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Parallel Tabu Search and the Multiobjective Vehicle
Routing Problem with Time Windows

Andreas Beham

Abstract—In this paper the author presents three ap-
proaches to parallel Tabu Search, applied to several in-
stances of the Capacitated Vehicle Routing Problem with
Time Windows (CVRPTW). Attention in this work was
given to keep the parallel implementations simple. The
parallel algorithms are of two kinds: Two of them are par-
allel with respect to functional decomposition and one ap-
proach is a collaborative multisearch TS. The implemen-
tation builds upon a framework called Distributed meta-
heuristics or DEME for short. Tests were performed on
an SGI Origin 3800 supercomputer at the Johannes Kepler
University of Linz, Austria.

Index Terms—parallel, multiobjective, tabu search, vehi-
cle routing

I. Introduction

Tabu Search was invented by Fred Glover [1] and has
since then appeared in numerous scientific papers and was
target of many investigations. Tabu Search is basically a
“best-improvement-local-search” algorithm that uses one
solution to generate a number of moves leading to solutions
that are considered to be neighbors of the current solution.
From this neighborhood Tabu Search will choose the best
solution and continue by creating a new neighborhood from
there. To avoid undoing changes made in previous moves,
Tabu Search stores recent moves in the tabulist. It then
forbids to make moves towards a configuration that it had
already visited before. Over the years Tabu Search became
a metaheuristic well known for its good performance when
applied to the Vehicle Routing Problem (VRP) [2] [3] [4].

The VRP is a generalized name for a class of problems
first formulated in the late 50s by Dantzig and Ramser
[5]. The basic layout of the problem consists of a depot
that houses several vehicles and a number of customers
scattered or clustered around the depot that need to be
serviced by the vehicles. The simplest version of the VRP
is probably the Capacitated VRP (CVRP) where each ve-
hicle has a fixed maximum capacity. The length of a tour
is thus limited by the demand of the customers and the
capacity in the vehicle. In another popular version of the
VRP that builds on the CVRP, each vehicle on a tour
must arrive in a specified Time Window (VRPTW) at the
customer. This includes a lower bound (ready time), an
upper bound (due date) and a time value for the dura-
tion of the delivery process (service time). The VRPTW
can then be further categorized in a formulation with hard
Time Windows and soft Time Windows respectively. In
the definition of hard Time Windows, a solution is feasible
if and only if each customer is reached before his due date.
Contrary to soft Time Windows, where the time window
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constraints are relaxed and the question of feasibility is left
to the designer. Other versions of the VRP include the
Multiple Depots VRP (MDVRP) or the VRP with Pickup
and Delivery (VRPPD) where customers receive and re-
turn goods from and to the depot. There are still many
more and combinations of these constraints are common.
Together they create a multitude of NP-hard optimization
problems.

Parallel Tabu Search has been and continues to be a very
active topic [6] and several strategies have been tried fo-
cusing on different levels of parallelization, i.e. functional
decomposition, domain decomposition and multisearch. In
the presented approaches two of them make use of func-
tional decomposition and while a synchronous paralleliza-
tion was applied early already [7], asynchronous algorithms
are not yet common at this level of parallelization. Yet
the asynchronous algorithms are interesting as they should
perform well on both homogenous and heterogenous sys-
tems. We will see that an asynchronous master-worker
algorithm is capable of reaching good solutions and that
runtime performance can be further increased.

Domain decomposition was introduced to Tabu Search
in a concept known as “Adaptive Memory”. Adaptive
memory is represented as a pool of solution parts from
which new solutions are created. During the search good
parts are identified and added to the memory. For ex-
ample, Taillard et al. use a Tabu Search heuristic with
an adaptive memory to solve the CVRPsTW in [8]. In
[9] the adaptive memory and thus the decomposition was
parallelized in a hierarchical way with a managing process,
several decomposing processes, a dispatcher and a num-
ber of tabu searchers that solve subproblems selected by
the decomposers. This is however just an abstraction and
was realized on one machine organizing the search and P
processors applying heuristic and metaheuristic techniques
on the problem or on parts of it. Separating search and
strategy is useful when working with large parallel envi-
ronments.

Multisearch spans from trivial implementations with
shared memories to very complex approaches that include
strategic knowledge. The third approach presented here
works at this level. In this work it was chosen to keep with
a simple implementation and exchange new best solutions
within other searchers. We will see that this increases run-
time in comparison to the sequential algorithm, but leads
to improved and more robust solutions. A combination of
multisearch and functional decomposition could combine
the best of two worlds.

The paper is further organized as follows: In section II
the problem will be presented briefly, along with a num-
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ber of operators that our algorithms use to transform the
problem. Additionally, it will be discussed how a multiob-
jective formulation does make sense in the case of a real
world application. In section III we will discuss the ap-
proaches and their implementation. Results are given in
section IV and conclusions are drawn in section V.

II. The Capacitated Vehicle Routing Problem
with Time Windows

The problem is defined as a set of customers that are to
be visited exactly once and by one vehicle. The vehicles,
denoted by set V , visit at least one customer and return to
the depot. Not all vehicles in V are used though and some
may stay at the depot visiting no customers. In fact, one
goal of the optimization process is to use as little vehicles
as possible. The maximum number of available vehicles at
the depot is given by R. We thus have the set S = {0, ..,N}
representing the indices of all sites or locations involved in
the problem. The index 0 is reserved for the depot, thus
the set of customers C = {1, ..,N} is represented by indices
ranging from one to N .

Each site si is connected to every other site sj with i �= j
and an associated travel costs ti,j ∈ S×S given in matrix
T . This matrix is computed by calculating the Euclidean
distance between the location‘s x and y coordinates. Ad-
ditionally each customer has a demand di that represents
the amount of goods to deliver, likewise each vehicle has
a maximum carrying capacity m. Because the fleet is as-
sumed to be homogeneous this capacity is the same for all
vehicles and the index was omitted.

Customers are able to service a vehicle within a specified
time frame given as ready time ai and due date bi. Once a
vehicle arrives at a customer it is delayed by a service time
ci. If a vehicle arrives before the ready time of a customer
it has to wait until the customer is ready. In contrast, ar-
riving after the due date constitutes a constraint violation.
In this work the problem with soft time windows is con-
sidered and the constraint violation is part of the function
to be optimized.

A. Representation

A permutation coding was used to represent a solution.
Each tour starts and ends at the depot, thus the index 0 is
the first and last character of each permutation string. All
the tours are concatenated together in one string, removing
consecutive zeros. For each vehicle for which no tour was
assigned, a 0 is appended to the string. The maximum
number of vehicles R is a parameter specified for every
instance of the problem and ranges from 25 for the 100
city problems up to 100 for the 400 city problems. The
length of the final permutation P is denoted by L = |P|=
N + R + 1 An example permutation string for a problem
with 4 customers, one depot and 5 vehicles thus could be:
P = (0,4,2,0,3,0,1,0,0,0)

To evaluate the quality of the solution, three objectives
are used. The first objective is the optimization of the

total tour length.

f1 : NL
0 → R,

N−1∑

i=1

ti,i+1

The purpose is to ensure that the vehicles move from cus-
tomer to customer most efficiently, i.e. on the shortest
possible path. The second goal is to minimize the num-
ber of vehicles that are actually deployed for the scenario.
This may be in contradiction to the first goal, i.e. when
the relation ti,k + tk,j ≥ ti,j , i �= k �= j does not hold. In
this work however the Euclidean distance between the cus-
tomers was used. From this it follows that a reduction in
the number of vehicles from solution a to solution b also
results in a total tour length that is less or equal to the
other: f1(a) ≥ f1(b). So in Euclidean space the number
of vehicles is minimized with the minimization of the total
tour length. Nevertheless the situation remains that solu-
tions with different number of vehicles can have the same
tour length and aiming for the second goal thus minimizes
the number of vehicles deployed. Considering the represen-
tation this objective is the number of times a 0 is followed
by a non-zero value.

f2 : NL
0 → N , ||{i ∈ P|si = 0 ∧ si+1 > 0}||

The third objective is to minimize the constraint violation.
Constraint violation can occur when the vehicle arrives at
customer i after its due date bi. It is also possible that the
carrying capacity m of a certain vehicle becomes smaller
than the sum of the demands d of all customers serviced
by this vehicle, but because of the design of the operators,
this violation could not occur in this example. The third
goal is thus a function that calculates and sums the total
tardiness.

f3 : NL
0 → R,

L∑

i=0

Max(ArrivalT ime(si)− bsi , 0)

Generally allowing solutions with constraint violations in
the search trajectory hands more freedom to the algorithm
and the moves it can consider at each iteration, however
when the violations become too large the solution becomes
less and less interesting. While it is acceptable that the
algorithm moves outside of the boundaries for a time, it is
desirable that it returns to the space of feasible solutions.

B. Operators

Several operators have been presented in the literature
and many approaches made good use of them [4]. Of these
operators five were selected, giving each operator the same
chance to create a neighboring solution. The operators in
brief are called: Relocate, Exchange, 2-opt, 2-opt* and or-
opt. Relocate moves a customer from one route to another,
Exchange swaps two customers of different routes. Relo-
cate and Exchange are thus similar to a (1,0) and (1,1)
λ-Exchange defined by [10]. 2-opt reverses a tour or a part
of it, whereas 2-opt* interchanges 2 tours by crossing the
first half of one tour with the second half of another and
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vice versa. Last but not least, or-opt moves two consecu-
tive customers to a different place in the same tour.

Additionally a local feasibility criterion was added to
each operator. This criterion disallowed to manipulate a
solution when it would obviously violate the time window
constraints on a local level. In the example of the Relocate
operator, it was not allowed to insert a customer k between
two other customers i and j, if either ai + ci + ti,k > bk or
ak+ck+tk,j > bj were satisfied or the demand of that route
exceeds m. This criterion was weak enough that solutions
with time window violations occur and strong enough, that
the algorithm could find back to a solution with all time
windows satisfied.

C. Multiobjective Approach

While multiobjective or multi criteria problems are sev-
eral times more complex than singleobjective problems, the
advantage is to present a choice to the person who is apply-
ing the results in the real world. Assuming this work would
have practical relevance to a certain customer, instead of
handing him one solution with a given tour and a num-
ber of vehicles, we may have found solutions with different
travel distances and different numbers of vehicles. The
customer whose fleet and tours are to be optimized can
then decide, based on concrete solutions, which of them
is most suitable for his or her business. Solving the prob-
lem a number of times with modified weights and a single
criteria approach can result in several pareto-optimal so-
lutions as well, however if weights are to be selected ran-
domly the additional effort of MO optimization may shrink
considerably against the additional computational effort of
the single criteria approach. Alternatively it is possible to
calculate a small number of weights through analytical re-
search on the customer’s situation. However this requires
information which may or may not be existent and could
require the customer to either disclose sensible information
to a third party or to spend time and money to gather the
data. Both situations may be undesirable and may provide
a barrier to apply the optimization as a whole. Doing an
unbiased search transforms the huge space of possibilities
into several concrete solutions which help the customer to
attain a decision.

III. Parallel Tabu Search

A. Multiobjective Optimization and Tabu Search

Before we start to discuss the parallel approaches, let us
take a quick look on Tabu Search and Multiobjective Op-
timization (MO). So far research around MO concentrated
on evolutionary and population based methods and re-
sulted in several algorithms such as NSGA-II [11], SPEA2
[12], PAES [13] or even multiobjective Scatter Search like
MOSS [14] and AbYSS [15] where version numbers in
two of them show that they have already been improved.
Trajectory based methods such as Simulated Annealing,
Variable Neighborhood Search or Tabu Search, to name
but a few, attracted less interest. An investigation of
Tabu Search algorithm for MO optimization resulted in

the MOTS algorithm which was presented by Hansen in
[16], however a search on Google Scholar showed only 53
citations for Hansen’s paper and well beyond 200 or even
300 citations for the SPEA2 and NSGA-II algorithms.

In this work, the Tabu Search algorithm used does not
differ much from the original Tabu Search presented by
Glover, though it builds upon what has emerged in mul-
tiobjective EAs, mainly the pareto concept to store non-
dominated solutions in a memory and the use of an archive
to store the non-dominated front that has been found so
far. However the focus in this work is not on evaluating the
quality of its results against those of other algorithms, but
to give a comparison of several parallel approaches. Eval-
uating the quality of the obtained results and comparing
them to leading MO algorithms, such as those mentioned
above, might be an interesting topic for a later paper.

B. Sequential Tabu Search

The sequential algorithm is outlined in Algorithm 1.
This will be the base from which to develop the parallel
algorithms. The algorithm uses three memories, the first
memory is the tabu list and common to all Tabu Search
algorithms. The tabu list is organized as a queue and
will hold information about the moves made. When the
tabu list is full it will forget about the oldest moves. The
length of the tabu list can be specified by the tabu tenure
parameter and because every iteration there is only one
move made this is also the number of iterations the solu-
tions will stay in the tabu list. The second memory is the
medium-term memory Mnondom that keeps a list of non-
dominated solutions that had been found in past neigh-
borhoods. If the algorithm does not find better solutions
for a certain number of iterations, it will attempt to try
one of the solutions from this memory instead of generat-
ing a new neighborhood from the current solution. Better
solutions are solutions that dominate the current pareto
front, which is stored in the third memory Marchive, or
that are non-dominated to the front and can be added to
Marchive. A chosen solution can be added to the archive
when it is not dominated to the solutions in the archive
and when the archive is not full. If the archive is full, the
solution is added based on the result of a crowding com-
parison[11]. This comparison orders the solutions in the
archive and the chosen solution by a distance value, which
is computed by calculating the differences of the fitness
values of a certain solution with respect to the other solu-
tions. A solution that has a low distance value has similar
fitness values compared to the rest of the solutions and will
be deleted. This ensures that the solutions will be spread
over the pareto front more equally instead of clustering at
a certain position.

The algorithm starts by generating an initial solution,
specifically to the CVRPTW the I1-heuristic [17] with ran-
domly chosen parameters was used. The I1-heuristic is a
route construction heuristic for the VRP. starts with either
the customer with the earliest deadline or the one farthest
away, this parameter was controlled randomly. It adds
customers based on a savings value that computes the ad-
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ditional distance as well as time windows that the insertion
of a customer will cost. It will select the customer whose
savings value is minimal and insert him at the appropriate
position. Afterwards the memories are initialized and the
algorithm enters the main loop, which consists of: Neigh-
borhood Generation, Evaluation and a Selection of one of
the non-dominated solutions found. If no solution could
be selected, due to the tabu criterion or if there has been
no improvement to the archive of non-dominated solutions
found, then a new current solution is chosen from the mem-
ory. In the last step the memories are updated, additional
non-dominated solutions that were found in the neighbor-
hood N are stored in the memory termed Mnondom, the
chosen current solution is added to the archiveMarchive if
it is non-dominated to solutions already in the archive or
if it dominates them.

The Neighborhood Generation draws a number of
moves, specified in the neighborhood size parameter from
the five operators described in II.B. For each move to cre-
ate one of the operators is chosen at random, with equal
probabilities for each. If the operator was unable to find a
suitable move, with regard to the local feasibility criterion,
a new random number is drawn and possibly a different op-
erator is selected. This step is repeated until the amount
of moves matches the neighborhood size.

Algorithm 1 The sequential TSMO-Algorithm

1: procedure TSMO
2: s← GenerateInitialSolution()
3: evaluations← 0, iterations← 0
4: M← InitializeMemories()
5: while evaluations < MaximumEvaluations do
6: N ← GenerateNeighborhood(s ↓)
7: Evaluate(N ↓↑, evaluations ↓↑)
8: s← Select(N ↓, Mtabulist ↓)
9: if s �∈ N ∨ noImprovement then
10: s← SelectFrom(Mnondom ↓↑ ∪ Marchive ↓)
11: noImprovement← false
12: end if
13: M← UpdateMemories(s ↓, N ↓)
14: if isUnchanged(Marchive ↓, iterations ↓) then
15: noImprovement← true
16: end if
17: iterations← iterations+ 1
18: end while
19: end procedure

C. Synchronous TS

The first parallel approach is a very simple paralleliza-
tion of the GenerateNeighborhood() and Evaluate() func-
tions using a master process that distributes the work
among himself and several worker processes. This ap-
proach does not improve the quality of the results, but
the runtime. It is synchronized in that the master selects
the current individual, distributes the work and waits to
collect all the results. Sometimes it is reasonable to just

parallelize the evaluation function, i.e. when the neighbor-
hood generation is more primitive. But in the example of
the VRP and our operators coupled with the local feasibil-
ity criterion it made sense to parallelize the generation as
well, as it consumed a large part of the time. The master
thus sends to each worker the current individual and the
number of neighbors to generate. The workers will then
do their calculation and send their part of the neighbor-
hood back to the master. When all neighbors are collected
the master continues with the selection and the rest of the
iteration.

While we should expect to get an improvement in run-
time the drawback with this approach is that the proces-
sors wait a considerable amount of time. The advantage is
that this algorithm can be compared easily to the sequen-
tial algorithm as the behavior remains unchanged.

D. Asynchronous TS

In this approach we try to minimize the waiting time and
thus the disadvantage of the synchronous version. Unfor-
tunately this is not possible without changing the behavior
of the algorithm and so we expect to see different results.
The asynchronous TS still uses a master-worker philosophy
and parallelizes the neighborhood generation and evalua-
tion function, but the master does not wait in all cases for
the workers to continue. Like the synchronous algorithm
it will distribute the work among himself and the workers,
but when it is finished with its part, the master will use a
decision function to decide if workers should be given more
time or if it should continue by selecting the next current
individual from the N that has been collected so far. Thus
the master can consider only parts of a neighborhood per
iteration and will take the other parts into account once
they will be evaluated. The search can select solutions that
were neighbors of a previous solution, but not evaluated at
the time the algorithm continued from the previous to the
next. It could also select solutions that had been part of
the same neighborhood that the current solution was se-
lected from. The behavior is illustrated in Fig. 1. We will
see in section IV that this approach is quite faster than
the synchronous TS and of similar quality, based on the
evaluation of 100,000 solutions. To decide wether the mas-
ter should wait for the slaves to finish their evaluations or
continue selecting an individual from those moves that had
already been evaluated a decision function is used. This
function has several conditions. The master will stop wait-
ing for unfinished evaluations if either of these conditions
satisfy. The function is shown in Algorithm 2.

Algorithm 2 Decision function of the asynchronous TS

1: procedure Decision(current ↓ N ↓ workers ↓)
2: c1←{w ∈ workers|w = waiting}
3: c2←{s ∈N|s dominates current}
4: c3← AreWeWaitingTooLong()
5: c4← evaluations≥ MaximumEvaluations
6: return |c1|> 0∨ |c2|> 0∨ c3 ∨ c4

7: end procedure
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Fig. 1. A fictional search trajectory for the asynchronous TS ap-
proaching the pareto-optimal front. The numbers denote the it-
eration at which the solution was created. Equal numbers denote
solutions belonging to the same neighborhood. The circles mark so-
lutions which have been selected as current solutions. From these the
new neighborhoods were created. The arrows show the path of the
trajectory and the other lines mark those solutions which had been
considered as possible new current solutions during a given iteration.

E. Multisearch TS

The third approach is asynchronous and is placed in the
realm of multisearch parallel algorithms. The parameters
of the algorithm for each, but the first, are disturbed by a
random variable derived from a normal distribution with
mean 0 and a standard deviation that is the quarter of the
parameter to be disturbed. The algorithms then work in
a similar way to the sequential algorithm, but after an ini-
tial phase they communicate improving solutions that they
found along the pareto front. An improving solution here
is a solution that could be added to the pareto front which
is stored in Marchive. Likewise a non-improving solution
is one that could not be added, because it is dominated
or too crowded. The initial phase starts with the begin-
ning of the search and ends when the algorithm could not
add any new solutions to the set of pareto optimal solu-
tions found for a number of iterations. This means that
the algorithm has found an initial set of good solutions,
and has finally made a number of non-improving moves.
The communication list is initialized randomly before the
main loop and different for every process. It is used to
determine the process that will receive the next improving
solution found.

When one process finds an improving solution it is likely
that this solution is of interest to other processes as well.
However to keep the communication overhead small and to
prevent all processes from searching the same region, the
process that finds an improving solution will send it to a
single other process only. The process which to send it to
is determined by the first place in the communication list.
After the solution has been sent the communication list is
rotated in that the first process is moved to the bottom.
The process receiving the individual tries to store the solu-
tion in its memory of non-dominated solutions Mnondom.

It is added if it is non-dominated or dominates the solu-
tions there and otherwise discarded. This way the com-
munication overhead does not become too large and good
solutions find their way to other searchers who can explore
this region as well, if they do not find improving solutions
in the region they currently are. This rather simple ap-
proach already leads to improved solutions.

IV. Results

The empirical results on a number of test problems are
shown through Tables I to IV. The results were computed
on an SGI Origin 3800 supercomputer located at the Jo-
hannes Kepler University, Linz, Austria. The Origin 3800
is a shared memory machine with 64GB RAM and consists
of 128 R12000 MIPS processors, running at 400Mhz each.

Tables I and II show the averaged results from the 400
city extended Solomon problems, where Table I shows re-
sults from the problems with small time windows and Table
II shows results from the problems with large time windows
respectively. The problemset is available at a website man-
aged by Joerg Homberger1. Tables III and IV show results
from the 600 city problems of the same problemset.

While during the run of the algorithms solutions with
constraint violations had been allowed, these solutions
were excluded for the generation of the results. Only those
solutions were considered that did not violate the time-
window and capacity constraints. The first and second
columns show the result of the two goals distance and
number of vehicles. Average runtime in seconds is shown
in the third column, the fourth column lists results from
the set coverage metric [18]. This metric measures the
ratio between dominated and total solutions of one algo-
rithm against the solutions found by another. The first
value shows the percentage of solutions found by one algo-
rithm that dominate those found by the other algorithms,
whereas the second value shows the percentage of domina-
tion of the other algorithms compared to the one we are
looking at. A value of 100% means that the algorithm in
question dominates all the solutions found by the other al-
gorithms, so the higher the number the better the quality
with respect to the other algorithms. The metric is com-
puted by comparing each run of a problem with all runs
of another algorithm for that same problem and averaging
the result. The final score is the average of all runs of all
problems compared against all runs of all problems of all
other algorithms.

As expected the synchronous algorithm completes faster
than the sequential algorithm, its solution qualities how-
ever are not improving. This is not surprising as the be-
havior of the synchronous algorithm does not differ from
the sequential one. Also a maximum speedup seemed to
be reached quickly with a few number of processors al-
ready. The formula to calculate the average speedup value
is speedup = Ts/Tp, the mean execution time of the se-
quential algorithm divided by the mean execution time of
the parallel algorithm.

1 http://www.fernuni-hagen.de/WINF/touren/inhalte/probinst.htm
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The asynchronous algorithm is even faster and pleas-
ingly obtains results that are comparable to those found
by the synchronous and the sequential TS. It can also
benefit more from an increasing number of processors and
achieves by far the best speedup. Though the communi-
cation overhead becomes noticeable at 12 processors when
the speedup is decreasing from the value it obtained at
6 processors. Given an equal amount of time, it would
be possible for the asynchronous Tabu Search to do more
evaluations, which would amount for another interesting
comparison.

The collaborative TS performed very well when exam-
ining the solution qualities. It did better than the two
other algorithms, especially at finding solutions that use
less vehicles. The runtime performance is worse as it does
not share the work in a way the synchronous and asyn-
chronous TS do. Essential it performs a sequential algo-
rithm with communication between the processors. The
increasing runtime values thus reflect the time the proces-
sors use for communicating with each other. A combina-
tion of this collaborative tabu search and the asynchronous
TS would make sense to exploit even more processors and
may be an interesting future research topic.

To test the statistical significance a pairwise t-test was
performed on the results. In the case with 3 processors a
5% significance level could not be achieved all the time for
the collaborative TS. The p-values range between 0.1033
and 0.0318 with an average of 0.0599. Using 6 and 12 pro-
cessors the p-value for the collaborative TS stayed below
the 5% significance level in all cases. The results of the
master slave and the sequential algorithms do not show a
significant difference. Their p-values range between 0.1664
and 0.2541 with an average of 0.2120.

V. Conclusions & Future Work

We have seen that improving performance in both run-
time and solution quality does not require a lot of effort
and where parallel systems are available researchers should
make use of the extra processing power. An interesting
approach is the asynchronous master slave algorithm as it
performed quite well, yet achieved a much better speedup
than the synchronized algorithm. Wether the collaborative
TS in this simple form delivers a good tradeoff between ex-
tra solution quality and runtime performance is question-
able, however the coverage metric suggests that solutions
found were more robust than just the master slave versions
of the algorithm.

What remains for the future would be a comparison be-
tween the TSMO versions here and the well established
multiobjective evolutionary algorithms in both runtime
and solution quality and on different problems, as well as
combining the multisearch TS with the asynchronous TS to
get the best of both worlds and probably an algorithm that
delivers both good solutions and runtime performance.

References

[1] F. Glover, “Future paths for integer programming and links
to artificial intelligence,” Computers and Operations Research,
vol. 13, pp. 533–549, 1986.

[2] J.-F. Cordeau and G. Laporte, “Tabu search heuristics for the
vehicle routing problem,” University of Montreal, Canada, Tech-
nical Report G-2002-15, 2002.
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Algorithm distance vehicles runtime coverage speedup
Sequential
TSMO 226897.72±4999.31 936.59±27.20 2226.33±80.10

3 cpus
TSMO sync. 227539.44±5280.69 944.54±28.28 1958.97±63.85 24.45%↔ 41.22% 13.65%
TSMO async. 221850.65±4352.95 919.56±23.64 1105.77±60.16 31.29%↔ 34.16% 101.34%
TSMO coll. 215624.70±3613.35 881.11±16.81 2626.53±112.88 50.35%↔ 15.99% −15.24%
6 processors
TSMO sync. 225873.44±4479.61 942.03±26.53 1851.80±79.41 23.06%↔ 43.34% 20.23%
TSMO async. 222838.20±4209.82 914.94±22.86 878.77±42.05 28.06%↔ 36.90% 153.35%
TSMO coll. 211201.93±3187.96 858.99±13.19 2813.27±85.13 58.26%↔ 9.01% −20.86%
12 processors
TSMO sync. 225680.59±4532.61 935.14±25.77 1802.17±52.98 22.01%↔ 45.29% 23.54%
TSMO async. 222831.96±4296.43 929.01±25.21 1228.06±54.10 25.03%↔ 42.33% 81.29%
TSMO coll. 206091.27±2679.83 842.76±10.86 3056.13±200.50 67.39%↔ 4.77% −27.15%

TABLE I

Results on the 400 city extended Solomon problems with small time windows (C1, R1). Each problem was run 30 times, the

maximum number of evaluations was set to 100,000, neighborhood size was set to 200 and if no better solution was found

after 100 iterations, a restart with an individual from the memory was attempted. The size of the archive was set to 20 as

was the value of the tabu tenure

Algorithm distance vehicles runtime coverage speedup
Sequential
TSMO 177541.24±4147.06 434.15±41.19 2794.97±100.50

3 processors
TSMO sync. 177176.40±4123.30 432.60±41.55 2444.00±63.69 25.83%↔ 36.37% 14.36%
TSMO async. 175137.21±4061.77 412.34±37.14 1618.00±59.28 27.24%↔ 34.67% 72.74%
TSMO coll. 168620.68±3281.55 347.45±25.12 3213.23±88.06 47.08%↔ 15.04% −13.02%
6 processors
TSMO sync. 175901.49±4273.42 418.76±36.45 2307.10±63.61 23.77%↔ 38.07% 21.15%
TSMO async. 175142.00±3841.85 417.11±38.06 1286.60±55.95 24.92%↔ 38.02% 117.24%
TSMO coll. 164841.45±2827.13 314.84±19.28 3425.30±108.69 55.56%↔ 7.96% −18.40%
12 processors
TSMO sync. 176938.73±4309.49 417.35±38.41 2313.53±66.17 22.24%↔ 42.35% 20.81%
TSMO async. 176167.42±4294.61 413.54±38.72 1353.13±48.72 24.20%↔ 40.47% 106.56%
TSMO coll. 161061.75±2736.40 292.67±16.07 3613.87±102.24 63.67%↔ 4.09% −22.66%

TABLE II

Results on the 400 city extended Solomon problems with small time windows (C2, R2). Each problem was run 30 times, the

maximum number of evaluations was set to 100,000, neighborhood size was set to 200 and if no better solution was found

after 100 iterations, a restart with an individual from the memory was attempted. The size of the archive was set to 20 as

was the value of the tabu tenure
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Algorithm distance vehicles runtime coverage speedup
Sequential
TSMO 470334.46±9986.54 1385.66±36.50 3259.70±117.10

3 cpus
TSMO sync. 470671.49±10338.98 1392.21±38.62 2828.90±101.02 26.44%↔ 39.13% 15.22%
TSMO async. 470399.03±11059.48 1388.15±36.56 1632.93±100.70 27.21%↔ 37.96% 99.62%
TSMO coll. 449481.89±8385.78 1310.20±24.09 3921.47±147.67 51.15%↔ 15.71% −16.88%
6 processors
TSMO sync. 475855.56±11541.97 1392.70±40.40 2693.00±115.12 23.35%↔ 43.15% 21.04%
TSMO async. 467515.13±10063.36 1379.51±35.15 1381.03±66.44 26.21%↔ 40.32% 136.03%
TSMO coll. 435236.65±6480.02 1276.22±20.18 4245.23±151.00 59.48%↔ 8.79% −23.21%
12 processors
TSMO sync. 477290.27±11028.84 1401.91±39.34 2617.40±85.12 20.71%↔ 46.34% 24.54%
TSMO async. 469170.10±10339.83 1391.31±37.23 1894.67±96.34 23.66%↔ 43.49% 72.05%
TSMO coll. 427434.85±5902.75 1253.45±16.29 4556.53±170.84 68.25%↔ 4.44% −28.46%

TABLE III

Results on the 600 city extended Solomon problems with small time windows (C1, R1). Each problem was run 30 times, the

maximum number of evaluations was set to 100,000, neighborhood size was set to 200 and if no better solution was found

after 100 iterations, a restart with an individual from the memory was attempted. The size of the archive was set to 20 as

was the value of the tabu tenure

Algorithm distance vehicles runtime coverage speedup
Sequential
TSMO 365740.27±10886.61 575.34±55.43 4180.83±123.29

3 processors
TSMO sync. 367111.04±9924.14 606.01±60.65 3618.60±102.23 25.86%↔ 39.10% 15.53%
TSMO async. 365969.76±10437.97 577.95±55.42 2419.13±85.49 26.66%↔ 38.16% 72.82%
TSMO coll. 346291.10±7559.73 474.33±32.44 4796.93±133.17 49.33%↔ 15.39% −12.84%
6 processors
TSMO sync. 368165.41±10946.54 599.71±57.30 3459.63±99.68 22.38%↔ 43.04% 20.85%
TSMO async. 359929.42±9615.51 587.97±53.87 1970.40±58.23 25.36%↔ 41.09% 112.18%
TSMO coll. 336810.21±7710.00 423.13±20.77 5113.73±123.81 59.68%↔ 7.55% −18.24%
12 processors
TSMO sync. 369626.25±11094.96 632.69±67.77 3389.37±96.31 21.02%↔ 46.02% 23.35%
TSMO async. 362516.18±10185.95 575.03±57.08 2195.37±73.09 24.21%↔ 42.50% 90.44%
TSMO coll. 328492.92±7369.84 412.19±19.67 5361.77±110.39 64.46%↔ 4.21% −22.03%

TABLE IV

Results on the 600 city extended Solomon problems with small time windows (C2, R2). Each problem was run 30 times, the

maximum number of evaluations was set to 100,000, neighborhood size was set to 200 and if no better solution was found

after 100 iterations, a restart with an individual from the memory was attempted. The size of the archive was set to 20 as

was the value of the tabu tenure


