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Abstract

This paper describes the ongoing implementation of the
SimX system for multi-experiment computational studies
within the SCIRun problem solving environment. The mod-
ular, component-based nature of SCIRun enables a natural
integration of the SimX runtime modules with the simula-
tion codes that constitute the experiments underlying the
study, and provides a rich steering and visualization envi-
ronment for study interactions. Experience with a compu-
tational study involving a SCIRun defibrillator device sim-
ulation code (DefibSim) highlights these advantages, and
identifies several avenues for future work.

1 Introduction

SimX is a parallel software system for conducting inter-
active multi-experiment computational studies. Its design
was motivated by the recognition that computer simulation
has become an integral part of the scientific method, often
delivering deeper insights into complex physical processes
than possible using only the traditional dyad of theory and
experiment. Computer simulation manifests itself in the
scientific exploration process in the form of computational
studies built out of multiple computational experiments cor-
responding to individual runs of simulation software. Ex-
amples of such studies range from exploration of design
spaces in engineering to molecular simulations for drug de-
sign. Driven by the availability of higher-performance com-
putational resources, the number of experiments involved in
computational studies has increased dramatically, and their
structure has become more complex.

However, what has not fundamentally changed is the pat-
tern using which such studies have been conducted. Typi-
cally, the scientist (1) makes some a priori decisions about
simulation parameters; (2) runs the simulation, or a batch
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of simulations; and (3) analyzes the output. These steps are
repeated as necessary; the organization of the study is left
to the scientist or domain application developers. While this
is a reasonable pattern for studies involving small numbers
of experiments, for hundreds and thousands of experiments,
the need to set up individual experiments manually or using
simple predetermined parameter variation patterns becomes
a severe limitation. For efficient exploration, the scientist
needs high-level tools for manipulating collections of simu-
lations, and the ability to adjust the parameter space traver-
sal pattern continuously, based on partial results aggregated
from large numbers of running experiments.

The SimX system aims to support intuitive, high-level
management of computational studies by permitting users
to interact at the level of aggregate studies (instead of in-
dividual experiments), by providing continuous feedback
about running simulations, and by dynamically adapting al-
location of system resources to reflect changing priorities
set by the user. To achieve these goals, SimX relies on a
more permeable interface between parallel system software
and numerical simulation codes than is assumed by state-
of-the-art middleware in grid computing [7, 2, 4, 6] and
problem solving environments [8, 5, 3] that target related
problems. These interfaces help in two primary ways:
• they enable SimX to gather knowledge about how in-

dividual experiments are contributing to progress to-
wards overall study goals; and

• they provide information about the internal state and
resource requirements of individual experiments to en-
able substantially more efficient mapping of these ex-
periments to computational resources.

A prototype standalone implementation of the SimX sys-
tem was described in an earlier paper [10], along with a sim-
plified bridge design study highlighting the kinds of system-
level optimizations SimX is capable of performing and their
impact on overall user experience.

This paper describes our ongoing efforts to build a
more complete implementation of SimX in the context of
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the University of Utah’s SCIRun problem solving environ-
ment [8]. SCIRun is a modular, component-based system
for interactive scientific computing applications, which per-
mits the expression of a simulation experiment along with
its steering and visualization interfaces as a dataflow net.
SCIRun provides the foundation for the CCA-compliant [1]
SCIRun2 framework [11]. Implementation of the SimX
system within SCIRun offers several advantages:

1. It permits natural component-level integration of the
various SimX runtime modules with existing simu-
lation functionality already expressed in component
form (a monolithic simulation code would have re-
quired extensive rewrites to provide the permeable in-
terface SimX relies upon);

2. It supports easier experimentation with alternate im-
plementations for the SimX modules, necesssary as we
gain experience with different applications;

3. It enables us to leverage existing scientific computing
software, especially tools supporting user interaction
and visualization, both in SCIRun/SCIRun2 proper
and in other toolkits to which SCIRun2 provides an
interface, including CCA; and finally,

4. It ensures access to our techniques through a well-
established framework, which we expect to be increas-
ingly common in scientific computing applications,
thus increasing the potential for practical impact.

As an example of the third point above, we have exper-
imented with the SimX implementation using a computa-
tional study built around an existing SCIRun-based defib-
rillator design simulation code (DefibSim) [9]. In addition
to testing our implementation, experience with this applica-
tion has validated the advantages above and exposed several
avenues for future development of the SimX system.

The rest of this paper is organized as follows. Section 2
briefly reviews the SimX architecture and its standalone im-
plementation. Sections 3 and 4 describe in turn, the SimX
implementation within SCIRun and our experiences with
the defibrillator design study. We conclude by identifying
several next steps for the SimX system in Section 5.

2 SimX Architecture
A SimX computational study involves the systematic ex-

ploration of a design or parameter space of computational
experiments so as to identify a desired target set. The latter
is usually indirectly specified, in terms of the design space
points where the experiment outputs defining the perfor-
mance or observation space, satisfy certain constraints.

2.1 An Example Computational Study

Our earlier paper [10] described a computational study
looking at the problem of designing an elastically deform-
ing bridge with four supports, two of which are fixed at the

Figure 1. The Pareto optimal points for the
bridge design study in the design space and the
performance space (bottom right overlay).

endpoints. This study’s design space was defined in terms
of two parameters specifying the locations of the two non-
fixed supports. The objective was to find a set of bridge de-
signs, which best traded off among two performance mea-
sures: the cost of bridge construction and the maximal de-
formation of the bridge. Formally, this objective translates
to identifying the Pareto optimal points, the target set of
parameter points such that there is no other point that can
improve upon all dimensions of the performance metric.

SimX permitted this study to be managed at a high level:
the user provided (1) the individual computational simu-
lations, capable of computing deformation of the bridge
(modeled as a one-dimensional rod elastically deforming in
two dimensions) given specific values for the parameters
and a predefined cost function; (2) specifications of the pa-
rameter and performance space domains; and (3) require-
ments on the target set of interest. The underlying sys-
tem automatically made decisions about which parameter
points to simulate, and in what order, so as to provide in-
creasingly refined estimates of the Pareto frontier. Figure 1
shows the Pareto optimal points identified for this study in
the design and performance spaces: the former also shows
which parameter points were evaluated by SimX. The non-
uniformity of these evaluations highlights a major advan-
tage of SimX, namely its ability to dynamically allocate
computational resources to make progress towards the (pos-
sibly changing) high-level objectives of the study.

2.2 SimX Runtime Modules

The SimX system supports such computational studies
using the high-level architecture shown in Figure 2. The
core functionality of the system is realized by two modules,
the active sampler and the resource allocator. A shared
object space layer provides a machine-wide repository of
shared state, including both simulation checkpoints and dif-
ferent meta-information about the ongoing study.
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Figure 2. Architecture of the SimX platform.

The active sampler converts user specifications of pa-
rameter and observation space domains, the target set, and
priority/time target/precision functions into a collection of
sample points in the parameter domain for which simula-
tions need to be run. Whenever new user input arrives
(communicated to the active sampler by the user interface
modules), the sample set is adjusted. The active sampler
occupies an intermediate position between system and ap-
plication software. Adding domain knowledge to the sam-
pler is likely to enhance its performance, but narrow the
applicability of the system; making the sampler completely
application-independent may result in suboptimal sampling
strategies in important cases.

The resource allocator manages the pool of simulations
of the computational study. It receives its directives from
the active sampler module via a task list, and responds by
starting new simulations and modifying the parameters of or
terminating active ones. The goal of the resource allocator
is to optimize completion time for these simulations.

Standalone SimX The standalone implementation of the
SimX architecture described in [10] relied on two types of
communicating processes: managers and simulation con-
tainers. Simulation containers constitute the worker pool to
which the manager farms off individual simulations. These
processes communicate via a generic satellite interface; in
the standalone implementation, the processes are just stan-
dard UNIX processes, and the satellite interface is imple-
mented using TCP socket calls.

In addition to these explicit interactions, the processes
also implicitly communicate using the shared object space
layer. Simulations running within the simulation contain-
ers write checkpoints and results to this layer, while man-
ager processes optionally write meta-information about the
study; this information is read by other simulations and the
manager. The dominant usage pattern indexes the informa-
tion using the parameter space coordinates, so our imple-
mentation of the layer, SISOL, provides a spatially-indexed
interface: objects are associated with spatial coordinates,
and can be retrieved using neighborhood queries.

3 SimX/SCIRun Integration

3.1 SCIRun Architecture

SCIRun applications are composed out of modules con-
nected together via datalinks from the output data port of
a module to the input port of another [8]. The resulting di-
rected acyclic graph is called a dataflow net, a reference to
SCIRun’s dataflow model of computation.

The SCIRun runtime associates each module with its
own thread, which executes the module’s code. The code
blocks until the data in the module’s input ports are avail-
able, does some calculation, and then sends data to the mod-
ule’s output port. The SCIRun environment flows this data
to the input ports of other modules, and triggers their exe-
cution. Thus, executing a module can cause all the modules
reachable from to it to execute in the DAG’s partial order,
as the data is sent down the DAG.

Each module can also optionally be associated with a
user interface (UI) module, which is executed whenever
the user clicks on a module. The UIs are the way a user
can interactively steer a SCIRun application, by altering the
parameters used in the code associated with the application
module and viewing any information the latter provides.

3.2 SimX Modules and System Architecture

Integration of SimX within SCIRun requires both addi-
tional modules (reflecting the various aspects of SimX func-
tionality described in Section 2) and a system architecture
more suitable for a computational study environment.

Instead of the traditional single SCIRun process asso-
ciated with a steerable application, SimX/SCIRun-based
computational studies rely upon a front-end SCIRun pro-
cess and several instances of back-end SCIRun processes.
The front-end process runs on the user’s terminal and
permits interaction with the ongoing study like a normal
SCIRun session. The back-end processes, optionally run on
remote computers, correspond to the simulation container
processes, and perform the actual computation of the study.

The front-end process includes two modules: SimX-
Manager and SelectExperiment. The first module com-
bines the functions performed by the SimX manager and
active sampler components, and is responsible for selecting
a subset of experiments from the design space to explore,
issuing these experiments to simulation container SCIRun
processes, collecting the results, and sending the results to
the SelectExperiment modules. We are currently separating
out the sampler functionality into its own module to allow
users to plug-in different sampler policies. SelectExper-
iment modules provide UI functionality to allow users to
examine the completed experiments and pick an experiment
to send downstream for visualization. We are extending this
module to allow the user to visualize progress on the entire
study instead of the results of just one experiment.



The back-end processes augment the existing SCIRun
application net with an additional SimX module. Ar-
biter modules are responsible for communicating with the
SimXManager modules on the manager process, retrieving
experiment parameters, and executing the net that performs
the simulation. Arbiter modules require the use of a down-
stream helper module, which receives the performance met-
rics of the initiated experiment and passes them back onto
the Arbiter module; the latter passes these results to the
manager process and receives the next piece of work.

Both the front- and back-end processes also utilize ad-
ditional Shared Object Layer Reader/Writer modules
to read or write data (currently, checkpoints) into the
Shared Object Layer. The current implementation supports
SCIRun’s primitive Fields datatype, and is being extended
to include other datatypes. As the SimX implementation
matures, additional modules to handle transformations to
and from checkpoints will also be developed.

The component- and dataflow nature of SimX/SCIRun
permits reuse of existing application nets as the basis for
larger computational studies with minor (if any) code mod-
ifications. As an example, consider the defibrillator device
simulation described in Section 4, whose original net in-
cludes four main subnets that (1) allow users to input ex-
periment parameters (thereby steering the experiment); (2)
run the experiment; (3) visualize the experiment results; and
(4) calculate the experiment’s performance metrics. Fig-
ure 3 shows the SCIRun nets for the simulation container
(top) and manager processes (bottom) built out of the origi-
nal nets primarily by manipulating module linkages. The
simulation container net retains the original simulation-
execution and performance metric-extraction subnets, and
replaces the user input modules with SimX Arbiter mod-
ules (top right). An extra connection is provided between
the performance metric-extracting subnet and the Arbiter
helper module (bottom left). Finally, the Shared Object
Layer Writer module is added to the net (right), so that the
result of the simulation can be stored.

The manager net retains the original visualization sub-
net, while replacing the user-input and the simulation ex-
ecution nets with the SimXManager and SelectExperiment
modules. Notice that the two subnets are unconnected. This
is because the SimXManager subnet is executed whenever
a new experiment result arrives, but the SelectExperiment
modules get executed only as a result of user intervention.
Further downstream, a Shared Object Layer Reader module
(left) reads the experiment results of the user-selected ex-
periment, and sends it to the visualization subnet (bottom).

4 Defibrillator Design Computational Study

To evaluate the performance of our integrated
SimX/SCIRun system, we experimented with a com-
putational study looking at defibrillator device design.

Figure 3. SCIRun nets for the simulator con-
tainer (top) and manager (bottom) processes.



The underlying simulation code is an existing SCIRun
application net, DefibSim [9], which takes as its inputs a
mesh representing the conductivity of the human torso, the
positions of two electrodes, and the potential difference
between the electrodes, and calculates as its output the
electric potential inside the torso mesh.

The problem is governed by the Poisson equation relat-
ing the local conductivity tensor, the voltage over the do-
main, and the current source. The discrete form of the equa-
tion approximates the divergence of the electric field with
the stiffness matrix A and the voltages at the nodes with
the vector Φ. They yield a zero current source, the sys-
tem: AΦ = 0. The electrodes at the front and back are
modelled as Dirichlet Boundary conditions, and are incor-
porated into the equation by eliminating from Φ the nodes
with known potentials. The simulation code solves the sys-
tem A′Φ′ = b, where Φ′ is the set of unknown electric
potentials in the torso and A′ and b represent the adjusted
stiffness matrix and RHS respectively.

The SCIRun net loads the torso mesh into memory at
initialization, and reads the electrode meshes from transfor-
mation subnets, which contain UIs to move the electrodes
on the torso surface and set the magnitude of the potential
difference between the electrodes. Every time the user alters
the position or strength of the electrodes, the new stiffness
matrix A′ and RHS b are re-calculated, and the new system
is solved. The gradient, ∇Φ′, is then taken and passed on to
the visualization subnet for rendering (Figure 4).

The study’s design space consists of parameters defin-
ing the electrode position and strength, and the performance
metric involves 4 dimensions: uniformity (variations in the
electric potential in the heart volume), effectiveness (per-
centage of heart volume whose potential gradient is above
the activation threshold), damage (percentage of heart vol-
ume whose potential gradient is above the damage thresh-
old), and the electric potential between the electrodes. The
study’s objective was to find the points in the design space
where the performance metrics yielded the best uniformity
and effectiveness while keeping damage and electric poten-
tial within specified bounds.

4.1 Performance Evaluation

The application as described above has 5 input param-
eters that define the design space: coordinates of the front
electrode (2 parameters), coordinates of the back electrode
(2 parameters), and the potential difference between the
electrodes. To simplify our analysis, we reduced the prob-
lem into 2D and 3D design problems by fixing the coordi-
nate of the back electrode and fixing one of the coordinates
of the front electrode (for 2D problem).

We measured study runtimes on a homogeneous IBM
eServer cluster comprising 256 nodes, each with two 64-
bit 2.2 GHz PowerPC 970 processors and 2 GB RAM, in-

Figure 4. Visualizing one experiment from the
defibrillator study.

terconnected using a GbE network. The configurations in-
volved a single SCIRun manager process, four SISOL pro-
cesses serving the Shared Object Layer, and varying num-
bers of simulation container SCIRun processes. A typical
experiment runs for 2.35 seconds, of which 0.25 seconds
is used to calculate A′ and b from A, 0.5 seconds is used
to solve for Φ′, and 1.5 seconds is used to calculate ∇Φ′;
various other tasks account for the rest.

Table 1 shows the study runtimes seen using different
sampler strategies on different numbers of simulation pro-
cesses for the 2D and 3D design problems. The grid sampler
issues experiments for all points at a given refinement level;
the active sampler identifies points where performance met-
ric values are higher than their neighbors, and evaluates
higher resolution points only in their vicinity [10]. Our re-
sults show that the SimX/SCIRun system scales well up to
64 processors; at 128 processors, all configurations face a
load imbalance problem because the simulation containers
co-located with the SISOL servers are able to complete their
experiments faster, and thus receive a higher load. We also
find the active sampling strategy working better for the 2D
design problem, where it cuts down the number of experi-
ments by 80%, as compared to the 3D case, where the im-
provement is only 40%.

5 Next Steps

We have conducted additional analyses using the defib-
rillator study. While space limitations prevent us from in-
cluding the details, these analyses have identified several
avenues for further development of the SimX/SCIRun sys-
tem that we summarize below.
Steering/visualization of entire studies As shown in Fig-
ure 4, by leveraging existing SCIRun visualisation nets,
SimX/SCIRun permits the user to interactively select and



2D Grid Sampler 2D Active Sampler 3D Grid Sampler 3D Active Sampler
No. of Time Load of Time Load of Experi- Time Load of Time Load of Experi-

simulation (in sec) busiest (in sec) busiest ments (in sec) busiest (in sec) busiest ments
processes worker worker issued worker worker issued

1 9100 4096 1790 760 760 9160 4096 5217 2329 2329
2 5673 2049 1074 385 769 5702 2051 3313 1183 2365
4 2842 1025 555.2 199 788 2856 1025 1371 608 2416
8 1427 514 315.6 98 771 1278 567 771.4 340 2418

16 818.6 257 146.4 51 787 717.0 257 421.9 148 2330
32 359.3 129 83.80 28 795 362.5 156 218.3 88 2348
64 181.4 65 42.66 17 881 182.2 65 123.7 43 2390

128 134.0 44 39.31 12 1035 95.62 36 95.35 25 2511

Table 1. Scalability of the SimX/SCIRun system on the defibrillator study. The design space is refined
6 times for the 2D samplers, 4 times for the 3D ones, before the study is complete. Checkpoints are
written to the shared object layer for visualization purposes.

view the results of individual completed simulations in a
study. However, what is missing are good mechanisms to
allow users to visualize, in the aggregate, intermediate re-
sults of the study as a whole and steering mechanisms to
permit dynamic updating of study objectives.
Advanced checkpoint reuse The run-time breakdown of
the defibrillator simulation shows limited overall benefit
from reuse of result checkpoints to improve the iterated
solver performance, unlike what we saw in the bridge de-
sign study [10]. What is likely to be more useful are
schemes that employ similar reuse ideas to improve the gra-
dient computation step: this in turn requires checkpointing
and reusing intermediate execution state in the simulation.
Active sampling schemes The 3D version of the study
shows that active sampling is less effective in higher di-
mensions. Our analysis shows that this happens because
the sampler resolves all parameter dimensions equally, even
when the performance values exhibit different sensitivity.
Incorporating this knowledge in the sampling policy, e.g.,
in our case the fact that the electrode voltage difference di-
mension can tolerate lower refinement, can yield similar or
better study results with substantially fewer experiments.
Shared object layer improvements Our experiments show
the need for two improvements to our SISOL implementa-
tion. First, with larger numbers of simulation processes, the
overhead of checkpoint transfer to/from the layer becomes
a significant contributor to the overall runtime. Utilizing
a higher bandwidth interconnect is one way of alleviating
this issue, as is developing a caching implementation of the
server; the latter also has the positive side-effect of improv-
ing load balance across the system.

The second improvement stems from the observation
that in the 3D version of the defibrillator study, more check-
points were generated than the object layer is able to hold in
memory. Incorporating application-level knowledge about
which checkpoints are most likely to be valuable in terms of

providing the most savings in subsequent reuse, can guide
SISOL policies for deciding which objects to retain in mem-
ory and which to drop (or flush to disk).
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