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Abstract— This paper' presents the design and implementation
of an Ant Colony Optimization based algorithm for solving
the DAG Layering Problem. This algorithm produces compact
layerings by minimising their width and height. Importantly it
takes into account the contribution of dummy vertices to the
width of the resulting layering.

I. INTRODUCTION

The Sugiyama framework [12] is the most well-known and
studied heuristic for drawing directed acyclic graph (DAG). It
comprises a number of steps one of which is assigning each
vertex of the graph to a layer (layering step), which causes
a dummy vertex to be created every time an edge crosses a
layer. The next step is to order the vertices inside each layer
so that the number of edge crossings between any two layers
is minimised. The layering step is the one that determines
what will be the height and the width of the final drawing.
Usually the height represents the number of layers used to
layer the graph and the width is the maximum count of real
vertices in a layer. Defined like this the width ignores the
contribution made by the dummy vertices. In the case where
the width of a real vertex is much greater than the one of
a dummy vertex, or the number of dummy vertices for any
given layer is much smaller than the number of real vertices
this definition is accurate enough. However, when dummy
vertices are not so small compared to the real ones or when
their number is high, ignoring them will inevitably result in
much wider final drawing than it was expected initially. In
this paper we present a layering method based on the Ant
Colony Optimisation (ACO) metaheuristic [4] that minimises
the width and height of the layering by taking into account the
contribution of dummy vertices. To the best of our knowledge
this is the first attempt to use the ACO based algorithm to
layer a DAG.

In the following we introduce some preliminaries and dis-
cuss existing layering methods, followed by an introduction
to the ACO metaheuristic and the representation of the layer
assignment problem in its terms. Further, we describe the
design and the implementation of our algorithm together with
a discussion about the results achieved. Finally, a conclusion
and directions for further research are given.

II. PRELIMINARIES

A layering of G is a partition of V into subsets
Ly, Lo, ..., Ly, such that if (u,v) € E, where v € L; and
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v € Lj, then ¢ > j. The span of an edge (u,v) with v € L;
and v € L; is © — j. A layering is proper if all edge spans
equal one. This is achieved by inserting dummy vertices along
edges whose edge span is greater than one. The layer span
L(v) of vertex v refers to the set of layers between the
topmost and the lowermost layer on which vertex v can be
placed, provided that all edges point downwards. Note that
the layer span for a vertex is not constant during the layering
process and changes depending on the layer assignments of
its neighbouring vertices.

The most common definition (without any restrictions on the
layering properties) of the DAG Layering Problem (LP) can
be stated as: Given a DAG, G = (V, E), find a valid layer
assignment so that for each vertex u with y-coordinate y(u)
and for each vertex v such that (u,v) € E the following
properties are satisfied [1]:

1) y(u) is an integer

2) y(u) =1

3) y(u) —ylv) 21

There are three important aspects of the DAG LP according

to [1]:

1) The layered DAG should be compact. This means that
its vertices should be evenly distributed over the drawing
area.

2) The layering should be proper. This is easily achieved
by inserting dummy vertices.

3) The number of dummy vertices should be small.

A layering algorithm trying to solve the DAG LP subject
to additional constraints is expected to produce a layering
with specified width or height or minimum number of dummy
vertices or a combination of those three layering properties.
The height of a layering is defined as the number of layers used
to layer the DAG. Normally the vertices of DAGs from real-
life applications have text labels and sometimes prespecified
shape. Here we use a definition of vertex width given in [9] and
stating that the width of a vertex is the width of the rectangle
enclosing the vertex. If the vertex has no text label and no
information about its shape or size is available we assume
that its width is one unit. The width of a layer is defined as
the sum of the widths of all vertices in that layer (including the
dummy vertices) and the width of a layering is the maximum
width of a layer [9].

The edge density between horizontal levels ¢ and j with
i < j is defined as the number of edges (u,v) with u €



L;UL;{1U.. ULy andv € L1ULyU. . .UL;. The edge density
of a layered DAG is the maximum edge density between
adjacent layers (horizontal levels) [9]. Naturally, drawings with
low edge density are more readable and easier to comprehend.

A definition of the DAG LP with additional constraints
governing the width and height of the resulting layering
subject to minimum number of dummy vertices is given in
[11].

III. EXISTING LAYERING METHODS

One of the most well known layering algorithms is the
Longest-Path Layering (LPL) described in Algorithm 1. In
the representation of this and the following algorithms we
denote the set of all immediate predecessors of vertex v by
N¢ (v), and the set of all immediate successors of vertex v by
N (v). The LPL method places all sink vertices in layer Ly,
and each remaining vertex v is placed in layer L,;, where
p is the longest (maximum number of edges) path from v to
a sink. The attractiveness of this method is that it has linear
time complexity (because the graph is acyclic) and it uses
the minimum number of layers possible. The disadvantage
of the LPL method is that its layerings tend to be too wide
[6]. Because the area occupied by the final drawing depends
on both its width and its height the Longest-Path Layering
is not the best choice if minimal layering area is the main
priority. Unfortunately, the problem of finding a layering with
minimum width, subject to having minimum height, is N P-
complete [1].

Algorithm 1 The Longest-Path Layering Algorithm
Requires: DAG G = (V, E)

—_

22U —¢; Z— ¢

3: currentLayer «— 1

4: while U # V do

5. Select vertex v € V' \ U with N} (v) C Z
6:  if v has been selected then

7: Assign v to the layer with a number currentLayer
8: U—UU{v}

9: end if

10:  if no vertex has been selected then

11: currentLayer «— currentLayer + 1
12: Z — ZUU

13:  end if

14: end while

Another layering method is the MinWidth heuristic [9]
displayed in Algorithm 2. It is roughly based on the LPL
algorithm. The authors employ two variables widthCurrent
and widthUp to keep the width of the current layer, and the
width above it, respectively. The width of the current layer,
widthCurrent, is calculated as the number of original vertices
already placed in that layer plus the number of potential
dummy vertices along edges with a source in V\U and
a target in Z (one dummy vertex per edge). The variable
widthUp is an estimation of the width of any layer above the
current one. It is the number of potential dummy vertices
along edges with a source in V\U and a target in the current
layer (one dummy vertex per edge). When a vertex is selected

to be placed an additional condition ConditionSelect
is used, which is true if v is the vertex with the maximum
out-degree among the candidates to be placed in the current
layer. Such a choice of v results in maximum reduction to
widthCurrent. For a thorough discussion of the MinWidth
heuristic the reader is referred to [9].

Algorithm 2 MinWidth(G)
1: Requires: DAG G = (V, F)
22U — ¢, Z— ¢
3: currentLayer «— 1; widthCurrent <— 0; widthUp <— 0
4:
5

while U # V do

Select vertex v € V \ U with Ni(v) C Z and
ConditionSelect

6 if v has been selected then

7: Assign v to the layer with a number currentLayer

8: U—UuU{v}

9: widthCurrent «— widthCurrent — wq * d* (v) + w(v)

10: Update widthUp

11:  end if

12:  if no vertex has been selected OR ConditionGoUp then

13: currentLayer < currentLayer + 1

14: Z — ZUU

15: widthCurrent «— widthUp

16: Update widthUp

17:  end if

18: end while

Promote Layering (PL) [8] is a heuristic whose goal is “to
develop a simple and easy to implement layering method for
decreasing the number of dummy vertices in a DAG layered
by some list scheduling algorithm.” The PL layering method is
an alternative to the network simplex method of Gansner et. al
[5] but considerably easier to implement and especially useful
when a commercial linear programming solver is not available.
As noted PL usually runs after a layering is produced by a
quick list scheduling algorithm like LPL. LPL and MinWidth
on their own and in combination with the PL heuristic were
the four benchmark algorithms used in this work to evaluate
the performance of our ACO-based layering algorithm.

IV. INTRODUCTION TO THE ACO METAHEURISTIC

Ant colonies, and more generally social insect societies,
are distributed systems that, in spite of the simplicity of their
individuals, represent a highly structured social organisation.
As a result of this organisation, ant colonies can accomplish
complex tasks that in some cases far exceed the individual
capabilities of a single ant [4].

The main idea behind the Ant Colony Optimisation (ACO)
metaheuristic is that self-organising principles, which allow the
highly coordinated behaviour of real ants, can be exploited to
coordinate populations of artificial agents that collaborate to
solve computational problems.

The real ants coordinate their activities via stigmergy. This
is a biological term about a form of indirect communication
mediated by modifications of the environment. The term was
first introduced by the French biologist Pierre-Paul Grasse in



1959 to refer to termite behaviour. He defined it as “Stimula-
tion of workers by the performance they have achieved”. An
ant coming back to its nest from a food source it has found
will deposit a chemical substance called pheromone which the
others will find while roaming for food. By following the
pheromone trail laid the rest of the ants will discover that
same food source. The idea is then to use a similar artificial
stigmergy, as a form of global knowledge, to coordinate soci-
eties of computational agents in an attempt to solve different
combinatorial optimisation problems.

Such a computational agent is defined as “a stochastic
constructive procedure that incrementally builds a solution by
adding opportunely defined solution components to a partial
solution under construction” [4]. Based on the above definition
an ACO metaheuristic can be applied to any combinatorial
optimisation problem for which a constructive heuristic can
be defined. “The real issue is to find a suitable problem
representation which the artificial ants will use to build their
solutions” [4].

A. ACO definitions

A tour is a single iteration during which every ant produces
a solution to the problem being solved. For a given tour all ants
use the same starting point reached by the previous tour. This
approach emulates a parallel work environment for all the ants
comprising the colony. At the end of a tour, depending on the
pheromone update strategy adopted, either one or more ants
with the highest objective function value will deposit certain
amounts of pheromone over the edges of the construction
graph comprising its/their solution(s).

The process of constructing a solution by a single ant is
called a walk [4]. In our algorithm each ant is placed on a
randomly selected vertex v from which it starts constructing
its layering. Once a vertex is assigned the next one is chosen
by the ant again randomly and is assigned to a layer. This
continues until each vertex is assigned to a layer.

When performing its walk an ant executes a finite number
of identical actions called a construction step [4]. At each
construction step an ant k applies a probabilistic action choice
rule, called random proportional rule [4] given by Eq.(1), to
decide which layer vertex v should be assigned to.

B. DAG LP representation in terms of the ACO metaheuristic

The first step when applying ACO to a combinatorial
optimisation problem is to define the construction graph G¢
on which ants will perform their walks. The DAG LP can be
cast into the framework of the ACO metaheuristic using the
construction graph Go = (C, H). Here C = V|JL is the
set of components which includes V, the vertex set of graph
G that is to be layered, and L, the set of layers. H is the
set of links connecting components (vertices and layers) from
C'. Note that only a lower bound of |L| is known beforehand
but not |L| itself. Each layer assignment, which consists of
n couplings (v;,[;) of vertices and layers, corresponds to at
least one ant’s walk on the construction graph and cost d;; is
associated with every possible coupling of vertex and layer. In

the original definition of the construction graph G¢, H fully
connects the components of C' [4]. This is not the case here
because when assigning vertex an ant will be limited to choose
from layers comprising the layer span of that particular vertex.

C. Constraints

Walks on the construction graph G have to satisfy the
width and height constraints for the layering in order to result
in a valid assignment. One particular way of generating such
an assignment is by an ant’s walk that randomly chooses vertex
v € G as a starting point and continuing with a random
selection of next vertex until all vertices of G are assigned.
Additionally layers’ resource capacities (width W) can be
enforced by an appropriately defined neighbourhood. For ex-
ample, for an ant k positioned on vertex v; the neighbourhood
NF can be defined as consisting of the subset of layers of
L(v;) to which v; can be assigned without exceeding .

D. Pheromone trails and heuristic information

Ants construct feasible solutions by iteratively adding new
components to their partial solutions. While in the construction
process ants repeatedly have to take the following two basic
decisions:

1) choose the vertex to assign next;
2) choose the layer the vertex should be assigned to.

Pheromone trail information can be associated with any of the
two decisions. It can be used to learn an appropriate order for
vertex assignment or it can be associated with the desirability
of assigning vertex v; to a specific layer. In the former case, 7;;
represents the desirability of assigning vertex v; immediately
after vertex v;, while in the latter it represents the desirability
of assigning vertex v; to layer /;. In our implementation we
use pheromone trail information to measure the desirability of
assigning a given vertex to any of the layers from its layer
span, that is, the second case. Similarly, heuristic information
7;; can be associated with any of the two decisions listed
above but again we use heuristic information for the actual
assignment and not for the order in which it is going to be
done. Methods such as Breadth First Search or other similar
techniques which provide a linear order of the vertices can
be used to determine the order in which vertices are to be
assigned. Random choice of the next vertex to be assigned is
another option that may be employed.

The heuristic information can be either static or dynamic.
In the static case, the values 7;; are computed once at the
initialisation phase of the algorithm and then remain un-
changed throughout the entire algorithm’s run. In the dynamic
case the heuristic information depends on the partial solution
constructed so far and therefore has to be computed at each
step of an ant’s walk. Our application of the ACO to the DAG
LP falls into the second category because the heuristic value
nij = w—17 where w;; is the width of a layer I; € L(v;).
Therefore after each assignment, which in fact moves v; from
its current layer [y, to a new one Iy, the widths of
those two layers must be changed - decreased for I, and
increased for [,.,. Moreover, the widths of the layers from



L(v;) placed between l.y» and lpeq also change because of
the dummy vertices induced by incoming and outgoing edges
for vertex v;. Therefore the heuristic values affected must be
computed by every ant after each assignment it has made.
When constructing its walk on the construction graph an ant
k, that is going to assign vertex v;, chooses layer [; € L(v;)
with a probability given by the following equation [4]:

(3] [165)”
Elez\/;c [7a]” [m‘z]ﬁ

ey

ko
pi; =

Here 7;; is the heuristic information that is calculated a
priori and 7;; is the quantity of pheromone calculated as the
product of the initial pheromone value, the evaporation process
and the quantity deposited by ants in previous tours. The
two parameters « and 3 determine the relative influence of
the pheromone trail and the heuristic information. N} is the
feasible neighbourhood of ant k£ when assigning vertex v, that
is the layer span of v. The role of « and [ is the following.
If o = 0, the layers from the layer span of v with smaller
widths are more likely to be selected because the influence
of the pheromone information is eliminated. This corresponds
to a classic stochastic greedy algorithm with multiple starting
points since ants are initially randomly distributed over the
vertices of the graph to be layered [4]. Conversely if 5 = 0,
only the pheromone information is at work, and therefore the
layers that had been selected by the majority of ants during
previous tours that is, have accumulated high pheromone
values, will more likely be selected. The absence of heuristic
bias generally leads to rather poor results, and in particular, for
values of a > 1 it leads to rapid emergence of a stagnation
situation where all the ants follow the same tour, which in
general is strongly suboptimal [3].

E. Representing ants

There are a few key features that ants need to have in order
to be able to perform their walks on the construction graph
and generate feasible solutions. An ant has to be able to:

1) Memorise the partial solution it has constructed so far;

2) Determine the feasible neighbourhood for each vertex;

3) Assign a vertex to a layer subject to the height and width
constraints;

4) Update the values of the heuristic matrix to reflect each
new assignment;

5) Update the layer span for a vertex;

6) Compute and store the objective function value of the
solution it generates;

7) Update the pheromone matrix.

The first requirement can be satisfied by storing the partial
solution (walk) into an array indexed by the vertices of G and
associating an integer value with each vertex representing the
layer number it has been assigned to. An ant should also be
able to compute the layer span of a given vertex in order to
determine its neighbourhood. Additional to the layer span an
ant should be able to calculate the number of dummy vertices
a particular assignment would cause due to incoming edges

for vertex v which cross the layers above the one to which v
is assigned. These must be performed after each assignment.
Finally, each ant should have a number of variables in which
the characteristics of the completed layering will be kept;
these are the value of the objective function, the height of
the layering and the width of the layering.

V. THE ACO-BASED LAYERING ALGORITHM

In our approach the graph is first layered using the fast and
efficient LPL algorithm which gives the minimum number of
layers graph G can be layered on. We then add a number
of new layers in between the LPL ones. This results in a
greater search space for the ants and gives them more freedom
when constructing their solutions. Once the LPL layering is
stretched in this manner the actual process of layering by the
ant colony begins. It comprises a number of tours during which
each ant builds its own layering. The layering of the best ant
becomes this tour’s layering. Every tour inherits the layering of
its predecessor and uses it as a base to build its own. The rest
of this section presents the details of our ACO-based layering
algorithm.

A. Stretch LPL

The aim of this initial step of the algorithm is to add new
layers to the ones introduced from LPL so that the number
of layers grows to n, the number of vertices of G. By doing
this we guarantee that no layering will be left out, that is these
with the minimum width will also be in the search space. This
approach also enlarges the search space, giving ants greater
area for exploration. This would not be the case if they start
working directly on the resulting layering from the LPL. This
layering is a minimum height layering and as such it is too
restrictive for ants. The only improvement they could make
is to reduce the number of dummy vertices similar to the PL
heuristic described in Section III. However, ants will not be
able to reduce the width of the graph significantly. If we denote
the number of layers produced by LPL as nzp; and with n,
the number of vertices of GG, then the number of layers to add
is given by n,; =n —nrpr.

One way to proceed is to add all new layers either above
or below the LPL layers. Alternatively some of them can go
above and the other below the LPL layers (Fig. 1).

The drawback of the both strategies is that the ant will have
very few options as to where to move the vertex. Bearing in
mind that each ant chooses a starting vertex randomly, it will
be very limited in moving vertices without violating the initial
direction of the edges of GG. Of course, if the vertex is either a
sink or a source an ant will have at its disposal (at least) half of
all newly added layers but then it is hard to determine on which
layer exactly to place the vertex as no heuristic information
would be available to bias the ant’s choice.

The approach suggested here is to insert the new layers in
between the LPL layers. The way to do it is to divide the
Ny to the number of interlayer spaces from the LPL which is
exactly nypr, — 1 and then insert and re-index the layers as
shown in Fig. 2.
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Fig. 1. The LPL and the newly added layers on top and bottom.

Fig. 2. The new layers inserted between the LPL ones.

By choosing this approach over the one described in Fig. 1
the layer span for each vertex is uniformly increased and
therefore ants will have more possibilities for changing the
layer assignment of any vertex and not only the source or sink
ones. We denote the resulting (stretched) graph as Gsrr.

Vertex width is another issue that needs careful considera-
tion. In most real-life applications the width of dummy vertices
(which in fact would be the line representing an edge) is
far less than the width of a real vertex (usually a rectangle
with some text inside). To reflect this the ACO-based layering
algorithm allows for a variable dummy vertex width to be
supplied as an initial parameter.

B. Initialisation phase

In the initial phase the input DAG G = (V, E) is layered by
the LPL. The resulting layering is then stretched as described
in Section V-A allowing for a much greater exploration area
for the ants. The next step is to calculate the layer span L(v;)
Vv € V. Based on the layer span of a particular vertex, its
corresponding elements from the heuristic matrix (one column

1

per vertex) are initialised either to O or W depending on

whether /; belongs to the layer span of that vertex or not. Here
W (l;) is the width of layer /;. However all elements of the
pheromone matrix are initialised to 7, the initial amount of
pheromone laid down.

Algorithm 3
phase)
1: Requires: DAG G = (V, F)

2: Grpr +— dOLPL(G)
3: Gsrr <« doStretch(GrLpL)

ACO DAG LP (Initialisation

{populate the ant colony}
4: for : =1 to ¢ = _n_ants do
5:  _ant_colony « _ant_colony U ant;
6: end for

{initialise _layer_spans; L(v;) is the layer
span of vertex v;}
7: for all v; € V do
_layer_spans[i] < L(v;)
9: end for

{initialise _layer.widths; W(l;) is the
width of layer I;}

10: for all [; € Gsrr do

11: layer_widths[j] — W(l;)

12: end for

13:7'<—(Z);77<—®

{column and row from 7 and 7) correspond
to vertex and layer from GSTR}

14: for all ;; € T do

15: Tij < T0

16: end for

17: for all n;; € 1] do
18:  if I; € L(v;) then
1

19: LY T ()
20:  else

21: Nij < 0

22:  end if

23: end for

C. Layering phase

Once the initialisation phase is completed Algorithm 4 -
Layering Phase starts. Its outermost loop runs for the specified
number of tours _n_tours; 10 was the value we used in our
experiments. During a single tour each ant performs its walk
on the construction graph G¢ and produces a layering of
Gsrr. When building its solution ant aj repeatedly assigns
vertex v; (randomly chosen) to a layer lpes; € L(v;) that gives
best result when executing line 6.

At line 7 the actual assignment is performed, which in turn
requires that those values of the heuristic matrix 7] that have
been affected by this particular assignment be recalculated and
updated (line 8). When v; is assigned to a layer, that is, it has
been moved either up or down from its current layer, the layer



span of all neighbouring vertices of v; changes too. Therefore
the layer span for every neighbouring vertex of v; has to be
recalculated (line 10) before ant aj picks up the next one.
When a, has assigned all vertices it is the end of its walk for
the current tour. The objective function value is calculated at
line 13 and stored against that ant’s identifier.

At the end of a tour the evaporation step, which reduces
all elements 7;; of the pheromone matrix 7 by a predefined
evaporation rate pg, is executed. Next, the best ant for the tour
pest deposits pheromone on the elements 7;; corresponding to
its assignments. Additionally the heuristic matrix and layering
of apest become the starting heuristic matrix and layering for
the next tour.

Algorithm 4 ACO DAG LP (Layering phase)
1: Requires: Algorithm 3 to be run first

{begin tour}
2: for t =1 to t = n_tours do
3: for all ay € _ant_colony do

4: {begin ant’s walk}
5: for all v; € V do

. [rig]*[ni5)° ) ,
6: lbest < max ZleN!" [Til]a [n”]ﬁ) VZJ € L(U'L)

7 lbest — lbest U,
8: n<—mn

{update layer span for neighbouring

vertices}

9: for all © € V such that e(v;,u) € FE do

10: L(u) <« Li(u)

11: end for

12: {H(ax) and W(ar) - height and width of
this ant’s layering}

. 1
13: flag) < (H(ak)JrW(ak)
14: end for{end ant’s walk}

15:  end for{end tour}
16: T <—evaporate(T)
172 T $—apest-deposit(T)
18: T] <_abest(n)

19: end for

VI. IMPLEMENTATION OF THE ACO-BASED LAYERING
ALGORITHM

The algorithm was implemented in C++ with the use
of the LEDA 5.0 library of efficient data types and
algorithmsl. Three classes were used, LayeredDAG, Ant,
and AntColony. The class LayeredDAG inherits from
LEDA’s parameterised graph GRAPH<int, int> and has
additional methods to allow for layering of the graph. The
class Ant represents a single computational agent, which
performs walks on the construction graph Go = (C, H),

"http://www.algorithmic-solutions.com/enleda.htm.

while building its own solution in parallel with other agents
(ants). Finally, the AntColony class is the entity conducting
the search process performed by ants.

The most important method of the Ant class is called
performWalk (). First it initialises this ant’s pheromone and
heuristic matrices, its objective function value, as well as its
own copy of the layer widths data structure. Then it iterates
randomly over all vertices of the graph to be layered. After
a vertex is picked up, the calcProbability () method is
called, which calculates probability values for each layer from
the vertex’s layer span according to the random proportional
rule given by (1). The layer that corresponds to the highest
probability value is chosen and the vertex is assigned to it.
To accomplish this operation the algorithm invokes two other
methods - moveNode () and reflectNodeMovement ().

/e «— ----- L8
FA AN L7
T .
7 SR N ’
u/ ] =] 5 L2

Fig. 3. Reflect vertex movement

Updating layer widths

When a vertex is moved by an ant, the widths of all layers
between and including the current layer and the new one,
have to be updated. The algorithm used to accomplish this is
Algorithm 5. Here .n_width is the width of a real vertex and
nd-width is the width of a dummy vertex. Additionally,
outdeg (v;) and indeg (v;) are the numbers of outgoing
and incoming edges for v; respectively. Please refer to Fig. 3
when reading the algorithm.

The main method of the AntColony class is
runColony (). It calls the performTour () method
for the specified number of tours (i_maxIterations),
and performTour () calls performWalk () method on
each ant from the colony. That method returns the objective
function value the ant has achieved.

Note: When the ants produce their layering it might happen
that some of the layers between the first and the last layer
remain empty. To eliminate this after the layering is completed
empty layers in the middle are removed and the layer numbers
assigned to vertices are updated.

VII. EXPERIMENTS AND RESULTS

Experiments to evaluate the performance of Ant Colony
layering algorithm were conducted over a set of 1277 directed



Algorithm 5 Updating Layer Widths

1: W(currentlayer) «— W (current_layer) — -n_width
2: W(new_layer) «— W (new_layer) + _n_width
3: if new_layer(v;) > current_layer(v;) then

4:  for all [; such that
50 currentlayer(v;) < lj > new_layer(v;) do
6: W(l;) «— W(l;) + outdeg(v;) * _-nd_width
7:  end for
8:  for all [; such that
9:  currentlayer(v;) < lj < new_layer(v;) do
10: W (l;) «— W(l;) — indeg(v;) * _-nd_width
11:  end for
12: else
13:  for all [; such that
14:  currentlayer(v;) < l; > newlayer(v;) do
15: W(l;) — W(l;) + indeg(v;) * _nd_width
16:  end for
17:  for all [; such that
18:  currentlayer(vi) > l; > new_layer(v;) do
19: W(l;) < W(l;) — outdeg(v;) * -nd_width
20:  end for
21: end if
graphs.?

First our algorithm was compared against the LPL algorithm
and the MinWidth heuristic. Then the two were combined with
the PL heuristic which in total resulted in four algorithms
being used for the evaluation of our algorithm. The set of 1277
graphs was divided into 19 groups according to the number
of vertices in each graph - ranging from 10 to 100 with step
size 5. The main goal of these initial tests was to roughly
evaluate the Ant Colony layering algorithm’s performance
and the feasibility of its further research. During the tests
conducted four graph layering criteria namely - layering width,
layering height, dummy vertices count (DVC), and maximum
edge density plus a performance related one - algorithm’s
running time, were used.

The width of the Ant Colony layering compared with the
other two algorithms is shown in Fig. 4 and Fig. 5. It can be
seen that the width of the layerings produced by our algorithm
is smaller than the the width of the LPL layerings and matches
the ones resulting from the combination LPL plus PL heuristic.
The layering width is even smaller when the dummy vertices
contribution is not taken into account (the second plot in
Fig. 4). This is a result of the fact that when an ant decides
on which layer a vertex should be placed it uses as heuristic
information the layer width estimation of all layer candidates
by giving higher priority to the layers with fewer vertices
currently. While it was somehow anticipated that our algorithm
was going to produce narrower layerings than the LPL, the fact
that it also matches the widths of the LPL plus the PL heuristic
are rather encouraging. When compared with the MinWidth
and MinWidth with PL our algorithm performs very close to
these two algorithms especially in the case where the dummy
vertices are taken into account (the first diagram in Fig. 5).
Here the winner is MinWidth combined by PL followed

2AT&T graphs available from http://www.graphdrawing.org

closely by the Ant Colony layering algorithm, which in turn
shows better results than the MinWidth heuristic when run on
its own. This is not the case though when the contribution of
dummy vertices is not taken into account (the second diagram
in Fig. 5). Here clearly the winner is MinWidth followed by
the MinWidth with PL and the AntColony both showing close
results.

The next criteria used were the height of the layerings and
the number of dummy vertices (DVC). The results are shown
in Fig. 6 and Fig. 7. The clear winner when it comes to
the height of the layering is of course the LPL algorithm.
The Ant Colony layerings are between 20 and 30% higher
than the LPL ones and this is a result of achieving smaller
layering width than the LPL. One thing to note here is the
fact that even by ”stretching” the LPL layerings by those 20
to 30% our algorithm manages to keep the same number of
dummy vertices as the original LPL layering (second diagram
in Fig. 6). The Dummy Vertices Count (DVC) of the Ant
Colony though is greater than the LPL when combined with
PL.

The last two criteria used are the Edge Density (ED) and
the Running Time (RT). ED is the maximum number of
edges between any two layers of the resulting layering. The
lower this value is the more uniform distribution of edges is
observed in the final drawing of the graph we are layering.
According to Fig. 8 and Fig. 9 the ED of the layerings resulting
from applying the Ant Colony are between the values of
the MinWidth and MinWidth with PL and are better when
compared with the LPL and LPL with PL. When comparing
the running times - as expected LPL and MinWidth are the
winners. While this was no suprise to us it was encouraging
to see that the RT of our algorithm is not much higher when
LPL and MinWidth are combined with the PL heuristic.
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Fig. 4. Width of Ant Colony Layering Compared with LPL and LPL with
PL

VIII. PARAMETER TUNING

The Ant Colony operates depending on a number of pa-
rameters that set the number of ants, tours to be performed,
initial pheromone values, rate of pheromone evaporation and
so on. There are two main parameters though named « and /3
that influence the significance of the pheromone and heuristic
information respectively when a decision is made by the ant.
Various tests were performed for o and (3 ranging from 1
to 5 and the best results were achieved for a = 3 and
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B = 5 followed closely by the results for « = 1 and § = 3
showing slightly lower performance but at the expense of
longer running times for the former. Therefore it was decided
that 1 and 3 will be used as respective values for those two
parameters in our further investigations. Interestingly those
values for  and § showed good performance of the Ant
Colony Optimization heuristics when tested with instances of
the Traveling Salesman Problem (TSP) as reported previously
[4] Another parameter considered is the dummy vertex width
(nd-width) although this is not a parameter of the Ant
Colony it has, as it proved from the tests we run, a direct
influence on the quality of the final layering. We run the
algorithm for values for -nd width ranging from 0.1 to
1.2 with step 0.1 and the best results were achieved for
nd-width = 1.1 closely followed by -nd_width = 1.
Again the slightly better performance for 1.1 could not justify
the longer running time and therefore the -nd-width = 1
will be used in our experiments.

IX. CONCLUSION

On the basis of the initial tests we can conclude that
Ant Colony layering algorithm performs well when compared
against the two base layering methods LPL and MinWidth
alone and combined with the PL heuristic. Those two layering
methods target two competing layering characteristics the
height (LPL) and the width (MinWidth) of a layering. The fact
that the Ant Colony layering algorithm produces comparable
results (only slightly worse) in the key area (height and width
respectively) for each of the two algorithms and in the same
time outperforms them in the other layering criteria proves that
the algorithm is doing what it is supposed to do and appears
to be more universal than the other two. However, the running
time of the AntColony is greater than any of the two base
methods. This is due to the fact that the Ant Colony layering
algorithm uses LPL to build its initial layering. Nevertheless
when the Ant Colony layering algorithm is compared to LPL
and MinWidth with PL the running time of the first is not
significantly worse than the running time of the other two
algorithms.
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