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Abstract 
 

This paper deals with the use of parallel processing for 
multi-objective optimization in applications in which the 
objective functions, the restrictions, and hence also the 
solutions can change over time. These dynamic 
optimization problems appear in quite different real-
world applications with relevant socio-economic impact. 
The procedure here presented is based on PSFGA, a 
parallel evolutionary procedure for multi-objective 
optimization. It uses a master process that distributes the 
population among the processors in the system (that 
evolve their corresponding solutions according to an 
island model), and collects and adjusts the set of local 
Pareto fronts found by each processor (this way, the 
master also allows an implicit communication among 
islands). Moreover, the procedure exclusively uses non-
dominated individuals for the selection and variation, and 
maintains the diversity of the approximation to the Pareto 
front by using a strategy based on a crowding distance.  
 
 
1. Introduction 
 
Many real-world optimization problems are dynamic 
because there are changes in the conditions on which the 
cost functions depend, in the restrictions that the solutions 
must meet, etc. For example, in a scheduling problem the 
characteristics of the resources and the number of tasks to 
be allocated could vary over time [1]. In the optimal 
control of an industrial plant the conditions change due to 
the ageing of the plant, to random intrinsic effects, etc [2]. 

On the other hand, many of the optimization problems 
must optimize more than one objective at a time, which 
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frequently are in conflict. In this context, the concept of 
optimum must be redefined, because instead of providing 
only one optimal solution, the procedures applied to these 
multi-objective optimization problems should obtain a set 
of non-dominated solutions, known as Pareto optimal 
solutions [3], from which a decision agent (be human or 
not) will choose the most convenient in the current 
circumstances. These solutions are optimal in the sense 
that there is not any other better solution when all the 
objectives are taken into account. The Pareto optimal 
solutions form a hypervolume known as Pareto front. 
Thus, in the dynamic multi-objective optimization 
problems the objective functions and the set of variables 
which define the solution space may change over time. 

Evolutionary algorithms [3] have been successfully 
applied to static multi-objective problems and have 
contributed to change the perspective on how these 
problems were tackled by using classical procedures [2]. 
As evolutionary algorithms steer a population of solutions 
in a concurrent way by making use of cooperative 
searching techniques, it could be relatively easy to adapt 
these algorithms to obtain sets of Pareto optimal 
solutions. 

Our goal in this paper is not only to tackle problems 
with more than one objective, but also to consider the 
problems where the objective functions and even the 
spaces in which the solutions lie (the restrictions they 
must meet) may change. It is reasonable to think that 
evolutionary algorithms may also prove to be useful in 
dynamic optimization problems because they are inspired 
in the natural evolution and this is a continuous process of 
adaptation. In [7], a summary can be found about the use 
of evolutionary algorithms in dynamic optimization 
problems (not necessarily multi-objective), together with 
other optimization problems in environments with 
uncertainty. 



A possible way to act whenever a change occurs in the 
conditions is trying to solve the problem as if it were a 
new problem. However, instead of starting the search 
from a random solution set, the process towards the new 
solutions could be accelerated if it takes advantage of the 
already known solutions, depending on the characteristics 
of the change that has happened in the problem. 

Anyway, the speed of the reaction to changes is a quite 
important topic in the context of dynamic optimization. 
Therefore, the use of high performance computers may 
turn out very useful for these kinds of problems. Hence, in 
section 2 the dynamic multi-objective optimization 
problem is defined along with the measures that can be 
used to evaluate the performance of the corresponding 
procedures. Section 3 considers the use of evolutionary 
procedures and the different approaches to reach 
convergence in the dynamic optimization problems. In 
section 4 the benefits that parallel processing can provide 
are reviewed, and a parallel algorithm for dynamic multi-
objective optimization is described. The performance of 
this parallel procedure is analyzed in section 5, and 
finally, the conclusions of this paper are given in section 
6. 
 
2. Dynamic Multi-objective Optimization 
 
A dynamic multi-objective optimization problem (DMO) 
can be defined as the problem of finding a vector of 
decision variables x(t) ∈ Rn, that satisfies a restriction set 
and optimizes a function vector whose scalar values 
represent objectives that change over time. Thus, 
expressed mathematically, it has to be found a decision 
variable vector x*(t) = [x1

*(t), x2
*(t), ..., xn

*(t)] that 
satisfies a given restriction set g(x,t) ≤ 0, h(x,t) = 0 and 
optimizes the function vector:  

 
f(x,t) = {f1(x,t), f2(x,t),…, fm(x,t)}. 

 
As the objectives are usually in conflict, the 

optimization of one of them is carried out at the expense 
of the other ones. Thus, a trade-off, that implies the 
concept of Pareto optimality, must be reached. In a 
dynamic multi-objective optimization problem, a decision 
vector x*(t) is said to be a Pareto optimal solution if there 
is not any other feasible decision vector, x(t), that 
improves one objective without worsening at least one of 
the other objectives. The set of all non-dominated 
solutions determines the Pareto front in the objective 
space. We can define Sp(t) and Fp(t) as the sets of Pareto 
optimal solutions at time t, respectively in the decision 
and objective spaces. In [2], it is presented a classification 
of the dynamic multi-objective optimization problems 
onto four groups depending on whether the sets Sp(t) and 
Fp(t) change over time or not. 

One of the main questions in the research on dynamic 
optimization procedures is the evaluation of the 
performance of these procedures [8,21]. Three 
characteristics can be considered to carry out that 
evaluation. They are the accuracy, the stability and the 
reaction capability of the optimization procedure [8]. The 
accuracy, acc, measures the quality of the solution found; 
the stability, stb, gives us an idea about the effect of the 
changes in the problem on the algorithm accuracy; and 
the reaction capacity, reac, measures the capability of the 
optimization algorithm to adapt itself to changes. In [8], 
measures for the stability and reaction capacity are 
proposed. They are based on the measure of accuracy, 
acc: 
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where t’ is a natural number, ε is a fixed real number less 
than one; Mgen is the number of generations, and acc(t) is 
a measure of the solution accuracy at time t, that ranges 
from 0, the worst, to 1, the best. The stability, stb(t), also 
takes values from 0 to 1, but in this case the maximum 
stability is given by 0. Moreover, as smaller is reac(t), the 
bigger is the reaction capacity of the procedure. 

The definition of accuracy, acc(t), is not trivial, 
because the cost functions change over time, and it is 
even more difficult if the optimal values are unknown. In 
the case of multi-objective optimization problems, as we 
want to reach the Pareto front, it should be considered as 
the reference point in order to evaluate the accuracy of the 
solutions already found. Moreover, it should be also 
considered that the location of the Pareto front is usually 
unknown. Thus, to estimate the procedure accuracy, we 
use the hypervolume of the non-dominated (in a 
minimizing problem) or dominated (a maximizing 
problem) space which is given by the set of solutions at 
time t, V(t) [9]. From V(t), the measure of acc(t) can be 
defined as: 
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for minimization problems, and as: 
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for maximization problems. In the expressions, Vmax(t) is 
the maximum hypervolume in the objective space that has 
been reached through t iterations, and Vmin(t) is the 
minimum hypervolume that has been reached through t 
iterations. It can be easily seen that acc(t) takes values 
from 0 to 1. 
 



3. Evolutionary Computation for Dynamic 
Multi-objective Optimization 
 
Evolutionary algorithms have been widely applied to 
multi-objective optimization, bringing a different point of 
view on the solution of these problems with regard to the 
classic methods previously proposed. They can give a 
very good approach to the Pareto front and to reveal the 
properties of the optimal solutions [5, 6]. In an 
evolutionary algorithm, a trade-off is required between 
exploration and exploitation. Thus, the characteristics of 
the transformations (mutation, crossover, etc) must be set 
in order to find a trade-off between the search for 
solutions in new areas of the space and the convergence 
towards better solutions in the surroundings of the already 
found ones.  

Thus, diversity and uniform distribution are required in 
the found solutions in order to provide an accurate 
description of the Pareto front. Moreover, in dynamic 
optimization problems, the population of the evolutionary 
algorithm must react to changes as fast as possible. Some 
of the main topics that should be addressed are the 
following ones [4]: 
1. Diversity after the changes. As soon as a change is 

detected, diversity should be increased in order to 
make it ease the evolution towards a new optimum. If 
the mutation probability is too high, the situation is 
similar to a re-start of the algorithm and no advantage 
is obtained from the already found solutions. There 
are some alternatives, as hypermutation [13], a 
sudden increment in the mutation probability after the 
change of the conditions, and variable local search 
[14], where mutation probability is gradually 
increased. 

2. Diversity along the runtime. It tries to avoid 
convergence through the execution of the algorithm 
so that the population could adapt itself better to 
changes. There are some alternatives: to insert 
random migrant solutions in the population in each 
generation; the thermodynamic genetic algorithms 
[15]; the use of niching techniques [16] for 
preserving diversity like sharing or crowding. Of 
course, the bigger the diversity, the slower the 
convergence. 

3. Memory based techniques. The evolutionary 
algorithm uses a memory that keeps information 
about what has happened in previous generations 
[17,18]. This approach is mainly useful when the 
problem shows conditions that have appeared before. 

4. Multi-population techniques. The population is 
divided in subpopulations that hold information about 
different regions of the search space [19,20]. The idea 
behind this is to evolve different optimal solutions in 
each population. 

In [7], there is a selection of bibliography on dynamic 
optimization where these alternatives can be consulted. 
 
4. Parallel Processing for Dynamic 
Optimization and PSFGA 
 
Parallel processing can be useful to efficiently solve 
dynamic optimization problems with evolutionary 
algorithms, not only by improving the quality of the 
solutions found but also by speeding up the execution 
times. Two decomposition alternatives are usually 
implemented in parallel evolutionary algorithms: 
functional decomposition and data decomposition. The 
functional decomposition techniques identify tasks that 
may be run separately in a concurrent way. The data 
decomposition techniques divide the sequential algorithm 
in different tasks that are run on different data (i.e. the 
individuals of the population). Moreover, hybrids 
methods are also possible.  

In this paper, data decomposition has been applied as 
we consider this alternative more attractive. In an 
evolutionary algorithm, the evaluation of the objective 
function and the application of operators to the 
individuals of the population can be independently done. 
This allows data parallelization without modifying the 
convergence behaviour of the sequential algorithm. The 
fitness evaluation for each individual in the population is 
frequently the part of the algorithm with the highest 
computational cost. This is particularly true in non-trivial 
optimization problems, with large sized populations 
and/or individuals codified by complex data structures 
that require big computation times. As a consequence, a 
suitable parallelization scheme is to concurrently evaluate 
the fitness of the individuals, by using a master-worker 
structure in which every worker process evaluates a 
different and unique group of individuals, returning the 
fitness values to the master process which completes the 
rest of the algorithm steps. If the individuals are 
distributed in a balanced way, acceptable speedups could 
be obtained whenever the evaluation of the solutions 
require high computation times and the communication 
costs associated with the distribution of data structures 
and results between processors are kept low enough. 

An alternative to improve the achieved speedup (and to 
get other benefits as we describe below) is to allow the 
different processors not only the evaluation of the fitness, 
but also the application of operators to the individuals of 
the subpopulation allocated to them. This alternative 
corresponds to the so called, island model. So, the initial 
population is divided into subpopulations (that could be 
also associated to different search subspaces) which are 
evolved separately. Sometimes, individuals can be 
exchanged between the different subpopulations 
(migration). This kind of parallelization can also improve 
the diversity of the population during the algorithm 



convergence and leads to algorithms with better 
performance than the sequential versions. Thus, together 
with the advantages derived from the availability of more 
memory and the use of several CPUs (it is possible to 
approach more complex problems and/or to speedup the 
programs execution), the evidences of bigger efficiency 
and diversity in the population (very useful elements in 
dynamic multi-objective optimization problems, as it has 
been indicated in Section 3) justify the use of parallelism 
in the field of evolutionary algorithms. 

Nevertheless, the selection of individuals and the 
operations required to maintain diversity need 
comparisons that imply the whole population or a big part 
of it. This means that data parallelization at this level, 
especially in the case where there is not any mechanism to 
share information about the fitness of the individuals 
between the processes, modifies the behaviour of the 
algorithm with regard to the sequential version. Thus, it is 
difficult to predict the behaviour of this kind of 
parallelization and must be evaluated for each particular 
implementation.  

Moreover, in multi-objective optimization several 
objectives and the Pareto dominance relationships have to 
be evaluated at the same time [10-12]. The calculation of 
the Pareto dominance relationships requires, most of the 
time, statistics of the whole population. Besides, the 
computational bottleneck in most of the applications is the 
evaluation of the objective functions, which may be 
parallelized by means of distributing the functions 
between processors, or with a hybrid approach in which 
each processor evaluates a subset of functions for a subset 
of the population. After the evaluation of the objective 
functions, the algorithms with Pareto front-based 
selection usually calculate dominance measures and the 
corresponding distances as part of the mechanism for 
keeping up the diversity. This mechanism is implemented 
in each case, as a previous step to assign the fitness value 
to each individual and to select the parents. The 
parallelization of these tasks is not easy. For example, 
problems appear in algorithms that usually work with 
small populations (PAES), in algorithms where the 
calculation of distances must be done sequentially after 
the determination of dominance relationships (SFGA) 
[11], or in those algorithms where the calculation of 
dominance relationships, distance, and selection takes 
place at the same time (NPGA) [22]. 

In principle, the benefits that can be obtained from 
parallel processing of dynamic multi-objective 
optimization problems are the same that with static multi-
objective optimization, but also the possibility of speeding 
up the capacity of the algorithm reaction, which in turn 
reduces the needed processing time, which leads to reach 
a set of non-dominated solutions near to the Pareto front 
earlier. Thus, dynamic optimization problems, where the 
change rate is faster, could also be tackled. 

The algorithm here described is shown in Figure 1. It 
is based on PSFGA [11], a parallel algorithm for multi-
objective optimization that uses an island model where 
the processors that execute the islands (workers) 
implicitly communicate themselves through a master 
process that divides the population and send the 
corresponding subpopulations of the same size to the 
workers. By using the SFGA algorithm, every worker 
looks for the optimal solutions in the search space that has 
been assigned to it and keeps only those solutions that are 
not dominated by the others. After a fixed number of 
iterations (genpar), the workers send the solutions found 
to the master, who after joining all the solutions into a 
new population, rule out the dominated solutions. At the 
same time, the master runs an instance of the SFGA 
algorithm (along genser iterations) over the whole 
population before sending new subpopulations again to 
the worker processes. In the master, there is a crowding 
mechanism for keeping the diversity and the distribution 
of the solutions on the Pareto front founded. So, after 
reaching a number of solutions, equal or above to a given 
percent of the population size, only the non-dominated 
solutions that are far enough of the other ones are chosen. 

 

 
Figure 1. PSFGA version for dynamic 
multi-objective optimization 

 
5. Experimental Results 
 

The algorithm has been evaluated by using two test 
functions for dynamic multi-objective that have been 



taken from the problems presented in [2]. In the first test 
function, FDA1 (5), the Pareto front, Fp(t), is equal to 

12 1 ff −= , and does not change, but only the values 
of the solutions to the corresponding front, Sp(t). In the 
second function, FDA2 (6), besides to the values of the 
solutions, Sp(t), also the corresponding Pareto front, Fp(t), 
changes. In (5) and (6), nt and τt are intended, 
respectively, to control the speed at which the problem 
changes and the time interval in which the changes are 
being considered. In our tests, and as it is suggested in [2], 
it has been taken nt = 10 and τt = 5. The solution sets are | 
XI| = 1 and | XII| = 19 for FDA1, and | XI| = 1 and | XII| = 
| XIII| = 15 for FDA2. 

The experiments were carried out on an 8-node 
cluster with two 2 GHz AMD Athlon processors and 2 
Gbytes RAM by node, connected via Gigabit Ethernet.  
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The results provided in the following correspond to 
five runs of each experiment. In Figure 2, it is shown 
the Pareto front for FDA1 in the first five time intervals. 
In all of them, the found solutions approximate the 
actual Pareto front accurately, although all the values of 

the corresponding solutions should change in order to 
adapt them to the new dynamic function requirements. 

With regard to FDA2, Figure 3 shows the solutions 
that have been obtained from t = 50 to t = 150. These 
solutions approach the Pareto fronts changed each τt = 5. 
However, it is more difficult to reach them in the non-
convex areas of the objective functions. In this case, when 
the generation changes, and so the current Pareto front, 
the values of the solution space also change accordingly. 
Table I shows the values for acc, stb and reac obtained by 
our procedure in FDA2. The stability could be improved 
in some cases (those in which stb ≠ 0), mainly in the non-
convex areas. On the other hand, the reaction capacity is 
also good enough, because reac is always equal to five. 
This is the smallest value it could take in our 
implementation, as this is the minimum time span in 
which functions are evaluated again, and it is long enough 
to allow the algorithm to adapt itself to the new Pareto 
fronts. 

The use of the parallel processing gives a twofold 
improvement. It allows a reduction in the execution time 
required to reach a good approximation to the new Pareto 
fronts, thus widening the field of the problems that can be 
tackled (problems with faster rate of change in the Pareto 
front). On the other hand, each worker can run more  

 
Figure 2. Pareto front and location of the 
solutions for FDA1 in 5 time intervals (between t 
= 5 and t = 25). 

 



 
Figure 3. Location of the solutions (Pareto fronts 
approximated by our algorithms) for FDA2, from 
iteration t = 50 to t = 150 (with steps τt  = 5). 
 

iterations in the same amount of time, thus increasing the 
explored search space and making it easy the adaptation 
to changes. 

Table 2 shows the speedups reached by our parallel 
algorithm as more workers are added to the parallel 
procedure. The speedups correspond to the rate between 
the time required by the parallel algorithm executed in 
n+1 processors (the master and n workers) to get the 
solutions after τi  iterations, and the time required by the 

 
Table 1 

Results for acc, stb, and reac in FDA2 
τi Hypervolume acc stb reac 

(ε = 0.1)
5 0.345 ± 0.005 0.97 ± 0.01 0.000 5 

10 0.350 ± 0.005 0.99 ± 0.01 0.000 5 
15 0.355 ± 0.005 1.00 ± 0.01 0.000 5 
20 0.347 ± 0.005 0.98 ± 0.01 0.012 5 
25 0.352 ± 0.005 0.99 ± 0.01 0.000 5 
30 0.347 ± 0.005 0.98 ± 0.01 0.015 5 
35 0.347 ± 0.005 0.98 ± 0.01 0.000 5 
40 0.344 ± 0.005 0.97 ± 0.01 0.010 5 
45 0.349 ± 0.005 0.98 ± 0.01 0.000 5 
50 0.345 ± 0.005 0.97 ± 0.01 0.009 5 
55 0.347 ± 0.005 0.98 ± 0.01 0.000 5 
60 0.336 ± 0.005 0.95 ± 0.01 0.029 5 
65 0.341 ± 0.005 0.96 ± 0.01 0.000 5 
70 0.353 ± 0.005 0.99 ± 0.01 0.000 5 
75 0.340 ± 0.005 0.96 ± 0.01 0.035 5 
80 0.344 ± 0.005 0.97 ± 0.01 0.000 5 
85 0.347 ± 0.005 0.98 ± 0.01 0.000 5 
90 0.339 ± 0.005 0.96 ± 0.01 0.021 5 
95 0.349 ± 0.005 0.98 ± 0.01 0.000 5 
100 0.347 ± 0.005 0.98 ± 0.01 0.006 5 
SFGA algorithm (for the same number of iterations).  

It can be checked that the speedup is super-linear, 
especially for two and four workers. 

Although the speedup keeps being super-linear for 
eight processes, it does not increase so much between four 
and eight processes. Anyway, there is a clear trend 
towards a reduction in the computation time. The 
improvement in the performance of the parallel algorithm 
has much to do with the super-linear behaviour, because it 
works with more diversified populations. 
 

Table 2 
Speedup results for FDA2. 

Number of workers τi 
2 4 8 16 

5 5,25 8,4 10,5 10,5 
10 4,56 8,2 8,2 8,2 
15 4,67 10,5 8,4 8,4 
20 4,67 8,4 10,5 10,5 
25 4,78 8,6 10,75 10,75 
30 4,78 8,6 8,6 10,75 

 
To evaluate the quality of the solutions we use the 

arithmetic mean of the hypervolumes that have been 
obtained for a given time interval. From that measure we 
can compare the solutions found by the algorithm when a 
different number of worker processes is used. Table 3 
shows the values which have been obtained for FDA2 
from times 5 to 200, at steps of 5 iterations, and using 
between 1 and 32 workers.  

 
Table 3 

Quality of the solutions depending on the number 
of workers for FDA2. 

Workers Mean hypervolume 
1 0.2458 ± 0.0007 
2 0.2463 ± 0.0007 
4 0.2472 ± 0.0007 
8 0.2474 ± 0.0007 
16 0.2472 ± 0.0007 
32 0.2474 ± 0.0007 

 
As it can be seen, the quality of the solutions worsens 

slightly as the number of workers used to solve the 
problem increases. 
 
6. Conclusions  
 

The first results of our approach to the possibilities of 
parallel processing for dynamic multi-objective 
optimization are quite acceptable. First of all, it has been 
shown the ability of our parallel procedure to reach 
solution sets quite near to the changing Pareto fronts. This 



procedure is an adaptation to dynamic environments of 
the PSFGA algorithm for multi-objective optimization 
[11]. It uses a master process to distribute the population 
of solutions among the processors that evolve their 
corresponding subpopulations for genpar iterations. Then, 
the master collects the (partial) Pareto fronts 
independently determined by the worker processors, 
builds a whole Pareto front from the partial ones, executes 
genser iterations of the evolutionary algorithm, and 
distributes the obtained population of solutions again. 
Thus, the procedure we have proposed allows a 
continuous transition between a master-worker operation 
model, when genpar is set to 0 (the workers only compute 
the fitness of their subpopulations) and an island model 
(genpar>0) where the processors communicate through 
the master.  

On the other hand, the speedup results obtained allow a 
reduction in the convergence times, and hence, the ability 
to satisfy stronger time restrictions in the dynamic 
problem. We consider that the super-linear speedups that 
have been observed in some cases show the usefulness of 
parallel processing in keeping up the diversity of the 
population, in the improvement of the reaction capability 
and in the algorithm adaptability. 

It is clear that there are many things to do yet. On one 
side, we think that many algorithm characteristics and 
parameters should be analyzed and optimized, both in the 
sequential and parallel versions of the algorithm. Thus, 
we plan to study the scalability and performance 
behaviour for different versions of the algorithm in which 
the worker and master processes run asynchronously, with 
different communication schemes (including the ability of 
direct communications between workers), and 
genser/genpar rates. We also plan to consider other more 
flexible schemes where, for example, more than one 
process acts as a master at a given time. Furthermore, it is 
also necessary to evaluate the performance of the 
procedure with a broader set of benchmarks and some real 
world applications. 
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