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Abstract 
 

In this study, we investigate the task scheduling 
problem in heterogeneous computing environments and 
propose a novel scheduling algorithm, called the Artificial 
Immune System with Duplication (AISD) algorithm that 
efficiently tackles the problem. The AISD algorithm 
incorporates the clonal selection principle in the immune 
system and task duplication into the scheduling process. 
Based on the performance results obtained from extensive 
experiments conducted with a comprehensive set of both 
randomly generated and well-known application task 
graphs and various system configurations, AISD 
consistently outperformed the two existing algorithms by a 
noticeable margin, especially when scheduling 
communication intensive task graphs.  
 
 
1. Introduction 
 

Task scheduling problems have been extensively 
studied for many years. However, due to the NP-complete 
nature of the problem in most cases heuristic algorithms 
account for a myriad of existing scheduling algorithms [1]. 
Most of these scheduling heuristics have been designed 
for homogeneous computing systems, whereas only a 
handful of efficient heuristics for heterogeneous 
computing systems has been proposed. Heuristic based 
scheduling algorithms are normally the ones favored by a 
large number of researchers.  

In attempts to obtain better schedules a noticeable 
number of metaheuristics, mostly inspired by nature, 
including genetic algorithms, ant colonies, tabu search and 
simulated annealing, have also been adopted. More 
recently, another biologically-inspired approach emerged 
which is based on the immune system.  

The immune system of an organism, the vertebrate 
immune system in particular, is regarded as an extremely 
effective defence system against virtually an unlimited 

number of biological attackers, such as microorganisms, 
parasites and viruses. It protects the host from these 
invaders by coordinating a complex, yet sophisticated set 
of immune features. Due to the self-organizing, 
cooperative and robust characteristics of the immune 
system its applicability to various areas, such as pattern 
recognition, network security and anomaly detection has 
been actively studied in the past decade [2, 3, 4]. 
However, only recently immune system based scheduling 
algorithms have been developed by researchers to target 
different instances of the problem [5, 6, 7, 8].  

This paper proposes an artificial immune system for 
heterogeneous multiprocessor scheduling with task 
duplication known as the Artificial Immune System with 
Duplication (AISD). It first generates and refines a set of 
schedules using a modified clonal selection algorithm and 
then attempts to further improve the schedules with task 
duplication. The AISD algorithm schedules tasks in a task 
graph via three carefully designed phases: clonal selection, 
task duplication and ineffectual task removal. The 
performance gain of the proposed algorithm is obtained 
not from a particular one of these phases, but from the 
careful coordination of them. Despite the adoption of 
immune features (i.e., clonal selection and affinity 
maturation), task insertion and task duplication, the AISD 
algorithm remains at an affordable level of time 
complexity.  

The remainder of this paper is organized as follows. 
Sections 2 and 3 introduce some background material on 
scheduling problems and the immune system, respectively. 
The proposed algorithm is described in detail in Section 4. 
In Section 5, the evaluation results are presented and 
explained with conclusions following in Section 6. 
 
2. Scheduling Problem 
 

Parallel programs, in general, can be represented by a 
directed acyclic graph (DAG). A DAG, G = (V, E), 
consists of a set V of v nodes and a set E of e edges. A 
DAG is also called a task graph or macro-dataflow graph. 
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In general, the nodes represent tasks partitioned from an 
application and the edges represent precedence 
constraints. An edge (i, j) ∈ E between task ni and task nj 
also represents the inter-task communication. In other 
words, the output of task ni has to be transmitted to task nj 
in order for task nj to start its execution. A task with no 
predecessors is called an entry task, nentry, whereas an exit 
task, nexit, is one that does not have any successors. Among 
the predecessors of a task ni, the predecessor which 
completes the communication at the latest time is called 
the most influential parent (MIP) of the task denoted as 
MIP(ni). 

In general, the nodes represent tasks partitioned from an 
application and the edges represent precedence 
constraints. An edge (i, j) ∈ E between task n

 

 

Task P0 P1 P2 b-level
0 14 16 9 162.33
1 13 19 18 129.67
2 11 13 19 137.33
3 13 8 17 132.67
4 12 13 10 121.67
5 13 16 9 120.67
6 7 15 11 100.00
7 5 11 14 93.00 
8 28 12 20 97.00 
9 14 7 16 72.00 
10 16 25 12 44.67 
11 17 10 20 38.67 
12 9 14 19 14.00  

 

Figure 1. A sample task graph 

The weight on a task ni denoted as wi represents the 
computation cost of the task. In addition, the computation 
cost of the task is on a processor pj, is denoted as wi,j and 
its average computation cost is denoted as 

The weight on a task n

i and task nj 
also represents the inter-task communication. In other 
words, the output of task ni has to be transmitted to task nj 
in order for task nj to start its execution. A task with no 
predecessors is called an entry task, nentry, whereas an exit 
task, nexit, is one that does not have any successors. Among 
the predecessors of a task ni, the predecessor which 
completes the communication at the latest time is called 
the most influential parent (MIP) of the task denoted as 
MIP(ni). 

i denoted as wi represents the 
computation cost of the task. In addition, the computation 
cost of the task is on a processor pj, is denoted as wi,j and 
its average computation cost is denoted as iw .  

The weight on an edge, denoted as ci,j represents the 
communication cost between two tasks, ni and nj. 
However, communication cost is only required when two 
tasks are assigned to different processors. In other words, 
the communication cost when they are assigned to the 
same processor can be ignored, i.e., 0.  

The target system used in this work consists of a set P 
of p heterogeneous processors/machines that are fully 
interconnected. The inter-processor communications are 
assumed to perform with the same speed on all links 
without contentions. It is also assumed that a message can 
be transmitted from one processor to another while a task 
is being executed on the recipient processor which is 
possible in many systems. 

The earliest start time of, and the earliest finish time of, 
a task ni on a processor pj is defined as 
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Note that the actual start and finish times of a task ni on 
a processor pj, denoted as AST(ni, pj) and AFT(ni, pj) can 
be different from its earliest start and finish times, EST(ni, 
pj) and EFT(ni, pj), if the actual finish time of another task 
scheduled on the same processor is later than EST(ni, pj).  

In the case of adopting task insertion the task can be 
scheduled in the idle time slot between two consecutive 
tasks already assigned to the processor as long as no 
violation of precedence constraints is made. This insertion 
scheme would contribute in particular to increasing the 
processor utilization for a communication intensive task 
graph with fine-grain tasks. 

A simple task graph with its details is shown in Figure 
1. The values presented in the last column of the table in 
Figure 1 are computed using a frequently used task 
prioritization method, b-level. The b-level of a task is 

computed by adding the computation and communication 
costs along the longest path of the task from the exit task 
in the task graph (including the task).  

The communication to computation ratio (CCR) is a 
measure that indicates whether a task graph is 
communication intensive, computation intensive or 
moderate. For a given task graph, it is computed by the 
average communication cost divided by the average 
computation cost on a target system. 

The task scheduling problem in this study is the process 
of allocating a set V of v tasks to a set P of p processors 
aiming to minimize schedule length (SL), also called 
makespan, without violating precedence constraints. The 
schedule length is defined as SL=max{AFT(nexit)} after the 
scheduling of v tasks in a task graph G is completed. 

 
3. The Immune System: Principles and 
Processes 
 

The immune system is a biological defence mechanism 
designed to protect a given organism primarily from 
microbes, such as bacteria, archaea, fungi, protists and 
viruses. Using allied forces of cells, tissues and organs, it 
battles against foreign invaders.  

At the highest level, two defence lines (the innate and 
the adaptive immune systems) are embodied. The core 
forces of both systems are different types of white blood 
cells. 

The innate or non-specific immune system is the first 
line of defence that uniformly combats any invader very 
directly and immediately with chemical substances and 
specific types of white blood cells. However, during the 
lifetime of an organism it encounters numerous different 
attackers (antigens) that the innate immune system is not 
able to handle effectively. The adaptive or specific 
immune system comes into play in such a circumstance.  

 



Among a number of immune features in the adaptive 
immune system clonal selection with affinity maturation is 
the particular interest in this study in that it is incorporated 
with the proposed algorithm. 

 
3.1. Adaptive Immune System 
 

As a host experiences constant encounters of various 
antigens it is quite necessary for immune entities to be 
equipped with memory, learning and adaptive functions. 
The adaptive immune system protects the host by a 
sophisticated coordination of these functions. 

The two key components in the adaptive immune 
system are B lymphocytes (B cells) and T lymphocytes (T 
cells) of white blood cells that are produced by stem cells 
in the bone marrow. While T cells take charge of the 
cellular immunity B cells, more precisely 
immunoglobulins or antibodies, oversee the humoral 
immunity.  

Now the question is how the adaptive immune system 
can respond against a virtually unlimited and diverse set of 
antigens. A sequence of phases for battling against these 
immunological enemies shown in Figure 2 can answer this 
question. 

 
3.2. Clonal Selection 

 
One of the most powerful features of the immune 

system is its adaptability. The clonal selection principle 
[9] in the adaptive immune system plays an important role 
in this property. Although clonal selection occurs on both 
T and B cells the focus in the field of AIS is often aimed 
at B cells. This is primarily due to the fact that B cell 
clonal selection involves mutation that further enhances 
the adaptability of B cells. Hereafter, clonal selection 
simply refers to that of B cells. 

The rationale behind the clonal selection theory is that 
superior B cells are preserved with a minor degree of 
mutation and become prevalent, and inferior ones are 
mutated at a high rate hoping to be improved and become 
rare. More specifically, when a foreign intruder (antigen) 
attacks the host, B cells matching the antigen will be 
cloned (i.e., clonal expansion) and mutated (i.e., affinity 
maturation) at rates directly proportional to and inversely 
proportional to the degree of the match (or affinity), 
respectively. Note that the superiority of a B cell actually 
refers to that of its antibody. 
 
3.3. Artificial Immune Systems 
 

The biological immune system has been shown to be a 
great mechanism to effectively deal with a virtually 
unlimited number of threats in very stochastic 
environments. It has been used in an increasing number of 
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Figure 2. The primary steps involved in the 

adaptive immune system 

eas, such as computer and network security, data mining 
d pattern recognition. An artificial immune system 
IS) can be defined as a methodology for solving a real-

orld problem by using abstractions inspired by features 
f the immune system. Several other definitions can be 
und in the literature [10]. 
The two most favored immune entities modeled in AIS 

e antibodies and antigens since they are key players in 
e adaptive immune system. In cooperation with these 
mune entities several other immunological theories, 
ch as negative/positive selection, clonal selection, 
mune networks and danger model have been actively 

odeled [11]. Note that, these are only some of the 
opular instances that have been modeled using a rich set 
f immune characteristics. 

. The Artificial Immune System with 
uplication (AISD) Algorithm 

The AISD algorithm performs scheduling through three 
ajor phases, a clonal selection phase, a task duplication 

hase and an ineffectual task removal phase in this order. 
he workings of these three phases are shown in Figures 
, 4 and 5, respectively.  

.1. Clonal Selection Phase 

The AISD algorithm adopts the clonal selection 
rinciple in the immune system as a key player to generate 
d refine schedules, eventually resulting in good quality 
hedules. Here, a schedule is denoted as an antibody. The 

euristic achieves its competitive performance not by 
mply incorporating immune features, but by intuitively 



Function ClonalSelection 
/** 
Input: 
  minG: min #groups; 
  maxG: max #groups; 
  c: #clones to generate for each base antibody 
  sr: maximum antibody selection rate 
  basemr: mutation rate 
Output: 
  A set AB of antibodies   **/ 
1.  Compute b-level(ni) ∀  Vni ∈

2.  Sort the tasks ∈ in decreasing order by b-level value V
3.  Let b = v / (minG + v / p % maxG) 
4.  Let AB = Ø 
5.  while ( ∃ │ni is unscheduled) do Vni ∈

6.      Remove first b tasks from V and insert them to B 
7.      Let newAB = Ø 
8.      do 
9.          Let prevab = the first antibody in AB 
10.        Generate a base antibody baseAB(B) based on 

taking prevab into account ∀  ),(min jiPp pnAFT
j∈ Bni ∈

11.        Let abP = prevab + baseAB(B) 
12.        Generate a set C of c-1 clones of baseAB(B) 
13.        for each clone do Cck ∈

14.           Mutate ck based on basemr /* b×basemr times */ 
15.           Add (prevab + ck) to abP 
16.        end for 
17.        Let AB = AB – prevab 
18.        Add abP to newAB 
19.     while (AB ≠ Ø) 
20.     Select best antibodies in newAB based on sr and store 
them in nextAB 
21.     for each abi∈nextAB do 
22.        Let ci = a clone of abi 
23.        Mutate abi based on affinity (schedule length)   
24.        Replace abi with ci if sl(ci) shorter than sl(abi) 
25.     end for 
26.     Let AB = nextAB 
27. end while 
28. return AB 

Figure 3. The Clonal selection algorithm 

adapting and carefully coordinating them for scheduling 
purposes. 

 The adaptations to typical characteristics of clonal 
selection AISD makes include group-wise task scheduling 
and judicious base schedule generation. That is, tasks in a 
given task graph are grouped into a number of scheduling 
batches based primarily on the number of processors with 
time complexity taken into consideration (step 3). Tasks in 
each batch are initially scheduled based on their earliest 
actual finish times (step 10). The schedule of the batch is 
called a base antibody (schedule). This base antibody 
should not violate any precedence constraints; that is, the 

schedule for tasks in the previous batches is considered 
when computing the earliest actual finish times of the 
tasks in the batch. This preceding schedule is denoted as 
prevab at step 9. The base antibody is cloned and the 
clones are mutated based on a uniform mutation rate 
specified as an input parameter (steps 13-16). This 
mutation process in addition to the base antibody 
generation scheme is adopted in order to ensure the 
antibody population is generated at a certain level of 
quality. Each antibody in an antibody population is a 
concatenation of the preceding antibody and a currently 
generated one (step 15). After generating a set of antibody 
populations antibodies in each population are evaluated 
based on schedule length and a set of best ones are 
selected, with the probability of selection directly 
proportional to affinity. More formally,  

NAB(abP) = max{0, │abP│× (sr – (ssl(abP) – mssl) / mssl)}, 

where NAB(abP) is the number of antibodies to select in 
antibody population abP, sr is the maximum antibody 
selection rate (e.g., 0.3 for 30%) specified as an input 
parameter, ssl(abP) is the shortest schedule length in abP, 
and mssl is the minimum shortest schedule length in all 
antibody populations. Note that, there is an inverse 
relationship between schedule length and affinity. These 
selected antibodies further undergo a process called 
hypermutation, with the probability of mutation inversely 
proportional to its affinity. The number of mutations per 
antibody is defined to be 

NM(ab) = 2 + (sl(ab) – mssl) / mssl * 10 * λ, 

where NM(ab) is the number of mutations antibody ab 
undergoes and sl(ab) is the schedule length of ab. The 
minimum number of mutations is set to 2. The number of 
mutations is characterized primarily by the mutation rate 
parameter λ. 

Actual mutations are carried out by the two types of 
mutation (point mutation and point-point swapping) 
adopted in the proposed algorithm. Any time a mutation is 
required a mutation type is randomly selected. As the 
names of the two mutation types are self explanatory they 
perform random point by point replacements and point to 
point swaps, respectively.  More specifically, for each 
mutation the former randomly selects a point (processor) 
in an antibody and replaces it with a randomly chosen one, 
whereas the latter swaps two randomly selected points. If 
the mutated clone of an antibody exhibits stronger affinity 
than that of the antibody, it supersedes the original 
antibody (step 24). This series of steps repeats until tasks 
in all batches are scheduled. 
 
4.2. Task Duplication Phase 
 

 



Function IneffectualTaskRemoval 
/** 
Input: An antibody ab 
Output: A refined antibody ab   **/ 
1.  Remove the one, among the replicas of the exit task  
in ab, whose actual finish time is the latest  
2.  for each task ni from the back of ab  do  
3.     Let IPi = a set of immediate predecessor tasks of ni  
4.     for each replica ri,j of ni do 
5.        if (ri,j ≠ nexit and useful(ri,j) ≠ true) then 
6.            Remove ri,j  
7.        else 
8.           for each immediate predecessor task ipi,k ∈ IPi do 
9.             Let RIPi,k = a set of replicas of ipi,k 
10.           Let uip=min { }

jimkikimki rripmkimkiRIP cpripAFT
,,,,,, ,,,,, ),( +∈rip  

11.           Let useful(uip) = true 
12.         end for 
13.      end if 
14.    end for 
15. end for 
16. return ab 

Figure 5. The ineffectual task removal algorithm

Function TaskDuplication 
/** 
Input: A set AB of antibodies 
Output: An antibody (schedule) of V onto P  **/ 
1.  Let sl(bestab) = ∞ 
2.  for each abi∈  do AB
3.     for each task ni,k encoded in abi  do 
4.        Compute AFT(ni,k, pj)  Pp j ∈∀

5.        Let ndups = min{p-1, max{1, # grand children of ni,k}}
6.        Duplicate ni,k as many as ndups times based on AFT 
7.     end for 
8.     Recompute schedule length of abi 
9.     Replace bestab with abi  if sl(abi) is shorter than  
sl(bestab) 
10. end for 
11. return bestab 

Figure 4. The task duplication algorithm 

As a result of the clonal selection phase of AISD a set 
of best antibodies is obtained. Task duplication, as an 
attempt to further reduce the schedule length, then takes 
place with these resultant antibodies. Each task encoded in 
a selected antibody is considered for duplication. Tasks 
are duplicated only if duplications do not increase the 
schedule length associated with the selected antibody. The 
number of duplications ranges from at least one up to as 
many as whichever is the minimum: the number of its 
grand child tasks and one fewer than the number of 
processors (step 5). Note that there is at most one instance 
of a task on each processor. This duplication policy 
ensures that the higher priority and more successor tasks a 
task has the more duplications it is considered for. At the 
end of this task duplication phase the best antibody (the 
one with the shortest schedule length) is selected and 
passed into the ineffectual task removal phase. 
 
4.3. Ineffectual Task Removal Phase 
 

Now the best antibody, generated and selected via the 
clonal selection and task duplication phases, is scrutinized 
to see if there are any unnecessarily   duplicated tasks. If 
so, those useless replicas are removed. 

The first step in the ineffectual task removal phase is to 
ensure there is only one exit task scheduled. Since any 
task in a task graph can be duplicated at least once 
including the exit task there might be two copies of the 
exit task in the schedule (step 1).  

For each task, its immediate predecessor (parent) tasks 
including their replicas are examined to find out which 
parent tasks are most effectively scheduled (steps 8-12). 
The decisions are made based on their actual finish times. 
For a particular task if it is not regarded to be useful for 
any of its child tasks after checking the usefulness of all its 
child tasks it is removed (step 6). 

Note that the ineffectual task removal algorithm 
assumes that there is only one exit task in a task graph. In 
case of a task graph with multiple exit tasks a dummy exit 
task, to which the actual exit tasks are connected, is added. 
Thus, any costs (i.e., computation and communication) 
associated with this addition are set to 0. 
 
5. Performance Evaluation 
 

In this section the performance of the AISD algorithm 
is evaluated based on its performance results obtained 
from experiments conducted with two extensive sets of 
task graphs:  randomly generated and well-known 
application task graphs. The three well-known parallel 
applications used for our experiments are the Laplace 
equation solver [12], the LU-decomposition [13] and Fast 
Fourier Transformation [14]. The proposed algorithm is 
also compared with two previously proposed heuristics, 
i.e., HEFT [15] and DBUS [16]. The selection was 
determined mainly by two main factors. The first is that 
they have both been shown to perform well in terms of the 
schedule length. Secondly, the target system 
configurations of the two heuristics are compatible with 
AISD. To the best of our knowledge, none of existing 
scheduling schemes for heterogeneous computing systems 
incorporates the immune system as a core component. 

The comparison results in this work are presented with 
intermediate results of AISD, i.e., schedules generated by 
the AIS (the clonal selection phase) without the task 
duplication and ineffectual task removal phases. This is 

 



because it is not clearly seen, from the performance results 
of AISD, the contribution that the AIS makes. 

Typically, the schedule length of a task graph generated 
by a scheduling algorithm is used as the main performance 
measure of the algorithm. The performance metric used 
for the comparison is the normalized schedule length 
(NSL). The normalized schedule length is defined to be 
schedule length obtained by a particular algorithm over 
schedule length obtained by the HEFT algorithm. 

As implied in Section 4.1 the performance of AISD 
tends to be influenced by its input parameters, i.e., minG,  
maxG, c,  sr and λ. The actual values of these parameters 
used for our experiments are: (1) minG = 3, (2) maxG = 
10, (3) sr = 30%, (4) c = 10 and (5) λ = 2. It should be 
noted that they are chosen with the time complexity in 
mind. 
 
5.1. Experiment Configuration 
 

The parameters used in the experiments are 
summarized in Table 1. The total number of experiments 
conducted with various both randomly generated and real-
world application task graphs on the five different 
numbers of processors is 84,000. More specifically, the 
random task graph set consists of 210 base task graphs 
generated with combinations of 10 graph sizes, 7 CCRs 
and 3 processor heterogeneity settings. For each 
combination 20 task graphs are randomly generated 
retaining the base one’s characteristics. These 4,200 
graphs are then experimented on with 5 different numbers 
of processors. Furthermore, each of the three applications 
is experimented on with the same number of task graphs 
(i.e., 21,000); hence the figure 84,000. 

 
Table 1. Experimental parameters 

 

Parameter Value 
The number of tasks U(10, 600) 

CCR {0.1, 0.2, 0.5, 1, 2, 5, 10}
The number of processors {2, 4, 8, 16, 32} 
Processor heterogeneity {100, 200, random} 

 
The computation and communication costs of the tasks 

in each task graph were randomly selected from a uniform 
distribution with the mean equal to the chosen average 
computation and communication costs. The processor 
heterogeneity value of 100 is defined to be the percentage 
of the speed difference between the fastest processor and 
the slowest processor in a given system. For the well-
known application task graphs, the matrix sizes and the 
number of input points are varied, so that the number of 
tasks can range from about 10 to 600.  

Although the experiments are carried out with seven 
different CCRs as stated in Table 1 only experimental 

results obtained with three significant CCRs of 0.1, 1 and 
5 are presented. This is due to the fact that these results are 
good enough to represent the performance of the three 
heuristics (AISD, HEFT and DBUS) for three 
fundamental task graph types (computation-intensive, 
moderate, communiation-intensive). What is more, the rest 
of the test results obtained from the task graphs with 
CCRs of 0.2, 0.5, 2 and 5 tend to be similar to those 
obtained from the task graphs with close CCRs. For 
instance, the test result acquired from the task graphs with 
CCR 5 does not show significant difference from the test 
result acquired from the task graphs with CCR 10. 
 
5.2. Experimental Results 
 

It is clearly shown in Figures 6 and 7 that the AISD 
algorithm delivers quite competitive schedule lengths 
irrespective of different application and system 
characteristics, e.g., graph sizes and the number of 
processors. The schedule lengths obtained from 
communication intensive task graphs indicate that the 
AISD algorithm is better suited for task graphs consisting 
of fine-grain tasks with large communication costs. This is 
also true for the DBUS algorithm. However, its 
performance drops noticeably with computation intensive 
task graphs. Moreover, when the number of processors in 
a given system is small even DBUS poorly performs with 
communication intensive task graphs. More precisely, the 
larger the ratio between the number of tasks and the 
number of processors, the poorer DBUS performs. This is 
due to the fact that a task with a single child may have to 
be assigned to more than one processor if the child task 
has been duplicated multiple times in order to cover the 
multiple child tasks of its own. This takes place 
recursively leading to increasing the schedule length 
significantly. The AISD algorithm, however, overcomes 
this drastic degradation by performing initial scheduling 
and task duplication separately. In other words, task 
duplication only takes place after all tasks in a task graph 
are scheduled without duplication. 

Two major sources of the performance gain of AISD 
are its clonal selection and task duplication schemes as 
shown in Figures 6 and 7. The former refines and leads to 
decent quality schedules, and the latter makes efforts 
towards reducing the communication overhead. 

The average schedule length of AISD computed based 
on communication intensive task graphs in the randomly 
generated task graph set, shown in Figure 6, is 18% on 
average and 32% at best, smaller than that of HEFT. The 
results on task graphs of the well-known applications in 
Figure 7 reconfirm this superior performance of AISD.  

Although DBUS tends to deliver significantly smaller 
schedule lengths than those of HEFT for communication 

 



intensive task graphs its applicability is limited to those 
systems consisting of a large number of processors. 
 

6. Conclusion 
 

In this paper, we have presented a novel scheduling 
algorithm, called the AISD algorithm, for heterogeneous 
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Figure 6. Average NSL of random DAGs 
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(a) 
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Figure 7. Average NSL for DAGs of (a) Laplace, (b) LU and (c) FFT 

 



computing systems. AISD incorporates the clonal 
selection in the vertebrate immune system and task 
duplication, as its core components, into its scheduling. It 
is proved that these two irrefutably contribute to the 
superior performance of the proposed algorithm. Based on 
the performance results obtained from extensive 
experiments conducted with a comprehensive set of both 
randomly generated and well-known application task 
graphs and various system configurations, AISD 
consistently outperformed the two existing algorithms by a 
noticeable margin, especially when scheduling 
communication intensive task graphs. 
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