
A hybrid Evolutionary Algorithm for the Dynamic Resource Constrained Task
Scheduling Problem

André Renato Villela da Silva, Luiz Satoru Ochi
Universidade Federal Fluminense

Niterói, RJ - Brasil
{avillela,satoru}@ic.uff.br

Abstract

This work presents a new hybrid Evolutionary Algo-
rithm for the Dynamic Resource Constrained Task Schedul-
ing Problem (DRCTSP). The most important differences be-
tween the new EA and the previously proposed EAs are an
intensification/diversification mechanism that tries to avoid
premature convergence in local optimal solutions and a ver-
sion combining an exact method (CPLEX) with EAs. Some
preliminary tests were done and results are very promising.

1. Introduction

Scheduling problems have been the subject of many
studies during the last years due to its large application to
many areas of computing and engineering. There are many
models of environments (homogeneous/heterogeneous),
constraints (communications costs, use of resources [1])
and objectives (reducing makespam/processor idleness) that
can be applied to simulate a real problem. We propose a
method merging (meta)heuristics and exact algorithms for
the Dynamic Resource Constrained Task Scheduling Prob-
lem (DRCTSP). This is a new problem that can be applied
to project management of companies, in which sub-projects
are modeled as tasks. Each task i has a cost ci that must
be paid to activate it. After this activation, this task gen-
erates a positive profit li, at each time unit, that can be
used to activate other tasks. The complete modeling can
be found in the next section. This work presents the mod-
eling of a new scheduling problem (DRCTSP), a construc-
tive algorithm (ADDR) for the DRCTSP, some techniques
that improve the ADDR solution, a new Evolutionary Al-
gorithm and its hybrid version with an exact method (used
by CPLEX solver). Some tests were done and interesting
results are obtained. The following section presents the
DRCTSP modeling. Some algorithms (constructive algo-

rithm, local searches, Evolutionary Algorithm and its hy-
brid version) for the DRCTSP are presented in Section 3.
Section 4 discusses the instances used in tests. Section 5
presents the obtained computation results. Finally, the con-
clusions and future works are described in Section 6.

2. The DRCTSP modeling

Given an acyclic graph G = (V,A), where V is the
set of vertexes (tasks) and A is the set of arcs (precedence
among the tasks). Associated to each task i there is a cost
ci and a profit li (positive integer values). There is also a
planning process (time interval composed by H time units).
The objective of the DRCTSP is to maximize the available
resources at the end of the planning process.

Some concepts of the DRCTSP model: Activation: it is
the entry of a task i in the current partial solution. To do
this, we need to pay a cost ci. After the activation, a profit
li is available at each time unit until the final time unit H .
Available task: a task i is available, if all its predecessor
tasks are activated. A task without precedence is available
too. Planning Process: a set of time units, [1..H], when
the tasks can be activated. Total profit (Si): it is the profit
sum of a task i. Available Resources (Qt): it is the amount
of resources that can be used to activate tasks, at time unit
t. Time Profit (Lt): it is the sum of all profits that will be
returned at time unit t.

This modeling differs from other resource constrained
scheduling problems because it has the entity called profit
that generates resources to be used in other activations. Due
to it this modeling is called dynamic, once that defining a
priori the amount of available resources is not possible.

2.1. Mathematical Formulation

We describe the DRCTSP as an integer programming
problem. The xit binary variable sets if a task i is activated
(= 1) at time unit t or not (= 0). The Qt integer variable

1-4244-0910-1/07/$20.00 ©2007 IEEE

defines the amount of available resources at time t. The Lt

integer variable defines the profit at time t. Q0 is a prob-
lem input data and L0 = 0. The P (i) represents the set of
predecessor tasks of task i. The proposed formulation is in
following.

Line (1) describes the objective function (maximize
QH + LH), where H is the last time unit. In (2) the con-
straints ensure that a task i will only be activated at time
t = 1 if it does not have any precedence (|P (i)| = 0). In
(3) the constraints ensure that a task i will only be activated
at time t if all its predecessor tasks are activated, at least
t − 1 time. In (4) the constraints guarantee that the sum of
task costs activated at time t will be lesser than or equal to
the available resources at this time. In (5) the constraints are
defined according to the way the available resources change
through time. Similarly, in (6) the constraints are defined
by the time profit increments. In (7) the constraints ensure
that a task i will be activated once, at maximum. Finally,
the last two constraints define the variables of the problem.

Max

QH + LH (1)

S.t.

|P (i)|xi1 = 0 ∀i = 1, ..., n (2)

|P (i)|xit ≤
∑

j∈P (i)

t−1∑

t′=1

xjt′

∀i = 1, ..., n ∀t = 2, ...,H (3)
n∑

i=1

cixit ≤ Qt ∀t = 1, ...,H (4)

Qt = Qt−1 −
n∑

i=1

cixit + Lt−1 ∀t = 1, ...,H (5)

Lt = Lt−1 +
n∑

i=1

lixit ∀t = 1, ...,H (6)

H∑

t=1

xit ≤ 1 ∀i = 1, ..., n (7)

xit ∈ {0, 1} ∀i = 1, ..., n ∀t = 1, ...,H (8)

Qt, Lt ∈ N ∀t = 0, ...,H (9)

2.2. Constructive sample

To demonstrate these concepts, a small sample of solu-
tion construction is as follows: Q0 = 2 (input data) and
L0 = 0. In Figure 1 there are two numbers above every
task: the first one is the cost and the second one is the profit
for each time unit. Activated tasks are in white, available in
gray and unavailable in black. In Figure 1 (a), at time unit
t = 1, there are two available tasks (1 and 2). Let’s activate

task 1. We need to calculate the Q1 = 1 and L1 = 2, and
the available tasks (now, 2 and 3). Let’s activate both. In
Figure 1 (b), at time unit t = 2, we calculate Q2 = 0 and
L2 = 7 and update the task 4 state. Finally, in Figure 1 (c)
we activate task 4 and calculate Q3 = 5 and L3 = 9. Then,
the final solution value is given by Q3 + L3 = 14.

Figure 1. A small constructive sample

3. Algorithms to solve DRCTSP

In [8], a basic constructive algorithm called ADDR was
proposed. It makes, at each time unit t, a list containing all
available tasks (this list is sorted by the ci/li of each task).
Then, a subset of the p% best candidate task is defined, as
the α parameter in GRASP [2]. From this restricted list, a
task is randomly chosen. If its cost is lesser than or equal to
the available resources at time t (Qt) the task is activated.
Qt and Lt are updated and new selections are made until
there are none available tasks or available resources in this
time t. So, we move to the next time unit. At the end of
planning process (time unit H), the algorithm outputs the
solution and its value. The solution representation is com-
posed by an array of n elements, where n is the number of
tasks. Each position represents one task and the value repre-
sents the time when the task was activated. If a task wasn´t

activated its position is marked as NULL (or zero value).

3.1. Enhancement Techniques

Probably the most important contribution present in [8],
the Enhancement Techniques (ETs) try to reduce the num-
ber of tasks in candidate list, by adding some constraints
to them. For example: a task i will only be activated if its
Total Profit Si > ci. In other words, a task i will only be
activated if it is profitable.

This criteria is used in ET1 (Cutting Time - CT) from
some planning time (CT) on. However, before this CT time
unit (absolute value in [1;H] or normalized value in [0;1]),
any task can be activated even it causes resource losses. If
CT = 1, we will aways use it; if CT = H, we will never use
it.

Even so, there are cases in which the activation of a non-
profitable task may be a good choice: if any successor task
is very profitable. But supposing that a successor task will
be activated is very difficult due to the problem constraints
(mainly the available resources needed to activate it in a fu-
ture time unit). Hence, a simple way to allow the activation
of this non-profitable task i is to multiply its profit li by a
factor and then to compare the product with the cost ci, like
in ET1. This computation is done by the ET2 (Relaxation
Margin - RM).

The third ET (ET3) works like a preprocessing of the
graph G. For each task i, the earliest time when it can be
activated is computed. This time is multiplied by the profit
li and the product is called Expected Profit of the task i
(EPi). This value is the largest amount of resources that
can be generated by the task i in the best case. Therefore,
the sorting criteria for the available tasks is now the ci/EPi

instead of former ci/li. The objective is to give priority to
the tasks that can generate more resources. The results will
be better or not if the estimation (task activation at the ear-
liest time) is more or less realistic, in other words, if it can
or cannot be carried out. This estimation is called Previous
Weighting (PW).

The last ET (ET4) is called Arc Removing (AR). It is a
reduction rule and does not modify the solution quality, but
reduces the processing time, by removing some redundant
arcs of the input graph. An arc (r, s) can be removed if,
after this, we can find path K from r to s in the resulting
graph. So the arc (r, s) is said to be an explicit precedence
of an implicit precedence (path K), and can it be removed.
Some preliminary tests prove that in most cases it reduces
the processing time, mainly in instances where there are a
very large number of arcs.

All the ETs were tested in [8] and the obtained results
show that they really improve the solution quality. How-
ever, the values used in the ETs must be well calibrated to
obtain these good results. The calibration is the same used

in original paper. A range of values is defined for α (from
0.05 to 0.4, with 0.05 increments); CT (from 0.2 to 0.7, with
0.1 increments); RM (from 1.0 to 1.4, with 0.1 increments)
and PW {0,1} (yes or no). When the metaheuristic needs
to choose the parameter value (at the beginning of the in-
stance reading) the calibration is done: twenty ADDR runs
are done with some predefined values in these ranges and
the value that generates the best result is chosen. Hence, all
four parameter values are defined one-by-one and remain
the same until the algorithm ends.

3.2. Local Searches

Local search (LS) is an improvement procedure that tries
to modify an initial solution by changing small segments of
it, called neighborhood. Three local search algorithms are
tested: the first one (LS1) analyzes tasks i by time. It does
the same calculation made by CT. If task i has cost ci ≥
Si it is removed from the current solution. The analysis be-
gins with the tasks activated later, going to the task activated
earliest. The second LS (LS2) is a generalization of the LS1
and works on a set of all successors of a task i (Fi) by time.
If the total cost of set Fi is greater than the total profit gen-
erated by Fi, the whole set Fi is removed from the current
solution.

The last one, LS3, not proposed in [8], tries to recon-
struct the current solution with a lesser greedy criteria than
ADDR. LS3 randomly chooses a time unit TL in the range
[H/4;H/2]. The tasks activated after TL are removed and
new tasks are activated according to the roulette technique
used in genetic algorithms, where a task which is more prof-
itable has a better chance of being chosen, for example.

3.3. Evolutionary Algorithms

Evolutionary Algorithms (EA) and the Genetic Algo-
rithms (GA), its most popular representative [4], are heuris-
tics that work with a group of solutions, trying to combine
them in order to generate better solutions. Basically, we
need to generate a group of feasible solutions called ini-
tial population. Then, a group of individuals is chosen to
combine and to generate a new population. From these two
populations, a subset of individuals is chosen to make the
new generation of the EA. Again, new solutions are cho-
sen to combine and to generate a new population until the
EA stop criteria is reached. Two EAs (EA1 and EA2) were
previously proposed. The basic difference between them is
that EA1 does not use the ETs (only uses Arc Removing).
Stop criteria (50 generations), population size (30 individ-
uals) and all others parameters are the same for both. EA1
uses LS1 on each individual created. EA2 also uses LS1,
but it also uses LS2 on each individual of initial population.

In this work, a new EA (EA3) is proposed. The initial

population is created like in EA1 and EA2: the ADDR al-
gorithm (with the ETs) generates individuals until we have a
set of 20 (population size) distinct individuals. LS1 and LS2
are applied to these initial individuals, like in EA2. All pro-
posed EAs only work with feasible solutions and the popu-
lations are sorted by the individual fitness value.

A new combination algorithm (crossover operator) is
proposed too: instead of choosing the earliest activation
time from each parent (BP - Best Parent algorithm), like in
EA1 and EA2, this new algorithm makes a list with avail-
able tasks in each parent (UL - Unique List algorithm).
From this unique list some tasks are chosen like in ADDR,
at each time unit. The list of parent available tasks is up-
date in accordance with tasks chosen by the offspring. The
algorithm continues until the time unit H . LS1 is applied to
each individual generated by the combination algorithm.

The populations are still divided in three classes (A -
20% best individuals; C - 20% worst individuals; B - other
individuals). One parent is chosen from class A and the
other from class B.

The mutation algorithm, where some perturbations are
done in the current solution, is substituted by the application
of LS2 to some individuals. However, this application has
more chance to occur to the first individual (the best one)
than to the second individual. This probability begins at
20% (for the best one) and decreases linearly until the last
individual, that has a probability of 1%.

EA3 has a new mechanism to avoid premature conver-
gence of the EA population: if the best solution is not im-
proved in k consecutive generations (where k is an input
data; in tests k = 4) the population is deleted and recon-
structed. This reconstruction is done using the LS3 on the
best individual found since the EA start. New individuals
created from the best one compose the new population. The
idea is to intensify the searching operations around the best
solution. Again, if in four generations the best solution con-
tinues the same all the individuals are removed and a whole
new population is generated by ADDR, like in initial pop-
ulation (recreation algorithm). This last procedure is ap-
plied if the intensification does not work, because we be-
lieve that an attempt of a radical diversification can works
better. Due to its more sophisticated techniques, the EA3
is composed by fewer individuals (only 20) and does less
generations (only 40). These values were defined to be fair
with the previous EA versions that do not have such mecha-
nisms. Of course, this fairness still remains very subjective,
but maintaining the old parameters is more unfair.

Table 1 shows the configuration of the main methods
used in the EAs. PS means the population size (constant
throughout the algorithm). NG is the number of performed
generations. ETs indicates what Enhancement Techniques
are used in ADDR algorithm. ILS (Initial Local Search)
shows the local searches used in the initial population con-

struction; Comb. indicates the combination algorithm used:
BP - Best Parent; UL - Unique List. CLS (Combination Lo-
cal Search) shows the local search used on the generated in-
dividual, after the combination algorithm. Ex indicates the
extra methods used in EA. Only EA3 uses an extra method:
the intensification mechanism that uses LS3.

Alg. PS NG ETs ILS Comb. CLS Ex
EA1 30 50 AR – BP – –
EA2 30 50 * 1,2 BP 1 –
EA3 20 40 * 1,2 UL 1 LS 3

Table 1. Configuration of the Evolutionary
Algorithms (* means that all Enhancement
Techniques are used)

Algorithm 1 EA3
1: Mechanism← Intensif ;
2: CurPop← InitPopGeneration(20);
3: NG← 1;
4: while NG ≤ 40 do
5: AuxPop← OffspringGeneration(CurPop);
6: AuxPop← LS2(AuxPop);
7: CurPop← NatSelection(CurPop,AuxPop);
8: if Best individual not improved in 4 generations then
9: if Mechanism = Intensif then

10: CurPop← Intensification(CurPop);
11: Mechanism← Diversif ;
12: else
13: CurPop← Diversification(CurPop);
14: Mechanism← Intensif ;
15: end if
16: end if
17: NG← NG + 1;
18: end while
19: return Best individual;

In Algorithm 1 the initial population (line 2) with 20 in-
dividuals is created and LS1 and LS2 are applied to each
one. The main loop (lines 4-18) controls the number of per-
formed generations. At each one, an offspring population,
with 20 individuals, is generated using the combination al-
gorithm - here, only LS1 is applied to each generated in-
dividual. The LS2 application (line 6) occurs accordingly
the explained probability. The natural selection chooses the
20 best individuals from each population to compose the
next generation. However, if there are 4 generations without
any improvement on the best individual the intensification
mechanism is activated. In the next time that it occurs the
diversification mechanism will be used instead of intensifi-
cation. In other words, they are alternately activated.

3.4. Exact Algorithms

Like other scheduling problems, the DRCTSP is NP-
Complete. The use of exact algorithms is almost prohibitive
due to a very large number of solutions that must be ana-
lyzed to found an optimal solution. It is the main reason
for the use of heuristics and metaheuristics instead of exact
algorithms.

In many types of problems, the difference of spent time is
low in small instances. But a little increment in the number
of tasks, for example, may result in a very large difference
in spent time. The instances tested in this work are the same
used in [8]. Some instances with 200 tasks spend about 3
minutes to be solved by CPLEX, while the instances with
150 tasks do not spend more than 30 seconds. Instances
with more than 250 tasks need many hours to be solved,
when it occurs in acceptable computational time. In many
instances we have a gap (between lower and upper bounds
found by CPLEX) that stays around 20% after many hours
of computation.

Traditional techniques to reduce this gap consists of ap-
plying integer programming methods like: Lagrangian Re-
laxation, Column Generation and Cut Generation and oth-
ers. However, a novel set of techniques has been tested
combining exact algorithms with metaheuristics [5][6][7].
A simple example may be seen in recent versions of CPLEX
in which the primal bound may be informed by passing to
it a feasible solution generated by a (meta)heuristic. Then,
the CPLEX uses this solution to speed up the computation,
reducing the gap faster.

A technique known as Local Branching [3] is very inter-
esting: some constraint cuts are added to the original math-
ematical model, enforcing the computation in the neighbor-
hood of the solution. Generally, constraints that cause a
search in k-OPT neighborhood are used in this case.

Exact methods used in CPLEX have many difficulties
when applied to some scheduling problems. This is the
case of DRCTSP in which, as said, many instances spend
hours to be solved. Thus, this work proposes a new merg-
ing technique to solve the DRCTSP that can be extended to
others scheduling problems without so much changes. It is
explained in following.

3.5. The proposed hybrid algorithm

Returning to the mathematical model, we can see that the
constraints (9) ensure that a task will only be activated once,
at maximum. However, some preliminary studies show that
the earliest time units are responsible for more than half of
the activated tasks at end of scheduling. In other words,
good choices in these times provide better solutions, be-
cause more profits can be generated along the scheduling.

Thus, the used algorithm must foresees the future time

units to select only the best tasks for the whole scheduling.
This procedure is very hard to be done with (meta)heuristics
due to its random aspect and, mainly, due to the computa-
tional complexity need for to do such calculations. In this
manner, we propose to use an exact method to solve the first
half of the scheduling and, then, a metaheuristic solves the
second half, of course, making good use of the partial solu-
tion found by the exact method. To do it, the mathematical
model need to be changed. Constraints (9) are divided in
these two set of constraints (10 and 11).

PT∑

t=1

xit ≤ 1 ∀i = 1, ..., n (10)

H∑

t=PT+1

xit = 0 ∀i = 1, ..., n (11)

The constraints (10) continue allowing the activation of a
task i. However, this activation must be done until the time
unit PT (partial time), where PT is in [1;H-1]. After the time
unit PT, the activation is no more allowed - constraints (11).
Another way to do the same thing is removing all the xit

where t > PT from the original model.
However, an interesting remark must be done: if we re-

move all variables related to times t > PT or if we reduce
the constant H to PT the solution found (and its value) may
not be good, because some tasks became unprofitable due to
time reduction. Thus, the problem becomes very different
and it may not provide good results.

It is necessary, for the good use of this technique, to
maintain the variables like in original model. In this way,
the exact methods will analyze if a task is necessary for the
solution by itself or if it avails other good task (of course, in
the range [1;PT]).

The time discretization in scheduling problems provides
us with a good way to split the problem in sequentially de-
pendent parts. These parts can be solved by any method and
the result is passed to the next problem part until the reso-
lution of the whole problem (this technique may be classi-
fied as Sequential Execution in [6]). However, this parti-
tion might make the optimal solution of original problem
unreachable. Thus, the partial solution(s) and the final so-
lution are only near optimal solutions.

The algorithm proposed in this work is a hybrid version
combining CPLEX and EA3 proposed here. The first half
of the problem is solved by CPLEX and the second one is
solved by EA3, using the partial solution found by CPLEX.
Some results are shown in following.

4. Instances

Two classes (A and B) of instances were used in [8].
Class A is composed of 10% of the tasks without any prece-

dence. The others tasks have from 1 to 5 predecessors ran-
domly chosen. In class B, the first task does not have any
precedence. To the others, there is a 20% chance of having
precedence with each previous task.

In both classes, the cost ci is randomly chosen from 1
to 50 and the profit li from 1 to 10. The Q0 is randomly
chosen from LC to 50, where LC is the lowest cost among
the initially available tasks. The time interval H is equal
to �√n �, if it is lesser than or equal to 1000 tasks. If the
instance size is bigger than 1000 tasks, H = � 3

√
n �.

The instance hardness is proportional to the product of
number of tasks and planning process size (number of time
units). In others words, an instance with higher number of
tasks is harder than an instance with few tasks. In the same
way, an instance with a larger number of time units is harder
than an instance with few time units. The instances tested
by the hybrid version algorithm (CPLEX+EA) have low or
medium hardness - they have either few tasks or few time
units - because CPLEX cannot solve the hardest instances in
acceptable computational time. However, in the tests with
only EAs, the hardest instances are used.

5. Computational Results

The first test is to found the optimal value in 50 very
small instances (instances with 50, 100 and 150 tasks),
where CPLEX found the optimal solution in few seconds,
at maximum. In Table 2 we can see that EA3 obtained bet-
ter results in instances with more than 50 tasks and found
only 2 results worst than EA2 results in instances with 50
tasks. In instances where the optimal value is not found
by EA3 the average distances to this value stay around the
same EA2 value (about 10% from optimal value).

A-instances B-instances
Size EA1 EA2 EA3 EA1 EA2 EA3
50 5 48 47 0 43 42
100 4 20 26 0 26 33
150 0 8 12 2 28 29

Table 2. Number of optimal solutions found
from a set of 50 instances for each size

Table 3 shows the average computational time spent by
CPLEX and EA3 (in seconds). Both EA2 and EA3 achieved
a good number of optimal solutions in small instances. In
many times, the CPLEX preprocessing found the optimal
value and no branches were needed. Thus, the computa-
tional time is very low compared to EA3. Another reason to
the high computational time of EA3 is the set of instances
where EA3 did not find the optimal value and it stopped
when the limit of generations was reached. Instances from

class B have more precedences among the tasks than class
A instances. These precedences makes the ADDR slower
than CPLEX, because ADDR always needs to define what
tasks are available at each time unit. Such computation does
ADDR for B instances slower than for A instances (com-
pared with CPLEX). The B instances generally need more
time to be solved, independently the instance size.

A-instances B-instances
Size CPLEX EA3 CPLEX EA3
50 0.01 0.16 0.02 0.25

100 0.26 1.89 0.27 2.20
150 3.38 5.87 0.60 6.66

Table 3. Average computational time spent
(seconds)

Table 4 shows a comparison between EA2 and EA3 in
tested instances of the previous paper (the results, here, are
presented per instance). The first two column values mean
how much EA3 outperforms EA2 (average results of thirty
runs).

Again, EA3 shows better results than EA2. In almost all
instances, but mainly in instances where there are so many
time units and many tasks, the mechanism to avoid prema-
ture convergence did more effect because combining two
large solutions (of course, maintaining good results) is very
difficult. The Unique List algorithm also is answerable for
this outperform because it generates no infeasible individ-
uals. In other words, the Best Parent algorithm often gen-
erates infeasible individuals that are rejected, once all EAs
only works with feasible solutions. These useless genera-
tions slow down the EA2 algorithm. Thus, the computa-
tional time spent by EA2 is bigger (up to 65%) than EA3
due to it. In addition the Unique List algorithm does not
need to test each offspring feasibleness at each algorithm
step like in the Best Parent algorithm.

The last two columns from Table 4 show the variance
values to these instances. The class B instances have lower
variance values (not shown) than class A instances due to
the graph topology. These instances have a higher number
of precedences that difficulties the tasks activations. Thus
the local optimals are more well-defined and the obtained
result rarely varies too much. This behavior does not occurs
in class A instances (variance values are shown) and, so,
the variances values are very higher. The bigger values are
from EA2, when comparing the EA2 and EA3 algorithms.
It can be explained by the premature convergence avoidance
mechanism that tries to escape from these local optimals.
Thus, the EA3 results are more uniform, although in some
instances, they are very high (instances 400 and 800).

Other tests with target values and time limits were done.
EA2 and EA3 have a very similar behavior with the B in-

Outperform Variance - class A
Size class A class B EA3 EA2
100 0.0% 21.7% 0.0 0.0
200 1.7% 0.0% 83.1 60.8
300 1.3% 0.4% 410.5 1445.8
400 5.8% 51.1% 12542.7 2475.7
500 0.7% 2.9% 9718.8 25398.9
600 0.9% 1.1% 5425.3 8206.6
700 10.5% 4.8% 61556.7 757129.2
800 3.4% 5.0% 104042.7 44889.3
900 5.7% 1.0% 76592.7 1316.0

1000 0.9% 2.7% 66641.6 759503.3
1100 0.2% 0.0% 173.2 225.5
1200 0.1% 0.0% 202.3 192.4
1300 0.4% 0.0% 334.7 234.0
1400 0.7% 0.0% 210.0 200.8
1500 -0.2% 0.3% 1028.6 676.6
1600 0.5% 0.0% 210.8 544.3
1700 0.5% 5.2% 344.0 607.0
1800 0.8% 0.0% 1291.9 803.0
1900 0.3% 0.0% 300.4 343.8
2000 0.5% 2.0% 326.6 641.3

Table 4. EA3 results compared with EA2

stances, mainly in tests with a short time limit. In tests with
large time limits, EA3 has a better performance because it
is faster than EA2 and, so, it generates more populations.
However, the best way to see the EA3 and EA2 results is
using tests with target values. In the hardest instances (from
700 to 1000 tasks), EA2 did not reach the target value in
none of the 30 runs. The target used in these tests was the
EA3 average result (of each instance). EA2 reached the tar-
get more than 15 times only in two instances.

Another test involves the hybrid algorithm composed by
CPLEX and EA3. The H time units are divided in two
halves, in other words, PT = H/2. The first one is solved
by CPLEX with all its default parameters. EA3, however,
has its parameter ranges changed. The modified ADDR be-
gins with a solution provided by CPLEX and only activates
tasks after PT time units, exactly when CPLEX can not ac-
tivate anything. Thus, a Cutting Time lesser than 0.5 does
not make sense. The α values may be greater than origi-
nal ones, because a good partial solution is already found
and providing more greedy behavior to ADDR may be pos-
itive (new range varies from 0.4 to 0.8). Other parameters
are maintained. In the diversification algorithm the ADDR
uses the partial solution to construct other population, but in
intensification algorithm EA3 may choose a time unit ear-
lier than PT in order to reconstruct solutions from the best
individual.

The instances used here have more than 1000 tasks.

These instances were chosen because they have a large
number of tasks, but a not so large number of time units.
Due to low number of precedences in A instances, almost
all tasks can be activated, although neither all of them are in
the optimal solution. So, these instances are very good to be
tested with the hybrid algorithm. In B instances the partial
solution from the first half of the problem corresponds to
more then 93% of the complete optimal solution. The Ta-
ble 5 is composed by five columns: the first one shows the
tested instance; the second one shows the average results
(of thirty runs) using only the EA3 to the whole problem;
the third one shows the variance values from the hybrid al-
gorithm (CPLEX+EA3); the fourth one shows the average
results using the hybrid method; the last one shows how
much the average results from hybrid algorithm are better
than EA3 alone.

Inst. EA3 A. Hyb V. Hyb A. Improv.
1100a 2461 109.8 2498 1.1%
1200a 2968 39.8 3147 6.1%
1300a 2730 349.4 2867 4.8%
1400a 2388 153.2 2517 5.8%
1500a 3704 356.5 3886 3.9%
1600a 3287 131.0 3341 1.4%
1700a 4445 594.6 4631 4.6%
1800a 3877 293.9 4082 5.0%
1900a 3911 413.6 4019 2.6%
2000a 5563 218.2 5914 6.1%

Table 5. Average EA3 results compared with
CPLEX+EA3

In average, the hybrid CPLEX+EA3 algorithm obtained
results 4.2% better than the results generated by EA3. These
average results are very good because they show that both
CPLEX and EA3 can run their half parts collaboratively.
EA3 improved the partial results generated by CPLEX
about 11%, in average.

Table 6 shows the best solution found by each method
and the known optimal solution values. The Dis-
tance column indicates the distance (in percentage) from
CPLEX+EA3 to the optimal value. These distances were
computed as follows: dist = 1 - (CPX/OPT), where dist is
the distance value, CPX is the CPLEX+EA3 value and OPT
is the optimal value.

CPLEX+EA3 spent more average computational time
than EA3 about 6%. Constructing solutions from a partial
solution is faster than constructing from beginning, thus the
time spent by CPLEX+EA3 is not so larger than EA3, even
with the CPLEX computations.

For instances with more than 1400 tasks, even after more
than 12 hours of computational time, the optimal value of
whole problem is not found. However, the Table 7 shows

Instance EA3 Hybrid Optimal Distance
1100a 2464 2505 2664 6.0%
1200a 2981 3158 3291 4.0%
1300a 2759 2883 2923 1.4%
1400a 2396 2541 2648 4.0%
1500a 3742 3873 – –
1600a 3297 3359 – –
1700a 4465 4668 – –
1800a 3900 4091 – –
1900a 3928 4036 – –
2000a 5606 5944 – –

Table 6. Best EA3 results compared with
CPLEX+EA3

the average time spent (in seconds) by CPLEX and the hy-
brid algorithm.

Instance Hybrid CPLEX
1100a 178 1576
1200a 232 2625
1300a 263 3172
1400a 305 15251

Table 7. average time spent by the hybrid and
CPLEX algorithms (in seconds)

These preliminary results show that this CPLEX+EA
combination is a very promising technique, but other op-
timal values from other instances are still needed to verify
the average result of this hybrid algorithm in a larger set
of instances. However, good improvements can be seen in
almost all instances.

6. Concluding Remarks

The proposed Evolutionary Algorithm (EA3) obtained
better results than the two EAs previously proposed. The
EA3 intensification and diversification procedures are,
maybe, the main reason to it. The new combination algo-
rithm (Unique List) also has some importance because it
can uses more informations from the parents than the old
combination algorithm (used in EA1 and EA2).

This work also presented some preliminary results of
a hybrid algorithm that is composed by an exact method
(CPLEX) and a metaheuristic (Evolutionary Algorithm -
EA3). This combination obtained good results in a set
of large instances and it is very promising due to the fact
that in almost all tested instances nice improvements were
achieved. This integration of Linear Integer Programming
Methods and Metaheuristics is very important because it

makes good use of each paradigm in order to obtain near
optimal solutions, in acceptable computational time.

6.1. Future Works

The preliminary results shown here may be improved
with other techniques that will be tested soon. Another way
to use the CPLEX algorithm is dividing the H time units
in subranges S1, S2...Sn. The first subrange is solved by
CPLEX like in tested way. The partial solution is used by
CPLEX, again, to solve the second subrange until all sub-
ranges are solved. This technique may speed up the CPLEX
computational time on large instances, although the original
optimal value may become unreachable.

Better partitions of the time units may provide to CPLEX
or EA more chances to improve their partial results. It de-
pends on how many tasks (and, of course, its characteristics)
are handled in each partial solution, however more statisti-
cal analysis are still needed.

References

[1] P. Brucker, A. Drexl, R. Mohring, K. Neumann, and E. Pesch.
Resource-constrained project scheduling: Notation, classifi-
cation, models, and methods. European Journal of Opera-
tional Research, 12:3–41, 1999.

[2] T. A. Feo and M. G. C. Resende. Greedy randomized adaptive
search procedures. Journal of Global Optimization 6, pages
109–133, 1995.

[3] M. Fischetti and A. Lodi. Local branching. In Proc. of the In-
teger Programming Conference in honor of Egon Balas, 2002.

[4] J. Gonçalves, J. Mendes, and M. G. C. Resende. A hybrid
genetic algorithm for the job shop scheduling problem. Euro-
pean Journal of Operational Research, 167:77–95, 2005.

[5] P. Hansen, N. Mladenovic, and D. Urosevic. Variable neigh-
borhood search and local branching. Computers & Opera-
tions Research, 33:3034–3045, 2006.

[6] J. Puchinger and G. R. Raid. Combining metaheuristics and
exact algorithms in combinatorial optimization: A survey and
classification. In J. Mira and J. R. Álvarez, editors, First Inter-
national Work-Conference on the Interplay Between Natural
and Artificial Computation, volume 3562, pages 41–53, 2005.

[7] H. G. Santos, L. S. Ochi, and E. B. Uchoa. Combining meta-
heuristics and integer programming on school timetabling
problem. In Proc. of the 1st Workshop on Mathematical
Contributions to Metaheuristics (MATHEURISTICS 2006),
Bologna, Italy, 2006.

[8] A. R. V. Silva and L. S. Ochi. A dynamic resource constrained
task scheduling problem. In Latin-Ibero-American Congress
on Operations Research (CLAIO), November 2006.

