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Abstract

Many physical and artificial phenomena can be de-
scribed by time series. The prediction of such phe-
nomenon could be as complexr as interesting. There
are many time series forecasting methods, but most of
them only look for general rules to predict the whole se-
ries. The main problem is that time series usually have
local behaviours that don’t allow forecasting the time se-
ries by general rules. In this paper, a new method for
finding local prediction rules is presented. Those local
prediction rules can attain a better general prediction
accuracy. The method presented in this paper is based
on the evolution of a rule system encoded following a
Michigan approach. For testing this method, several
time series domains have been used: a widely known
artificial one, the Mackey-Glass time series, and two
real world ones, the Venice Lagon and the sunspot time
Series.

1 Introduction

A time series consists of an ordered sequence of val-
ues of a variable. The goal is to predict future values
of the variable, y;, for ¢ > D. In other words, the set
{y1,...,yp} is used to predict yp,, where T is a non
negative integer, which receives the name of predic-
tion horizon. In time series related to real phenomena,
a good model needs to detect which elements in the
data set can generate knowledge refusing those that
are noise. In this work a new model has been devel-
oped, based on evolutive algorithms to search for rules
to detect local behaviours in a time series. That model
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allows to improve the prediction level in these areas.

Previous works have used linear stochastic models,
mainly because they are simple models and their com-
putational burden is low. ARMA (autoregressive mov-
ing average) models using data of pressure and level at
Venice have been used to forecast the water level at the
Venice Lagoon [13]. Following with this domain, in [21]
a time series analysis using nonlinear dynamic systems
theory and multilayer neural networks models can be
found. This strategy is applied to the time sequence
of water level data, recorded from Venice Lagoon dur-
ing the years 1980-1994. In [6],Multilayer Perceptrons
are trained using selective learning strategies in order
to predict the Venice lagoon time series. In [18], Ra-
dial Basis Neural Networks trained with a lazy learning
approach, are applied to the same time series and the
well-known Mackey-Glass time series. Following the
Packard’s work to predict dynamical systems [14], [10],
[12], and using Evolutionary Algorithms [5] to generate
prediction rules on a time series, some advanced Evolu-
tionary Algorithms’ techniques to attain better results
have been applied to this work.

2 Evolutionary Algorithms for generat-
ing prediction rules

For some domains, specially in the case of natural
phenomena, the use of techniques of machine learn-
ing have to face certain problems. Usually, machine
learning techniques, and specially Evolutionary Algo-
rithms, base their learning process on a set of exam-
ples. If these examples are fundamentally distributed
throughout certain values, the learning process will fo-
cus on this range, considering the rest of the values as
noise. This fact is positive for some domains, but it
becomes a disadvantage in others. For example, in the



case of stock market prediction or tides prediction, to
mention two very different domains, most of the exist-
ing measures are over average values. In few occasions,
great increases or decreases take place. Nevertheless,
those situations are indeed the situations that have
more importance from the point of view of the pre-
diction task. Our approach bases on finding rules that
represent both, the usual and the atypical behaviours
of the time series, in order to be able to predict future
values of the series. These rules will be obtained using
an Evolutionary Algorithm.

In order to avoid the generalization problem, a
Michigan approach has been implemented [2] in the
Evolutionary Algorithm, using a Steady-State strat-
egy. In the Michigan’s approach, the solution to the
problem is the total population instead of the most fit-
ted individual. This way allows the evolution of rules
for common behaviours of the problem, but also al-
lows atypical behaviours. Doing it, we pay attention
to these unusual behaviours which in other cases would
be considered as noise.

Due to the fact that each rule is only evaluated with
the examples associated to it, it is only locally or par-
tially applicable. This local characteristic allows the
system to use specific rules for particular situations.
On the other hand, this method doesn’t assure the sys-
tem to make a prediction for all the time series. A
balance between the perfomance of the system and the
percentage of prediction must be found.

3 Description of the method
3.1 Encoding

The approach suggested in this paper is based on the
generation of rules for making predictions. The first
step consists of fixing a value for the constant D, that
represents the number of consecutive time instants used
to make the prediction. For instance, if D = 5 a rule
could be a condition like ”if the value of the variable
at time unit 1 is smaller than 100 and bigger than 50,
at time unit 2 is smaller than 90 and bigger than 40,
at time unit 3 is smaller than 5 and bigger than -10,
at time unit 5 is smaller than 100 and bigger than 1,
then the measure at time unit 5+7 will be 33 with an
expected error of 5”. This rule could be expressed as:

IF (50 < y1 < 100) AND (40 < y2 < 90)
AND (=10 < y3 <5)AND (1 < y5 < 100)
THEN prediction = 33 + 3

In figure 1 a graphical representation of a rule
is shown. For a rule (R), a conditional part (Cr)
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Figure 1. Graphical representation of a rule

and a predicting part (Pg) are defined. The con-
ditional part consists of a set of pairs of intervals
Cr = {If, 1, ... I, ... IE}; where each IF is an in-
terval I7 = {LLE UL}, being LLE the lower limit,
and UL the upper limit for the i-th input data. The
predicting part is composed by two values: the predic-
tion value and the expected error, Pr = {pgr,er}.

The conditional part could include void values (x)
that means that the value for this interval is irrelevant,
that is, we don’t care which value it has.

The previous rule is encoded as:

(50,100, 40, 90, —10, 5, %, x, 1,100, 33, 5)

Genetic operators can be applied to generate new
rules from an initial population. In order to do that
we need to define a crossover process. We select
two rules in the population and they produce a new
offspring rule. This offspring will inherit his genes
from his parents, being each gene an interval I;.
For each i < D the offspring can inherit two genes
(one from each parent) with the same probability.
This type of crossover is known as uniform crossover.
This offspring will not inherit the values for 'predic-
tion’ and ’error’, as we can see in the following example:

Parent A:

(50,100, 40,90, —10, 5, *, *, 1,100, 33, 5)
Parent B:

(60,90,10, 20,15, 30,40, 45, x, *, 60, 8)
Offspring:

(50, 100,10, 20, —10,5,40,45, %, *,p, €)

Once generated, an offspring may suffer mutation
of some gene. This mutation process consists of en-
largement, shrink or moving up or down the interval
encoded by the gene. Let R be an individual, the pro-
cess to obtain the prediction and the error values for
R is the following:



e (Calculate the set of points of the time series
S ={zy,x9,..., Tk, ..., Ty } such that fits the con-
ditional part of the rule R. This subset will be
called Cg(95):

Cr(S) = {X;|X; fits Cr}

where Xi = (x;,Zit1, -, Ti+p—1) and the vector
X; fits Cg if:

LLT <2 <UL® LLE <24, <ULE, ..
e LLE < i p_y <ULE

e Once calculated Cg(S), the next step consists of
determining the output for the prediction horizon
7 for each point. This value is: v; = ;4 p_14~+

e This new value is added as a new component to
the vector X;, so we get:

C(8) = {X!|X; fits Cr}
where:
X! = (T4, Tig1s ooos Tap (1) 01) = (X5, 00)

e The prediction pg for the rule R is calculated by
mean of a linear regression with all the vectors
in the set CL(S). In order to do that it’s neces-
sary to calculate the coefficients of the regression
A = (ag, a1, ...,ap) which define the hyperplane
that better approximates the set of points C',(S5).
Let v; be the estimated value obtained by the re-
gression at the point X’}, it is defined as:

V; = aoT; +a1Ti41 + ... +ap_1Ti4-p_1+ap

e Thus, the estimated error value for the rule, eg,
is:

er = Maz{|v; — 0|/ X; € Cr(S)}

Therefore, each individual represents a rule able to
predict the series partially. The set of all the indi-
viduals (all the rules) defines the prediction system.
Nevertheless, zones of the series that do not have any
associated rule could be found. In this case, the system
cannot make a decision in this region. It is desirable,
and it is an objective of this work, to make the unpre-
dicted zone as small as possible. Our system, therefore,
must look for individuals that, on the training set, pre-
dict the maximum number of points with the minimum
error. Therefore, the fitness function for an individual
R is defined as:

IF ((NR>1) AND (eR < EMAX)) THEN
fitness = (NR*EMAX) - eR
ELSE
fitness = f_min

where NR is the number of points of the train-
ing set that fit the condition Cr (ie. NR =
cardinal(Cgr(S))). EMAX is a parameter of the algo-
rithm that punishes the individuals with a maximum
absolute error greater than EMAX. f_min is a min-
imum value assigned to the individuals whose rule is
not fitted at any point in the training set.

The goal of this fitness function is to establish a
balance between individuals whose prediction error is
the lowest possible, and at the same time, the number
of points of the series in which it makes prediction (the
number of points of Cr(S)) is the highest possible.

3.2 Initialization

The method designed tends to maintain the diver-
sity of the individuals in the population as well as its ca-
pacity to predict different zones at the prediction space.
But the diversity must exist previously. In order to do
that, a specific procedure of population initialization
has been devised. The main idea of this procedure is
to make an uniform distribution throughout the range
of possible output data. For example, in the case of
Venice lagoon tide prediction , the output ranges from
-50 cm to 150 cm. If the population has 100 individu-
als, the algorithm creates 100 intervals of 2 cm width,
and in this way all the possible values of the output are
included. The initialization procedure creates a rule for
each interval previously mentioned, so this rule’s pre-
diction is included in the interval. The initialization
procedure for an interval I has the following steps:

1. Select all the training patterns )ZZ- whose output
belongs to I.

2. Determine a maximum and a minimum value for
each input variable of all the pattern selected in
the previous step.

3. Those maximum and minimum values define the
values assigned to the rule for each input variable.
This rule’s prediction is set as the mean of the
output value of the patterns selected in the step 1.

This procedure will produce very general rules, so
they cover all the prediction space. The Evolutionary
Algorithm will improve the rules in order to make them
more specific.



3.3 Evolution of rules

Basically, the method described in this paper bases
on using a Michigan approach with a steady state strat-
egy. That means that in each generation two individ-
uals are selected proportionally to the fitness function.
This selection is made by means of three rounds trials.
Those parents produce only one offspring by crossover.
Then the algorithm replaces the nearest individual to
the offspring in phenotypic distance, i.e. looks for the
individual in the population that make predictions on
similar zones in the prediction space. The offspring
replaces the individual selected in the population, if
and only if its fitness is better than the individual se-
lected. Else the population doesn’t change. This re-
placing method is mainly used in crowding methods
[3], in which them try to maintain a diverse population
in order to find several solutions to the problem. In
the case of study of this paper, this approach is widely
justified by the fact that we are looking for several so-
lutions to cover the space of prediction as much as pos-
sible, so that generated rules could predict the highest
number of situations. Moreover, the diversity of the so-
lutions allows the generation of rules for specific highly
special situations.

3.4 Prediction

This statistical method obtains different solutions
in different executions. After each execution the solu-
tions obtained at the end of the process are added to
the obtained in previous executions. The number of ex-
ecutions is determined by the percentage of the search
space covered by the rules. The set of all the rules ob-
tained in the different executions is the final solution
of the system. Once the solution is obtained, it is used
to produce outputs to unknown inputs patterns. This
is done following the next steps:

e For each input pattern, we look for the rules that
this pattern fits.

e Each rule produce an output for this pattern.

e The final system output (i.e., the prediction of the
system) is the mean of the output for each pattern.

4 Experiments

The method have been applied to three different do-
mains: an artificial domain widely use in the bibliog-
raphy (Mackey-Glass series) and two time series corre-
sponding to a natural phenomenons, the water level in
Venice Lagoon and the sunspot time series.

4.1 Venice Lagoon time series

This real world time series represents the behav-
ior of the water level at Venice lagoon. Unusual high
tides result from a combination of chaotic climatic el-
ements with the more normal, periodic, tidal systems
associated with a particular area. The prediction of
high tides has always been the subject of intense in-
terest, not only from a human point of view, but also
from an economic one, and the water level of Venice
Lagoon is a clear example of these events [13], [11].
The most famous example of flooding in the Venice
lagoon occurred in November 1966 when the Venice
Lagoon rose by nearly 2 meters above the normal wa-
ter level. That phenomenon is known as “high water”
and many efforts have been made in Italy to develop
systems for predicting sea level in Venice, mainly for
the prediction of the high water phenomenon [17]. Dif-
ferent approaches have been developed for the purpose
of predicting the behavior of sea level at the Venice la-
goon [17, 19]. Multilayer feedforward neural networks
have also been used to predict the water level [21] ob-
taining same advantages over linear and traditional
models. Standard methods produce very good mean
predictions, but they are not so successful for those
unusual values. For the experiments explained above
, the following values for the variables 7 and D have
been used: D = 24, and 7 = 1,4,12,24,28,48,72,96.
That means that the measures of the 24 consecutive
hours of the water level have been used to predict the
water level, measured in cm, 1,4,12... etc hours later.

The results for such experiments are shown in table
1, towards the results of other work for the same do-
main [21], using Neural Networks. Those experiments
use a training set of 45.000 measures, and a valida-
tion set of 10.000. The populations were evolved along
75.000 generations. The rules used as input 24 con-
secutive hours of the water level. The value of the
”Percentage of prediction” is the percentage of points
in the validation set such that there is a prediction for
it by, at least, a rule. No rule made a prediction for
the rest of the validation set. The column ’Error RS’
in the table 1 shows the error for the Rule System de-
scribed in this paper, and 'Error NN’ shows the error
for Neural Networks obtained in [21]. The error mea-
sures used in those experiments is root mean squared
error (RMSE). If we define e = 1(z — #)?, RMSE can
be expressed as:

lel e’

n

RMSE =

The results show a similar improvement of the pre-
diction in horizons starting on 4 hours, and similar re-



Table 1. Comparative of results for the Venice
Lagoon Time series

Horizont Percentage Error | Error
of prediction RS NN

1 91,3% 3,37 3,30
4 99,1% 8,26 9,55
12 98,0% 8,46 11,38
24 99,3% 8,70 11,64
28 98,8% 11,62 15,74
48 97,8% 11,28 -
72 99,7% 14,45 -
96 99,5% 16,04 -
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Figure 2. Prediction for an inusual tide with
horizon 1

sults for 1 hour horizon. In all the cases the objective
was to maximize the percentage of predicted data of
validation set avoiding a high mean error. It is in-
teresting to observe that, when the prediction horizon
increases, the percentage of prediction does not dimin-
ish. Thus, the system seems to be stable to variations
of the prediction horizon. This property seems very in-
teresting, because it shows that the rules are adapted
to the special and local characteristics of the series. In
addition, it can be observed that if the prediction hori-
zon is increased, less rules are necessary to predict a
percentage even higher of the series. All this almost
doesn’t increase the error value.

It is important to observe that the prediction accu-
racy of the rule system outperforms the accuracy of the
neural network system for horizons bigger that 1 hour,
being the percentage of prediction data very close to
100%.

A comparison between real tide and prediction for a
case of inusual high tide can be seen at figure 2. It can
be seen how good the predicted value to the real time
series is, even for unusual behaviours.

Table 2. Comparative of results for the
Mackey-Glass time series

Pred. Perc. Error Error Error

Hor. pred. MRAN RAN
50 78,9 % 0,025 0,040 -
85 78,2 % 0,046 - 0,050

4.2 Mackey-Glass time series

The Mackey-Glass time series is an artificial series
widely used in the domain of the time series forecasting,
[15][20], because it has specially interesting character-
istics. It’s a chaotic series that needs to be defined with
great detail. It is defined by the following differential
equation:

ds(t) s(t—A)
dt 1+ s(t— )10

As the papers referred, the values ¢ = 0.2, b = 0.1
and A = 17 were used to generate the time series.

5000 values of the time series are generated using the
above equation. The initial 3500 samples are discarded
in order to avoid the initialization transients. 1000 data
points, corresponding to the sample time between 3500
and 4499, have been chosen for the training set. The
test set is composed by the points corresponding to the
time interval [4500,5000]. All data points are normal-
ized in the interval [0, 1].

A comparative of the results for the algorithm with
the results of [15] for a horizon of 85 (column ”Error
RAN”), and with the result of [20] for a horizon of 50
(column "Error MRAN”), can be seen in table 2. The
error used for the comparison is NMSE (Normalized
mean squared error). In both cases, an improvement
of the result were attained, that, although they are not
so significant, they suggest us that we have a better
level of prediction for the difficult regions of the time
series.

The percentage of prediction for the test set (near
80%) induces us to think that the discarded elements
were certainly inductive of high errors, since its dis-
carding allows better results than the obtained in the
bibliography.

= —bs(t)+a

4.3 Sunspot Time Series

This time series contains the average number of
sunspots per month measured from January of 1749
to March of 1977. These data are available at
http://sidc.oma.be ("RWC Belgium World Data
Center for the Sunspot’). That chaotic time series has
local behaviours, noise and even unpredictable zones



Table 3. Comparative of results for the
sunspot time series.

Pred. Perc. Rule Feedfw Recurr.
Horiz. of System NN NN
pred. error error error

1 100% 0,00228 | 0,00511 | 0,00511
4 97,6% | 0,00351 | 0,00965 | 0,00838
8 95,2% | 0,00377 | 0,01177 | 0,00781
12 100% 0,00642 | 0,01587 | 0,01080
18 99,8% | 0,01021 | 0,02570 | 0,01464

using the archived knowledge. A comparative of the
results of the experiments compared to the results in
[7] can be seen at table 3. The error measure used is:

= s 2 — 7))

=0

In all cases the experiments were done using the
same data set: from January of 1749 to December of
1919 for training, and from January of 1929 to March of
1977 for validation, standardized in the [0, 1] interval;
in all the cases, 24 inputs were used. The predictions
in [7] were done by multilayer feedforward networks.
In all the cases the algorithm explained in this paper
improves the results in [7]. A deeper study of the re-
sults confirms the ability of this system for recognize,
in a local way, the peculiarities of the series, as in the
previous domains.

5 Conclusions

This article presents a new method based on predic-
tion rules for time series forecasting, although it can
be generalized for any problem that requires a learning
process based on examples. One of the problems in
the time series field is the generalization ability of the
artificial intelligence learning systems. On one hand,
general systems produce very good predictions over all
the standard behaviours of the time series, but those
predictions usually fail over extreme behaviours. For
some domains this fact is critical, because those ex-
treme behaviours are the most interesting.

In order to solve this problem a rules based system
has been designed, using a Michigan approach, using
selection by trials and replacing new individuals by a
Steady-State strategy. This method includes a specific
initialization procedure, shown at section 3.2, and a
process designed to maintain the diversity of the solu-
tions. This method presents the characteristic of not
being able to predict the whole time series, but on the
other hand, it has a better accuracy, even for unusual
behaviours. The algorithm can also be tuned in order

to attain a higher prediction percentage at the cost of
worse prediction results.

The results show that for special situations, mainly
for unusual behaviours (high tides, function peaks,
etc.) the system is able to obtain better results than
the previous works, although the mean quality of the
predictions over the whole series is not significantly bet-
ter. Therefore, the system can find, if it is possible,
good rules for unusual situations, but it cannot find
better rules for standard behaviours of the time series
than the previous works, where standard behaviours
means the behaviours that more often are repeated
along the time series.

Another interesting characteristic of the system is its
ability to find regions in the series whose behaviour is
not able to be generalizable. When the series contains
regions with special particularities, the system cannot
only localize them, but it can build rules for a best
prediction of those ones. The proposed method has
been devised to solve time series problem, but it also
can be applied to other machine learning domains.

This article has been financed by the Span-
ish founded research MCyT project TRACER, Ref:
TIC2002-04498-C05-04M.
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