic data and control-flow. However, safe futures do
not compose with other Java concurrency primitives, and
the criteria for revocation is automatically determined based
on dependency violations, and is thus not under user con-
trol.

Thread level speculation (TLS) techniques provide
safety guarantees on the execution of speculative threads [5,
19]. TLS is typically implemented using one of two main
strategies: helper threads and explicitly parallel speculative
threads. These threads are injected by the compiler and of-
ten require special hardware, such as a speculative cache co-
herency protocols or explicit write buffers, to provide safety
guarantees. Helper threads [2, 16] are used to help reduce
the cost of high latency instructions but do not modify pro-
cessor state. Such threads are mainly used to precompute
load addresses or branch directions, but all modifiable state
is computed by a non-speculative thread.

Our work follows a long line of previous research inves-
tigating higher-level concurrency abstractions for program-
ming next-generation parallel architectures [8, 9, 3, 12, 6,
24, 7, 4], However, since we provide support for relaxed
isolation, our design permits a greater degree of interac-
tion among transactions than currently possible. Selective
breakage of isolation can often be useful both to exploit
available processor cycles, and to support programming
idioms that require communication among concurrently
executing threads (e.g., producer/consumer relationships).
Transaction aborts still occur when serializability violations
are detected; however, when such violations do occur, the
implementation automatically tracks and reverts any other
transaction that may have witnessed data produced by the
aborted one. Although transactions offer the ability to by-
pass isolation through open nesting [13, 20, 14, 11, 14],
users must specify compensations to revert any state which
escapes the nested transaction. Harris et al. proposes a
transactional memory system [7] for Haskell that introduces
a retry primitive to allow a transactional execution to
safely abort and be re-executed if desired resources are un-
available. However, this work does not propose to track or
revert effectful thread interactions within a transaction.
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