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Abstract 

Some parts of our recent efforts on establishing a 
technical foundation for wide-area distributed real-time 
computing (DRC) and distributed time-triggered 
simulation (DTS) are briefly reviewed.  The basic 
building-block of our technology framework is the Time-
triggered Message-triggered Object (TMO) specification 
and programming scheme.  The TMO scheme for local-
area DRC has been established in a sound form and its 
practicality and attractiveness have been extensively 
demonstrated.  However, its extension to fit into wide-
area-network based DRC is in an early stage.  The 
distributed time-triggered simulation (DTS) scheme is a 
new type of an approach to real-time simulation based on 
parallel / distributed computing.  The TMO scheme 
facilitates DTS in efficient forms.  Recent developments in 
TMO-structured wide-area DRC and DTS and the 
supporting tools are briefly reviewed.  
 

1.  Introduction 

While local area distributed real-time computing (DRC) 
is a steadily advancing technology field with many 
immature aspects in its core at this time, wide-area DRC is 
in its infancy.  Efforts to create wide area network (WAN) 
environments in which bounds on communication delay 
jitter are significantly smaller than those in most segments 
of the current Internet, started appearing only in recent 
years.  The OptIPuter research sponsored by the National 
Science Foundation (NSF) is a good example [13].   

In recent years, we have attempted to extend the DRC 
technology established for use in local area network 
(LAN) environments to fit into the WAN environments.  
The basic building-block of our technology framework is 
the Time-triggered Message-triggered Object (TMO) 
specification and programming scheme [4][5][6].  The 
TMO scheme includes establishment and use of a global 
time base which provides consistent real-time information 
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available in all distributed computing nodes [12].  The 
TMO scheme facilitates easy exploitation of the principle 
of global-time-based coordination of distributed actions 
(TCoDA) which has been promoted the most effectively 
for more than 20 years by Kopetz [12]. 

The TMO scheme for local-area DRC has been 
established in a sound form and its practicality and 
attractiveness have been extensively demonstrated.  
However, its extension to fit into wide-area-network based 
DRC is in an early stage.  In this paper, we present a brief 
review of the progresses made recently in extending the 
TMO scheme for use in WAN environments with the 
support of NSF.  

A brief review of the progresses made in our research 
on advancing the technical foundation for real-time 
simulation is also given here.  Major improvements in the 
validation technology for embedded systems and other 
types of DRC systems are under increasing demands from 
industry.  Not only description but also simulation of non-
computer parts and application environments of DRC 
systems is needed in validating many DRC system 
software designs and implementations.  Here the desired 
types of simulators are real-time simulators which exhibit 
the timing behavior that are the same as or sufficiently 
close to the timing behavior of the simulation targets.  
Such simulators can enable highly cost-effective testing of 
the DRC software and such testing can be a lot cheaper 
than the testing performed in actual application 
environments while being much more effective than the 
testing based on non-real-time simulators of environments. 

As the complexities of RT simulators grow, the use of 
distributed and parallel RT simulation approaches become 
imperative.  However, practical distributed RT simulation 
techniques have not been established in sufficiently 
reliable forms for use in practicing fields.  In recent years, 
a new direction for RT simulation which is conceptually 
simple and easy to use but widely applicable, has been 
formulated.  This theme called the distributed time-
triggered simulation (DTS) scheme [4][7] is highly 
promising in enabling attractively simple practical 
approaches to parallel and distributed RT simulation.  The 



 

DTS scheme is a byproduct of our past 
research on the TMO specification and 
programming scheme.  

A number of challenging research issues 
exist in optimal application of DTS.  In 
particular, maximizing the concurrency in 
RT distributed simulation while 
maintaining the consistency of distributed 
RT simulator nodes is a fundamental 
challenge.  Also, to establish DTS as an 
economic technology, middleware and 
application programming interfaces (APIs) 
that support DTS and simulator 
programming must be developed in sound 
forms.  The middleware support and APIs 
associated with the TMO scheme have 
advanced steadily in the past decade.  
However, further research is needed to 
exploit multi-processor systems efficiently.  
Graphic support is also of great importance 
and is a subject for much further study.   

In this paper, we briefly summarize the 
progresses achieved by us and our 
collaborators in the research areas 
mentioned above.  Section 2 deals with the 
field of wide area DRC while Section 3 
deals with DTS.  Section 4 is a conclusion.  

 

2.  The TMO Scheme for Wide-Area 
Distributed Real-Time Computing (DRC)  

2.1  The basic building-block of the technology 
framework:  the Time-triggered Message-triggered 
Object (TMO) scheme  

The TMO scheme is a general-style DRC extension of 
the conventional OO design / programming approach.  It 
has been established to facilitate RT distributed software 
engineering in a form which software engineers in the vast 
business software field can adapt to with small efforts.  It 
supports a high-level style of DRC programming above 
the level of abstractions such as processes, threads, and 
priorities.   

 
TMO structure and design paradigms. A graphical 
depiction of TMO is given in Figure 1.  The key features 
are as follows.   

(TM1)  All time references in a TMO are references to 
global time [12] in that their meaning and correctness (e.g., 
10am) are unaffected by the location of the TMO.   

(TM2)  TMO is a distributed computing component.  
Non-blocking types of remote method calls are supported.   

(TM3)  TMO has been devised to contain only high-
level intuitive and yet precise expressions of timing 
requirements.  Start-time-windows and completion 
deadlines for object methods and time-windows for output 
actions are used but no specification in indirect terms (e.g., 
priority) are required.  Deadlines for result arrivals can 
also be specified in the client's calls for service methods.  

(TM4)  TMO is also an autonomous active DC 
component.  Its autonomous action capability stems from 
one of its unique parts, called the time-triggered (TT) 
methods or the spontaneous methods (SpMs), which are 
clearly separated from the conventional service methods 
(SvMs).  The SpM executions are triggered upon reaching 
of the global time at specific values determined at the 
design time whereas the SvM executions are triggered by 
service request messages from clients.  For example, the 
triggering times may be specified as "for t = from 10am to 
10:50am  every  30min  start-during (t, t+5min)  finish-by 
t+10min".  By using SpMs, global time based 
coordination of distributed actions (TCoDA), a principle 
pioneered by our international collaborator Hermann 
Kopetz [12], can be easily designed and realized.  

(TM5)  TMOs can use another interaction mode in 
which messages can be exchanged over logical multicast 
channels of which access gates are explicitly specified as 
data members of involved TMOs.  The channel facility is 
called the Real-time Multicast and Memory-replication 
Channel (RMMC) [6].   

(TM6)  A major execution rule intended to enable 
reduction of the designer's efforts in guaranteeing timely 
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Figure 1.  Structure of the TMO (adapted from [4])

 



 

service capabilities of TMOs is the basic concurrency 
constraint (BCC) that prevents potential conflicts between 
SpMs and SvMs.  The full set of data members in a TMO 
is called an object data store (ODS).  An ODS is declared 
as a list of ODS segments (ODSSs), each of which is thus 
a subset of the data members in the ODS and is accessed 
by concurrently running object-method executions in the 
concurrently-reading and exclusive-writing mode.  
Basically, activation of an SvM triggered by a message 
from an external client is allowed only when potentially 
conflicting SpM executions are not in place.  Thus an SvM 
is allowed to execute only if no SpM that accesses the 
same ODSSs to be accessed by this SvM has an execution 
time-window that will overlap with the execution time-
window of this SvM.  The BCC does not reduce the 
programming power of TMO in any way.  

(TM7)  An underlying design philosophy of the TMO 
scheme is that an RT computer system will always take 
the form of a network of TMOs, which may be produced 
in a top-down multi-step fashion, called the TMO Network 
Development Methodology (TMONDeM) [4][10].  Also, 
TMO is capable of representing all conceivable practical 
RT and non-RT applications.  
 
Middleware and APIs that support DTS and simulator 
programming. We have been enabling TMO 
programming without creating any new language or 
compiler.  Instead, a middleware architecture called the 
TMOSM (TMO Support Middleware) provides execution 
support mechanisms and can be easily adapted to a variety 
of commercial kernel+hardware platforms compliant with 
industry standards.  TMOSM uses well-established 
services of commercial OSs, e.g., process and thread 
support services, short-term scheduling services, and low-
level communication protocols, in a manner transparent to 
the application programmer.  Prototype implementations 
running on three major OS kernel platforms, Windows XP, 
Windows CE, and Linux v2.6, exist 
(http://dream.eng.uci.edu/TMOdownload/) [1].  

A friendly programming interface wrapping the 
execution support services of TMOSM has also been 
developed and named the TMO Support Library (TMOSL) 
[6] (http://dream.eng.uci.edu/eecse123/serious.htm).  It 
consists of a number of C++ classes and approximates a 
programming language directly supporting TMO as a 
basic building-block.  The programming scheme and 
supporting tools have been used in a broad range of basic 
research and application prototyping projects in a number 
of research organizations and also used in an 
undergraduate course on DRC programming at UCI for 
about four years.   

A GUI (graphic user interface) approach to designing 
an initial skeleton of each TMO and letting a tool generate 
a code-framework for each TMO, has been formulated and 
some experiments have been conducted with successful 

results [10].  The GUI based tool has been named the 
Visual Studio for TMO (ViSTMO).  A study on a cost-
effective method for realizing high-quality graphic display 
of the dynamically changing states of TMOs in DTS has 
also been performed [2].  

While devising the TMOSM architecture, an emphasis 
was on making both the analysis of the worst-case time 
behavior of the middleware and the analysis of the 
execution time behavior of application TMOs as easy as 
possible without incurring any significant performance 
drawback.  In spite of that, our recent efforts were devoted 
to much further enhancing the modularity and 
analyzability of the TMOSM.  As a result, a newly 
enhanced architecture for TMOSM has been developed.  
Use of mechanisms such as semaphore which leads to 
frequent blockings of threads inside the middleware was 
avoided completely and instead, a new extension of the 
Non-Blocking Writer mechanism invented by Hermann 
Kopetz [12], called the Non-Blocking Buffer (NBB) 
mechanism [9], was used extensively.  Also, TMOSM 
now consists of the main part which is independent of the 
OS kernel platform and a small part, called the Kernel 
Adaptation Layer (KAL), which depends on the OS kernel 
platform chosen.   

2.2  Distance-aware TMO (DA-TMO) for use in 
WAN environments 

We recognized that the following issues need to be 
addressed in order to extend the TMO scheme and 
establish an efficient approach for designing wide area 
DRC systems.   

With the current TMOSM architecture optimized for 
use in LAN environments, TMOSM instantiations running 
on different distributed computing nodes cooperate and 
interact frequently among themselves.  The current 
TMOSM is expected to show rather poor performance 
when it is ported to WAN environments without 
substantial refinement.  This is due to the large 
communication latency inherent in an RT DVC occupying 
a large geographical region.   

As building-blocks of local-area DRC systems, TMOs 
are treated as all equal neighbors.  We decided to extend 
this notion of a distance-unaware TMO into a newly 
extended TMO model called the distance-aware TMO 
(DA-TMO) in order to establish an effective building-
block for wide-area DRC systems.  DA-TMO 
programmers should expect that TMOSM instantiations 
supporting nearby TMOs will interact with a relatively 
high frequency whereas TMOSM instantiations supporting 
TMOs separated by long distances will interact less 
frequently.  They should also expect that a call by a client 
TMO for a service offered by a remote TMO can involve 
searches for information not readily available in the local 
TMOSM instantiation.  TMOSM can now be aware of 

 



 

when an RMMC covers a large geographical area.  
TMOSM contains a component called the TMO 

Network Configuration Manager (TNCM) which is 
responsible for maintaining the information on the 
interconnections of distributed computing nodes and the 
distribution of TMOs on those nodes.  Efforts to extend 
TNCM and other parts of TMOSM to support DA-TMO 
are underway.  

The clock synchronization module of TMOSM has 
been enhanced to take advantage GPS facilities which 
serve as a source of global time of micro-second 
precision.  In addition, middleware support components 
for dynamic creation and destruction of TMOs have 
been incorporated into TMOSM.  

Member sites of a WAN are often machines of PC 
cluster types.  We have thus been developing a version 
of TMOSM for such a cluster.  The clock 
synchronization module of TMOSM/cluster has been 
refined to incorporate a broadcast-based clock 
synchronization algorithm, which provides global time of 
around 50 microsecond precision to all the nodes in the 
same cluster.  The communication module of 
TMOSM/cluster has also been enhanced to use multiple 
plug-in communication facilities, (UDP on 
Myrinet/Ethernet, MPI on Myrinet/Ethernet).  

2.2  High-quality multimedia streaming service  

An approach for realizing high-quality tele-audio 
services over networks by applying the global time based 
coordination of distributed actions (TCoDA) principle was 
realized.  The goal is to play the audio stream at a remote 
site with minimal loss of the temporal relationship among 
the audio data units in spite of the jitters in the 
transmission delays over networks.  The effective 
programming tool used was the TMO programming tool.  
Based on this service, a TMO-based audio streaming 
application over heterogeneous platforms, e.g., Windows 
XP, Windows CE.NET, and Linux 2.6, was constructed.  
In LAN-based experiments, the maximum intra-stream 
jitter was merely 17ms.  Further experiments involving 
both LANs and WANs are under way.  

A video streaming service of a similar kind was studied, 
too, with highly promising results and demonstrations.   

2.3  Establishment of wide-area DRC testbeds  

A small "robot" car named the TMO Turtle which is 
driven by a remote human user operating a joystick 
connected to a local PC in the driver's site, has been 
constructed.  Two ITX single-board PCs, one equipped 
with 802.11 wireless LAN capabilities and the other for 
future incorporation of additional sensors, have been 
installed on the car.  As depicted in Figure 2, the command 
messages from the joystick travel via wired networks to a 

wireless access point near the car and continue through an 
802.11 wireless link to reach the ITX PC onboard the car.  
The remote driver sees the car and its environment via 
video-streaming from the camera located near the car to 
the driver's PC station. 

The first version of TMO Turtle was used last year in 
demonstrations of remote driving over the distance of 90 
miles between the driver and the car (a video clip available 
in http://dream.eng. uci.edu/demo/).  The car was located 
at UCSD and the driver was at UCI and a broadband 
optical network (OptIPuter, http://www.optiputer.net/) 
connecting the two sites with the 1Gb bandwidth and the 
low jitter was involved.  Application software has been 
structured as a network of TMOs running on ITX PCs and 
nearby desktop machines.  Measured data showed that 
application-to-application transmission delays of both the 
video stream (20 frames of 640 x 480 pixels per second) 
and the joystick commands (sent every 40 milliseconds) 
were always less than 60 milliseconds.  The car ran at the 
speed of about 5 - 10 miles per hour.  An experiment 
involving the distance of 6,000 miles will be conducted, 
starting in January of 2007.  

Efforts to increase the autonomous navigation 
capabilities of TMO Turtle will be stepped up in the near 
future.  We also plan to establish a fleet of three TMO 
Turtle's in the future.  

3.  TMO-structured DTS  

3.1  Basic requirements in real-time simulation 
and the DTS scheme 

Since a real-time simulator must exhibit the timing 
behavior which is the same as or very close to that of the 
simulation target, the simulator clock must "tick" at a 
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steady rate.  The simulator clock must thus be based on a 
real-time clock.  Making a global time base available to 
distributed computing nodes economically, whether in 
local area network or wide area network environments, has 
become by and large a non-issue due to emergence of GPS, 
TTP hardware, and other hardware solutions in recent 
years.  Each tick of the simulator clock is commenced and 
administered by referencing a real-time clock in the 
simulation execution engine (a computer running the 
simulation program).  All computational activities taking 
place during a ticking interval of the simulator clock may 
be viewed as one simulation-step.  

Object Data Store 

In distributed real-time simulation, simulator objects 
(or processes) are distributed among multiple nodes.  
Synchronization of the simulation-steps of distributed 
simulator objects is then a key challenge.  A simulation-
step executed by the distributed nodes as a group must 
include the activities necessary to keep the executions of 
the simulation-step by the nodes synchronized.  A 
simulation-step executed by a member of the distributed 
simulator object group must be synchronized with the 
corresponding simulation-step executed by any other 
member.  The simulator clock for one simulator object 
must commence the n-th tick neither before the (n-1) - th 
tick by the clock driving another simulator object nor after 
the (n+1) - th tick by the latter clock.  

The essence of the distributed time-triggered 
simulation (DTS) approach is the following:  

(1)  Every node is equipped with a real-time clock and  
executes each simulation-step upon reaching of the real-
time clock at the predetermined value; and  

(2)  Every simulation-step is designed to be completed 
within one ticking interval.  

The DTS approach has major advantages over other 
distributed simulation approaches, even if we assume that 
the latter approaches can be adapted somehow to enable 
real-time simulation.  This is because synchronization of 
simulation-steps executed by distributed simulator objects 
under the DTS scheme does not require message 
exchanges among the host nodes (not counting the 
message exchanges which may be needed at a certain low 
frequency for re-synchronizing the real-time clocks of the 
nodes).  The advantages become decisive in heavy-load 
distributed simulation situations.   

However, even with the DTS approach, exchanges of 
messages that represent movements of certain simulation 
targets from the territory covered by one simulator node to 
the territory covered by another node are inevitable.  Even 
such message transmissions can be performed 
simultaneously (to be more exact, with no serialization or 
dependency) by all N simulator nodes, provided that the 
topology of the DRC platforms permit it.  For example, in 
a mesh-connected DRC system, all nodes can 
simultaneously send data messages to their left neighbors 
(as well as to right, upper, or lower neighbors).  Therefore, 

the ticking interval must be long enough to cover this kind 
of message exchanges.   

The DTS approach facilitated by the TMO 
programming scheme uses distributed TMOs of which 
SpMs execute simulation-steps [4][11].  For example, a 
freeway-segment can be represented at a high level and 
simulated by the TMO in Figure 3.  

The object data store (ODS) in this TMO contains state 
representations of the cars, the meters on entry-ramps, and 
the freeway structure.  Each TT method or SpM, when 
executed, updates a variable-set in the ODS representing 
the state of some simulation target item (i.e., physical item 
such as car, ramp meter, etc) to reflect the current state of 
the target item.  Ideally the TT methods should be 
activated continuously and each of their executions be 
completed instantly.  However, the limited power of the 
execution engine dictates the activation frequency of any 
TT method to be a fraction of the ticking rate of the real-
time clock in the execution engine.  The activation 
frequency of the TT method may be viewed as the ticking 
rate of the target item simulator clock.  Each execution of 
a TT method must be completed within one ticking 
interval of the target item simulator clock.  Therefore, TT 
methods are the mechanisms for approximately simulating 
continuous state changes that occur naturally in the target 
items in the environment.  

A fundamental obstacle in parallel / distributed 
execution of real-time simulation actions is the update-
dependency.  When a simulation target item covered by 
one simulator node is update-dependent on another 
simulation target item covered by another simulator node, 
update activities of the two nodes must be serialized.  In 
the case of Figure 3, it is a usual practice to sort cars and 
update them in the sorted order.  If the order is to update 
front cars first and rear cars later, then whenever a value 
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for the new state of a car is calculated, a check is made 
whether it is in conflict with the already calculated new 
states of the cars in the front.  If a conflict is detected (i.e., 
if the value is such that it leads the simulator to 
inconsistency), the value is discarded and a try is made to 
produce a new value until a conflict-free value is produced.  
Two simulator objects, e.g., car simulators B and D, in 
such update-dependent relationship, cannot be updated 
independently. The update-dependency can make the 
distributed simulation to become worse in performance 
than the single-node simulation. 

Our recent research dealt with the techniques for 
minimizing the impacts of the update-dependency among 
distributed simulator objects.  Basic approaches were 
formulated [7] and experimental research is under way. 

3.2  CAMIN testbed 

One of the DTS applications developed in the DREAM 
Lab at UC Irvine is the Coordinated Anti-Missile 
Interceptor Network (CAMIN) simulation.  The application 
scenario in this low-cost military C3 (command, control, 
and communication) distributed computing simulation is 
that of detecting and intercepting hostile reentry vehicles 
to protect a commander ship.  Army which operates radars, 
ground-based interceptor launchers, and a command-
control center cooperates with Navy which operates the 
important commander ship with self-defense capabilities.  
Fighter airplanes are also used to launch airborne 
interceptors.  The cooperative computing TMOs, the real-
time simulator TMOs, and the programs for graphic 
display of the status of the application environment can be 
distributed over the LAN of one to five computing nodes.  

In addition to the basic simulation of this military C3 
distributed computing scenario, a fault tolerance feature 
called the primary-shadow TMO replication (PSTR) is 
accommodated into this simulation. A set of major 
components such as radar data queue (RDQ), flying object 
tracking (FOT), and intercept plan data structure (IPDS) 
TMOs are actively replicated to tolerate a logical or timing 
fault. Fig. 3 shows the configuration of CAMIN 
simulation in a four-node setup with replicas of the above 
three TMOs. Also, the supervisor-based network 
surveillance (SNS) scheme detects a failure of a primary 
node and notifies the associated shadow TMO of the 
failure of its primary so that the shadow can take over the 
job of the primary in a bounded time. 

4.  Conclusion  

The TMO scheme for wide area DRC is promising, 
especially with the advent of a new-generation network 
infrastructure such as OptIPuter.  Nevertheless, this field is 
in an early stage.  The TMO-structured DTS has been 
demonstrated in reasonably convincing forms but its 

optimal use requires much further research.  
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