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Abstract 

 
Prediction of protein secondary structure (alpha-helix, 

beta-sheet, coil) from primary sequence of amino acids is 
a very challenging task, and the problem has been 
approached from several angles. Previously research was 
performed in this field using several techniques such as 
neural networks, Simulated annealing (SA) and Genetic 
algorithms (GA) for improving the protein secondary 
structure prediction accuracy. Decision fusion methods 
such as the Committee method and Correlation methods 
were also used in combination with the profile-based 
neural networks and AI algorithms for achieving better 
prediction accuracy. In this research we investigate the 
Bayesian inference method for predicting the protein 
secondary structure. The Bayesian inference method 
proposed in this research uses the results from the 
committee and correlation methods to achieve better 
prediction accuracy. Simulations are performed using the 
RS126 data set. The results show that the protein 
secondary structure prediction accuracy can be improved 
by more than 2% using the Bayesian inference method. 
 
 
1. Introduction 
 
Prediction of a secondary structure of a protein from its 
amino acid sequence remains an important and difficult 
task. Not only can successful predictions provide a 
starting point for direct tertiary structure modeling, but 
they can also significantly improve sequence analysis and 
sequence-structure threading for aiding in structure and 
function determination [13]. A protein is a sequence of 
amino acid residues and can thus be considered as a one 
dimensional chain of beads where each bead corresponds   
______________ 
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to one of the 20 different amino acid residues known to 
occur in proteins. The length of most protein sequence 
ranges from 50 residues to about 1000 residues but longer 
proteins are also known, e.g. myosin, the major protein of 
muscle fibers, consists of 1800 residues [3]. Previously 
much research was performed on predicting protein 
secondary structure by many researchers all over the 
world. Many techniques were used by many researchers 
to predict the protein secondary structure, but the most 
commonly used technique for protein secondary structure 
prediction is the neural network [12].  

Around 1988 the first attempts were made to use 
neural networks to predict protein secondary structure 
[12]. The accuracy of the predictions made by Qian and 
Sejnowski seemed better than those obtained by previous 
methods and was reported to be in the range of 62.7-
64.4% [12]. The most successful application of neural 
networks to secondary structure prediction was obtained 
by Rost and Sander [13, 14, 15, 16], which resulted in the 
prediction mail server called PHD [14]. The most 
significant new feature in the work of Rost and Sander is 
the use of sequence alignments [13]. For each protein in 
the data set a set of aligned homologous proteins is found. 
Instead of just feeding the base sequence to the network 
they feed the multiple alignment in the form of a sequence 
profile, i.e., for each position an amino acid frequency 
vector is fed to the network. This type of configuration is 
called a profile-based neural network. Using these and a 
few other methods, the performance of the network is 
reported to be up to 67.2% [13]. 

One of the primary goals of the present work is to 
design a new method combining profile-based neural 
networks [13], SA [2, 18], GA [2] and the decision fusion 
algorithms [2]. Researchers previously used the feed 
forward neural network combined with GA and SA 
algorithms, and then applied the two decision fusion 
methods; committee method and the correlation methods 
and obtained improved results on the prediction accuracy 



 

 

[2]. Sequence profiles of amino acids were fed as input to 
the profile-based neural network. The two decision fusion 
methods improved the prediction accuracy, but it was 
noticed that one method worked better in some cases and 
the other for some other sequence profiles of amino acids 
as input [2]. Instead of compromising on some of the 
good solutions from that could have generated from the 
both the either approaches, it will be better if we can 
combine these two approaches so that better prediction 
accuracy can be achieved. This criterion is the basis for 
our Bayesian inference method [4, 17, 18]. Initially we 
feed the sequence profiles of amino acids into the profile-
based neural network to predict the protein secondary 
structure. After we predict the protein secondary structure 
from a profile-based neural network we send the predicted 
protein secondary structure to SA, GA and then fuse the 
errors using both the decision fusion methods (committee 
and correlation methods) running in parallel on two 
different threads. The Bayesian inference method is then 
applied on these results for calculating the error values to 
be back-propagated to the profile-based neural network 
for weight adjustments. Sections 2 and 3 discuss about 
protein secondary structure prediction and data set used 
for prediction. Section 4 discusses on how to evaluate the 
prediction accuracy. Section 5 gives an introduction to the 
Bayesian inference method, and section 6 discusses on 
how to apply the method discussed in section 5 for protein 
secondary structure prediction. Sections 7 and 8 detail the 
results and conclusion. 
 
2. Protein Structures - Secondary Structure 
Prediction 
 

One approach to protein structure prediction is first to 
predict secondary structure as a stepping stone toward the 
full structure. The aim is to predict which secondary 
structural element will be formed by each residue of the 
protein [15].  

The structure of a protein has different levels and it has 
an energically and structurally optimized form [7]. The 
primary structure is the amino acid of the protein and can 
be presented by a sequence with 20 letters, where each 
letter indicates an individual amino acid. The secondary 
structure describes the areas in the primary structure 
where secondary structure elements occur in the backbone 
of the protein. The tertiary structure is the three-
dimensional structure of a single protein chain. In order to 
predict the tertiary structure [5], the secondary structure 
must be first predicted. However, secondary structure 
predictions can be of advantage in other ways. They have 
recently been shown to be useful in the prediction of 
regions of the protein likely to undergo structural change 
[6] and in the classification of proteins for genome 
analysis [7].  

Advances in secondary structure prediction have to 
some extent been based on developments in machine 
learning theory; beginning with rule-based approaches, 
moving onto neural network approaches and AI 
techniques. 
 
3. Assignment of Secondary Structure 
 

In the problem of the protein secondary structure 
prediction, the inputs are the amino acid sequence profiles 
while the output is the predicted structure (also called 
conformation, which is the combination of alpha helices, 
beta sheets and loops) [7].  A typical protein sequence and 
its conformation class are shown below: 

 
ADADADADCCQQFFFAAAQQAQQA 
   HHHH     EEEE         HHHHHHHH 

 
H means Helical, E means Extended, and blanks are 

the remaining coiled conformations. 
A typical protein contains about 32% alpha helices, 

21% beta sheets and 47% loops or non-regular structure 
[13]. Proteins evolved from a common ancestor are called 
homologous proteins and they usually have similar amino 
acid sequences and conformations, and hence similar 
properties and functions. Researchers usually select non-
homologous proteins from the protein data bank as 
working data for structure prediction research. It is 
possible to predict loop regions with higher accuracy than 
alpha helices or beta sheets [14].  

In order to assess the value of any prediction scheme, 
it must be possible to quantify accurately how well the 
scheme performs. Unfortunately, this is not as easy as it 
might seem; there is the problem of choosing a data set, 
how to split that data set into testing and training sets, and 
finally what statistics should be generated. 
 
3.1. Choice of Data Set 
 

Choosing a suitable data-set is a hard problem that 
requires both knowledge of learning machines and 
domain specific knowledge. The idea is to choose a 
representative set of problems with known solutions that 
can be used to train the network and to test its 
performance. In this research we used the seven-fold 
cross-validation on the set of 126 non-homologous 
globular proteins from (Rost & Sander, 1994), which is 
called the RS126 data set [16]. With seven-fold cross-
validation approximately 1/7 of the database is left out 
while training and the remaining part is used for testing. 
This is done cyclically seven times, and the resulting 
prediction is thus a mean over seven different testing sets. 
No proteins in the RS126 data set have more than 25% 
pair-wise sequence identity for lengths greater than 80 



 

 

residues. The RS126 dataset contains 24,395 amino acids 
with 32% α –helix, 21% β –strand and 47% coil [16]. 
 
4. Performance Measures – Calculating the 
Protein Secondary Structure Prediction 
accuracy 
 

The protein secondary structure accuracy is calculated 
by using the three-state per-residue accuracy (Q3), which 
gives the percentage of correctly predicted residues in 
either of the three states (classes), alpha helix, beta strand 
or loop region [12, 15]: 
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where Pα, Pβ and Ploop are number of residues predicted 

correctly in state alpha helix, beta strand and loop 
respectively while T is the total number of residues. There 
are three simple measures for assessing the quality of 
predicted secondary structure segments (or states): the 
number of segments in the protein, the average segment 
length and the distribution of the number of segments 
with length. Prediction methods need to meet four 
requirements. Firstly, no significant pair wise sequence 
identity between proteins used for training and test set 
(<25%). Secondly, all available unique proteins should be 
used for testing (since proteins vary in structural 
complexity, certain features are easier to predict than 
others). Regardless of which data sets are used for a 
particular evaluation, a standard set should be used for 
which results are also reported. Finally, test set should 
never be used before the method is set up [15]. 
 
5. Bayesian Inference method 
 

Results from different methods, algorithms, sources or 
classifiers can often be combined to give estimates of a 
better quality solution than could be obtained from any of 
the individual sources alone. Luo and Kay give a 
comprehensive survey of the Decision Fusion in [10]; 
their paper also appears with a collection of other fusion 
survey papers in [1]. We briefly explain the other decision 
fusion methods previously applied to this problem as we 
will be considering the results of these methods for the 
proposed Bayesian inference method. 

Committee Method - A key problem in Decision 
Fusion is how to enable the different information sources 
to contribute to a result. Vote based decision fusion 
methods group individual experts or discriminating 
functions into a set termed a committee. In this approach, 
the individual experts cast votes for the correct 
hypothesis. A variety of voting rules have been proposed, 

in the Majority Vote rule the hypothesis with the most 
votes is chosen [8, 11]. Initially the amino acid input 
sequence profile is fed into the profile-based neural 
network. In the second step the output of the profile-based 
neural network is fed as input to the GA and SA 
algorithms. The output of these algorithms is again fed as 
input to the committee method. The committee method 
then calculates the new error value and back-propagates it 
to the profile-based neural network for weight 
adjustments [2]. 

Correlation Method - It is similar to the committee 
method [8], except that the decisions after applying the 
correlation method are back-propagated to the correlation 
method as in a profile-based neural network and then the 
final decision is obtained [2]. 

Bayesian inference method - Bayesian inference is 
statistical inference in which evidence or observations are 
used to update or to newly infer the probability that a 
hypothesis may be true [4]. Hypotheses with a very high 
degree of belief should be accepted as true; those with a 
very low degree of belief should be rejected as false [4]. 

An example of Bayesian inference is: For billions of 
years, the sun has risen after it has set. The sun has set 
tonight. With very high probability (or I strongly believe 
that or it is true that) the sun will rise tomorrow. With 
very low probability (or I do not at all believe that or it is 
false that) the sun will not rise tomorrow [4]. 

Bayesian inference usually relies on degrees of belief, 
or subjective probabilities, in the induction process and 
does not necessarily claim to provide an objective method 
of induction [4]. Bayes’ theorem adjusts probabilities 
given new evidence in the following way: 
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where H0 represents a hypothesis, called a null 

hypothesis, which was inferred before new evidence, E, 
became available. P(H0) is called the prior probability of 
H0. P(E | H0) is called the conditional probability of 
seeing the evidence E given that the hypothesis H0 is true. 
It is also called the likelihood function when it is 
expressed as a function of H0 given E. 

P(E) is called the marginal probability of E: the 
probability of witnessing the new evidence E under all 
mutually exclusive hypotheses. It can be calculated as the 
sum of the product of all probabilities of mutually 
exclusive hypotheses and corresponding conditional 
probabilities [∑ )()|( ii HPHEP ]. P(H0 | E) is called 
the posterior probability of H0 given E.  

The factor P(E | H0) / P(E) represents the impact that 
the evidence has on the belief in the hypothesis. If it is 
likely that the evidence will be observed when the 



 

 

hypothesis under consideration is true, then this factor 
will be large. Multiplying the prior probability of the 
hypothesis by this factor would result in a large posterior 
probability of the hypothesis given the evidence. Under 
Bayesian inference, Bayes’ theorem therefore measures 
how much new evidence should alter a belief in a 
hypothesis [4]. Multiplying the prior probability P(H0) by 
the factor P(E | H0) / P(E) will never yield a probability 
that is greater than 1. Since P(E) is at least as great as P(E 
∩ H0), which equals P(E | H0).P(H0), replacing P(E) with 
P(E ∩ H0) in the factor P(E | H0) / P(E) will yield a 
posterior probability of 1. Therefore, the posterior 
probability could yield a probability greater than 1 only if 
P(E) were less than P(E ∩ H0) which is never true [4]. 

The marginal probability, P(E), can also be 
represented as the sum of the product of all probabilities 
of mutually exclusive hypotheses and corresponding 
conditional probabilities: P(E | H0)P(H0) + P(E | not 
H0)P(not H0). As a result, we can rewrite Bayes’ theorem 
as: 
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The same equation can be represented with simple 

terminology as follows: 
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With two independent pieces of evidence E1 and E2, 

Bayesian inference can be applied iteratively. We could 
use the first piece of evidence to calculate an initial 
posterior probability, and then use that posterior 
probability as a new prior probability to calculate a 
second posterior probability given the second piece of 
evidence. Bayes’ theorem applied iteratively implies: 
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This iteration of Bayesian inference could be extended 

with more independent pieces of evidence. Bayesian 
inference is used to calculate probabilities for decision 
making under uncertainty [4]. 
 
6. Appling Bayesian Inference for Protein 
Secondary Structure Prediction 
 

All neural networks used in this research are standard 
feed- forward networks, and are trained using the back-
propagation algorithm [9].  Networks are trained on a set 

of data for which the desired output is known; this is 
referred to as the training set. The method used is back-
propagation, a well-characterized algorithm for adjusting 
the weights [9]. After training, the network can be 
exposed to new data for which the desired output is not 
known to the network; this is known as the test set. In this 
research the RS126 dataset is used, which contains 126 
sequences with approximately more than 23,300 amino 
acid positions and 20 amino acids [16].  
 
6.1. Neural Networks for Protein Secondary 
Structure Prediction using sequence profiles 
 

The profile-based neural network is used in this 
research. Orthogonal encoding scheme is used to encode 
all the amino acids [6, 12]. It is well known that 
homologous proteins have the same three-dimensional 
fold and approximately equal secondary structures down 
to a level of 25-30% identical residues [16]. Using 
profiles at the input level has been shown to yield better 
results than using profiles at the output level [5, 13]. 

Figure 1 shows the use of multiple sequence 
alignments rather than a single sequence as input to a 
profile-based neural network. At the prediction stage, the 
database of sequences is scanned for all homologues of 
the protein to be predicted, and the family profile of 
amino acid frequencies at each alignment position is fed 
into the network. A sequence profile of a protein family, 
rather than just a single sequence, is used as input to the 
profile-based neural network as shown in Figure 1 for 
secondary structure prediction [14].  
 

 
Figure 1. A profile-based neural network 
for secondary structure prediction 

 
Each sequence position is represented by the amino 

acid-residue frequencies derived from multiple sequence 
alignments as taken from the homology-derived structure 
of proteins. The residue frequencies for the 20-residue 
types are represented by 3 bits each. To code the N- and 
C-terminal ends an additional 3 bits are required. The 63 
bits originating from one sequence position are mapped 



 

 

onto 63 input units of the profile-based neural network. A 
window of 13 sequence positions, thus corresponds to 819 
(13  × 63) input units. The input signal is propagated 
through the network with one input, one hidden, and one 
output layer. The output layer has three units 
corresponding to the three secondary-structure states 
(alpha helix, beta strand, and coil), at the central position 
of the input sequence window. The output values are 
between 0 and 1. The observed secondary structure states 
are encoded as 1,0,0 for helix; 0,1,0 for strand; and 0,0,1 
for coil [14]. 

The secondary structure obtained is compared to the 
structure already known during the training phase. 
Normally, the prediction for the terminal amino acids is 
not reliable, because the chain is usually flexible at the 
beginning and end of proteins, and they are often treated 
as a special case. The protein secondary structure 
accuracy is then calculated by using the three-state per-
residue accuracy (Q3) [12, 15]. 
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where Pα, Pβ and Ploop are number of residues predicted 

correctly. Using this approach the secondary structure 
prediction accuracy (Q3) is obtained to be 66.8%. 
 
6.2. Combining GA and the profile-based Neural 
Networks for protein secondary structure 
prediction 
 

For example, if we have the predicted structure from a 
profile-based neural network as follows: 
 
PredictedStructure:- -HHHCCEEEECCCHHHHHHHH- - 
TrueStructure:       - - HHHHHCEEEECCCHHHHHCH- - 
 

The predicted structure is given to GA; the GA does a 
mutation operation on the predicted structure from the 
profile-based neural network to generate a new solution 
(offspring) [2]. The process of mutation is random and 
can occur at any point in the given structure. 
 

-  - HHHCCEEEECCCHHHEHHHH - - 
 

After generating the offspring the fitness of this new 
offspring is calculated by again comparing to the true 
structure already known by using the Q3 function. The 
GA then keeps this solution or throws it away depending 
on the fitness value, which is in our case is the prediction 
accuracy Q3. Similarly we keep on applying crossover 
and mutation operations to generate new offspring’s, 
evaluate the fitness and then keep the offspring if it has a 

better fitness value or prediction accuracy. The crossover 
operation is always done only when we have at least one 
valid offspring generated from mutation operation, since 
crossover operation needs a minimum population of 2. 
For example a crossover operation is shown below 
between the predicted structure from the profile-based 
neural network and the mutated offspring which is 
obtained above from the GA. The crossover happens at 
the position indicated by the arrow [2]. 
 

 
-  - HHHCCEEEECCCHHHHHHHH - - 
-  - HHHCCEEEECCCHHHEHHHH - - 

 
After crossover the new solutions are: 

 
-  - HHHCCEEEECCCHHHHH HHH - - 
-  - HHHCCEEEECCCHHHEH HHH - - 

 
Even though we applied a crossover operation we did 

not get any improvement as we generated the same 
offspring’s again. We only input the profiles to the 
profile-based neural network on the input side. We keep 
on applying the mutation and crossover operations to 
generate new solutions until the number of generations 
are complete, and finally at this point we calculate the 
error value which is to be back-propagated to adjust the 
weights of the profile-based neural network. However 
while testing the network we do not employ the GA as we 
do not need any adjustments of the weights for the 
profile-based neural network. The mutation probability 
for GA in this research is set at 0.25, number of 
generation’s value at 75, population size at 30 and the 
crossover probability as 100% [2]. Using this approach 
the secondary structure prediction accuracy (Q3) is 
obtained to be 69.2%. 
 
6.3. Combining SA and the profile-based Neural 
Networks for protein secondary structure 
prediction 
 

In traditional profile-based feed forward neural 
network we calculate Q3 from the secondary structure 
obtained and then calculate the error to be back-
propagated to adjust the weights of the network. But when 
we apply SA algorithm to the profile-based neural 
network, the predicted structure from the profile-based 
neural network is sent to the SA algorithm for further 
processing by the SA algorithm [2]. The SA algorithm 
then generates new solutions and compares it with the 
true secondary structure which is already known to 
calculate the prediction accuracy Q3. The error is then 
calculated from the solution generated by SA algorithm 
by calculating the value of Q3. This error value is then 
back-propagated to adjust the weights of the profile-based 



 

 

neural network. The initial solution is generated by the 
profile-based neural network shown in Figure 1. However 
while testing the network we do not employ the SA 
algorithm as we do not need any adjustments of the 
weights for the profile-based neural network. The starting 
temperature for SA in this research is set at 600, the final 
temperature at 0.20, the temperature cooling rate at 0.84, 
and the number of iterations per temperature at 20 [2]. 
Using this approach the secondary structure prediction 
accuracy (Q3) is obtained to be 68.3%. 
 
6.4. Prediction of Protein Secondary Structure 
using the Committee method and the profile-
based Neural Network 
 

In the committee based method of applying decision 
fusion we calculate the secondary structure values using a 
combined profile-based neural network (PNN) with GA, a 
combined profile-based neural network with SA, and the 
independent profile-based neural network. We then feed 
this output obtained from the profile-based neural 
network, combined profile-based neural network plus GA 
and combined profile-based neural network plus SA to the 
decision fusion algorithm, for fusing the solutions as 
shown in Figure 2 [2, 11]. 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 2. Fusing the various solutions 
according to the rules in the Fusion Center 

 
The decision fusion algorithm works on the basis of a 

committee (committee method or voting method), where 
each individual in the committee decides on the best 
solution according to pre-determined rules and then cast 
their vote for the best approach [11]. In the event of a tie, 
the tie is broken by one more rule, where we have a 
priority given to each algorithm. The algorithm with the 
highest priority wins. The Committee fusion algorithm is 
as outlined below: 
1. Given a secondary structure output obtained by profile-
based neural network of Ni elements, where i = 
1,2,……,n. (Here for ‘H’ we assume a value of 2, for ‘E’ 
a value of 3, and for ‘C’ a value of 4. These are arbitrarily 
chosen values) 

2. In the same manner, the secondary structure output 
obtained from GA and SA are represented by Gi and Si 
respectively. 
3. Calculate the following values: 
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4. Compute Ni - Gi. If Ni - Gi > 0, then (bin+) ← Ni - Gi 
else if Ni - Gi < 0, then (bin-) ←Ni - Gi, where bin+ and 
bin- are the so called positive and negative bins. If the 
result of the operation is zero, then we do not store that in 
either of the bin. 
5. Evaluate bin+ and bin-, the positive and negative bins 
for G and then, if they are equal or if the positive bin has 
a higher count compared to the negative bin we assign G 
as a positive sign (+G), else we assign G a negative sign 
(-G). We always consider N=0. 
6. Repeat steps 4 and 5 to calculate S.  
7. Use max(N, G, S) to be the secondary structure for 
calculating Q3 used to determine the error for back-
propagation, so that the weights of the network can be 
adjusted.  
8. Each algorithm votes for the best solution by 
comparing its value with the other algorithms values. The 
algorithm with the majority votes wins the race. In the 
event of a tie, the tie is broken according to the 
algorithm’s priority and, then the algorithm that wins 
calculates the prediction accuracy using the function Q3 to 
determine the error that is to be back-propagated to the 
profile-based neural network for weight adjustments.  
9. In our case we have assumed the highest priority for 
profile-based neural network (PNN) secondary structure 
values, followed by the combination of profile-based 
neural network and GA (PNN+GA), and then followed by 
the combination of profile-based neural network and SA 
(PNN+SA) [2]. However while testing the network we do 
not employ these algorithms as we do not need any 
adjustments of the weights on the profile-based neural 
network. Using this approach the secondary structure 
prediction accuracy (Q3) is obtained to be 70.8%. 
 
6.5. Prediction of Protein Secondary Structure 
using the Correlation method and the profile-
based Neural Network 
 

The correlation method of decision fusion is applied 
next to the problem to further improve on the prediction 
accuracy. This method is very similar to the committee 

Fused 
Estimate 
back to the 
profile-
based 
Neural Net

Profile-based Neural 
Net 

Profile-based Neural 
Net + GA 

Profile-based Neural 
Net + SA 

Fusion 
Center 



 

 

method outlined in section 6.5, and has some minor 
changes to it [2, 8].  

In this method the algorithm that wins after decision 
fusion is applied is used to calculate the prediction 
accuracy using the function Q3 to determine the error that 
is to be back-propagated to the profile-based neural 
network for weight adjustments. After this adjustment of 
weights on the profile-based neural network again the 
same previous protein sequence is used for testing 
purpose, to check whether a better prediction accuracy is 
achieved or not. Here we keep these new weights if we 
get an improvement of more than 1.5%, otherwise from 
the previously calculated prediction accuracies from 
(PNN), (PNN+GA) and (PNN+SA), we take the method 
which produces the highest prediction accuracy (which is 
calculated using the function Q3) to determine the error 
that is to be back-propagated to the profile-based neural 
network for weight adjustments [2]. However while 
testing the network we do not employ these algorithms as 
we do not need any adjustments of the weights on the 
profile-based neural network. Using this approach the 
secondary structure prediction accuracy (Q3) is obtained 
to be 71.4%. 
 
6.6. Prediction of Protein Secondary Structure 
using the Bayesian Inference method 
 

In this method, we mainly use the committee and 
correlation methods of decision fusion as discussed in 
section 6.6 and section 6.7, and then apply the Bayesian 
inference method on the output generated by these two 
methods [4, 17]. From the results of both these 
approaches we have noticed that the committee method 
using the profile-based neural network gives prediction 
accuracy (Q3) of 70.8% compared to the 71.4% produced 
by the correlation method using the profile-based neural 
network [2]. In the Bayesian inference approach we use 
both these methods, by assigning a specific probability 
value to them, and then generating a new value using the 
Bayesian equation [4, 18]. This new value obtained is 
used to decide between the two methods (committee 
method and correlation method) to be used for calculating 
the error that is to be back-propagated to the profile-based 
neural network for weight adjustments. The following 
Bayesian equation is used to calculate the value for 
judging between the two methods [4]. 
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To illustrate, let H1 corresponds to correlation method, 

and H2 corresponds to committee method. Since the 
correlation method was producing better prediction 
accuracy compared to the committee method, for our first 

instance we assume that P(H1) = 0.51, and P(H2) = 0.49 
(we assign more probability for choosing correlation 
method as this method produced better prediction 
accuracy compared to the committee method). 

For example if we obtain a prediction accuracy of 71% 
using the correlation method and a prediction accuracy of 
70.5% using the committee method, then P(D|H1) = 0.71 
and P(D|H2) = 0.705. Bayesian equation then yields: 
 

5117.0
705.049.071.051.0

71.051.0 =
×+×

×=P  

    
If the probability obtained is greater than or equal to 

0.5, we then use the correlation method for calculating the 
error that is to be back-propagated to the profile-based 
neural network for weight adjustments. 

If for example, we obtain a prediction accuracy of 69% 
using the correlation method and a prediction accuracy of 
72% using the committee method, then P(D|H1) = 0.69 
and P(D|H2) = 0.72. Bayesian equation then yields: 
 

93.49
72.049.069.051.0

69.051.0 =
×+×

×=P  

 
If the probability obtained is less than 0.5, we then use 

the committee method for calculating the error that is to 
be back-propagated to the profile-based neural network 
for weight adjustments. 

Overall we choose the correlation method for 
calculating the error for weight adjustments if the 
probability obtained is greater than or equal to 0.5, 
otherwise we use the committee method to calculate the 
error to be back-propagated to the profile-based neural 
network for weight adjustments. 

Similarly we have tested our method using various 
values of probability for P(H1) and P(H2), and always 
choosing P(H1) greater than P(H2). From the several test 
cases, we concluded that the values of 0.506 for P(H1) 
and 0.494 for P(H2) produced the greatest prediction 
accuracy. Using the Bayesian approach we obtained a 
prediction accuracy of 73.3% (Q3). This method produced 
the highest protein secondary structure prediction 
accuracy compared to all the other methods in our 
research. 
 
7. Simulation Results 
 

The simulations were performed using code written in 
JAVA programming language on a 3.6 GHz Intel Pentium 
IV PC with hyper-threading running Microsoft Windows 
XP with 2GB of RAM and a 160GB hard disk. We used 
the multi-threading approach for running the GA and SA 
algorithms, and the decision fusion methods in parallel. 



 

 

Table 1 provides the summary of the prediction 
accuracies achieved using various methods in this 
research. 

 
Table 1. Comparison of prediction accuracy 
(Q3) for various approaches 
 

Approach Used Prediction 
Accuracy (Q3) 

Profile-based Neural Network 66.8% 

Profile-based Neural Network & GA 69.2% 

Profile-based Neural Network & SA 68.3% 

Decision fusion (Committee method) 
using Profile-based Neural Network 

70.8% 

Decision fusion (Correlation method) 
using Profile-based Neural Network 

71.4% 

Bayesian Inference method 73.3% 

 
It is clearly evident from Table 1 that the Bayesian 

inference method improves the prediction accuracy by 2% 
compared to that of correlation method and overall a 
prediction accuracy of 6.5% more than the profile-based 
neural network, which is a significant achievement. 
 
8. Conclusion 
 

In this research the goal was to improve the protein 
secondary structure prediction accuracy using the 
Bayesian inference method. Although there exists a 
variety of protein structure classification algorithms, we 
believed that further improvement can be attained by 
finding the best way to combine several methods to lead 
to a unified better decision. From the research performed 
we conclude that applying AI algorithms along with 
decision fusion techniques improved the prediction 
accuracy compared to that of prediction by neural 
networks or AI algorithms individually or combined with 
profile-based neural networks. The simulations results 
prove that the Bayesian Inference method improved the 
prediction accuracy over the other decision fusion 
methods. The main advantage of using this approach is 
that, it does not comprise the advantages provided by 
either committee or correlation methods of decision 
fusion. The future work comprises of using other decision 
fusion methods such as the clustering method, the fuzzy 
set method, and the probabilistic method for further 
improving on the protein secondary structure prediction 
accuracy. 
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