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Abstract

The IBM Cyclops-64 (C64) chip employs a multi-
threaded architecture that integrates a large number of
hardware thread units on a single chip. A cellular super-
computer is being developed based on a 3D-mesh connec-
tion of the C64 chips. This paper introduces the Cyclops
Datagram Protocol (CDP) developed for the C64 super-
computer system. CDP is inspired by the TCP/IP protocol,
yet simpler and more compact. The implementation of CDP
leverages the abundant hardware thread-level parallelism
provided by the C64 multithreaded architecture.

The main contributions of this paper are: (1) We have
completed a design and implementation of CDP that is
used as the fundamental communication infrastructure for
the C64 supercomputer system. (2) CDP successfully ex-
ploits the massive thread-level parallelism provided on the
C64 hardware, achieving good performance scalability;
(3) CDP is quite efficient. Its peak throughput reaches
884Mbps on the Gigabit Ethernet, even it is running at
the user-level on a single-processor Linux machine; (4) Ex-
tensive application test cases are passed and no reliability
problems have been reported.

1. Introduction

Cyclops-64 (C64) is a multithreaded architecture devel-
oped at the IBM T.J. Watson research center [4]. It is the lat-
est version of the Cyclops cellular architecture that employs
a unique multiprocessor-on-a-chip design [1] that integrates
a large number of thread execution units, main memory
banks, and communication hardware on a single chip. See
Figure 1. The C64 chip, together with the host control log-
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Figure 1. Cyclops-64 Node

ics and the off-chip memory, becomes the building block
(i.e. the C64 node) of the C64 supercomputer system. See
Figure 2. The C64 supercomputer system consists of tens of
thousands of C64 nodes that are connected by the 3D-mesh
network and the Gigabit Ethernet and can provide comput-
ing power at the Petaflops level.

To interconnect the two different subnetworks in the C64
supercomputer, we have designed the Cyclops Datagram
Protocol (CDP). CDP is a projection of the conventional
network communication protocol (TCP/IP) to the modern
C64 multithreaded architecture. It is a datagram-based,
connection-oriented communication protocol that supports
reliable and full-duplex data transfer. We have implemented
the very popular BSD socket API in CDP. This provides a
user-friendly programming environment for the C64 system
or application programmers.

We have implemented the CDP protocol on the C64
thread virtual machine (TVM) [3]. The C64 thread vir-
tual machine is a lightweight runtime system developed for
the C64 chip. It provides the mechanism to map software
threads directly onto the C64 hardware thread units. It also
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provides a familiar and efficient programming interface for
the C64 system programmers. Currently the C64 hardware
is still under development, so the C64 thread virtual ma-
chine is running on the C64 FAST simulator [2].

We have explored a multithreaded methodology in the
development of the CDP protocol. A fine-grain thread li-
brary called TiNy Thread (TNT) library [3] is used to im-
plement the CDP protocol. The TNT thread library is part
of the C64 Thread Virtual Machine and implements the C64
fine-grain thread model [3].

We have evaluated the performance of CDP through
micro-benchmarking. From the experimental results, we
have two observations: (1) The multithreaded methodology
used in the implementation of CDP is very successful. It ef-
fectively exploits the massive thread-level parallelism pro-
vided on the C64 hardware and achieves good performance
scalability. The speedup of a CDP test program can reach
82.55 after using 128 receiving threads. (2) As a commu-
nication protocol, CDP is efficient. The peak throughput of
the user-level CDP (implemented by Pthread) is 884Mbps
on the Gigabit Etherent.

In the next section, we will first introduce the necessary
background of the C64 architecture. Then, we will formu-
late our problem and give a brief introduction to the solu-
tion.

2 Problem Formulation and Solution

A C64 chip has 80 “processors”, which are connected
to a 96-port crossbar network. See Figure 1. Each proces-
sor consists of two thread units, one floating point unit, and
two SRAM memory banks (32KB each). A thread unit is a
64-bit, single issue, in-order RISC core operating at clock
rate of 500MHz. The execution on the thread unit is not
preemptable. A 32KB instruction cache is shared among
five processors. The chip has no cache for data. Instead,
a portion of the SRAM memory bank can be configured as
scratchpad memory (SP), which is a fast temporary stor-
age that can be used to exploit locality under software con-
trol. All of the remaining part of the SRAM form the global
memory (GM) and is uniformly addressable from all thread
units. The C64 chip does not support virtual memory.

The A-switch interface of the chip connects the C64
node to its six neighbors in the 3D-mesh network. In every
CPU cycle, A-switch can transfer one double word (8 bytes)
in one direction. The 3D-mesh may scale up to several
ten thousands of nodes, which becomes a powerful parallel
computing engine. The 3D-mesh computing engine is at-
tached to the host system via Gigabit Ethernet and becomes
the C64 supercomputer. See Figure 2. The whole C64 sys-
tem is designed to provide computing power at Petaflops
level. It is targeted at applications that are highly paralleliz-
able and require enormous amount of computation.

Given the C64 multithreaded architecture and the C64
supercomputer organization, we are interested in two ques-
tions regarding the design and implementation of CDP:

• Is it possible to implement CDP in a way such that it
can utilize the massive thread-level parallelism on the
C64 hardware and achieve good performance scalabil-
ity?

• Is the communication protocol we developed for the
C64 architecture an efficient one?
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Figure 3. CDP Multithreaded Implementation

In order to answer these questions, we came up a multi-
threaded solution, shown in Figure 3. Briefly, the CDP
program consists of a set of TNT threads [3]: the receiv-
ing threads, the timer thread, and the user threads. These
threads cooperate with each other to implement the full
functions of the CDP protocol. A fine-grain lock algorithm
is proposed to improve the parallelism among these threads.
Section 4 will give a detailed description on the CDP imple-
mentation.

The rest of the paper is organized as follows. Section 3
briefly introduces the CDP communication protocol. Sec-
tion 4 discusses the multithreaded implementation of CDP.
Section 5 presents the experimental results and analysis.
Section 6 introduces some related works. Section 7 is our
conclusion. We will talk a little about our future work in
section 8.

3 CDP Protocol

CDP is inspired by TCP/IP, yet simpler and more com-
pact. See Figure 5. Such a design is based on the consider-
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ation that both the C64 architecture and the network topol-
ogy of the C64 supercomputer are simple. We will briefly
introduce the CDP protocol in this section and discuss the
protocol implementation problems in the next section.

3.1 Overview

Figure 4 shows the position of CDP in the protocol stack.
According to the OSI reference model, CDP corresponds to
the Transport layer plus the Network layer. This implies
that CDP should implement the main functions (or at least
some) of these two layers that are specified in the OSI refer-
ence model. Here are the main features of CDP: (1) CDP is
a datagram-based, connection-oriented communication pro-
tocol; (2) it is reliable and supports timeout retransmission;
(3) it uses sliding-window based flow control mechanism
to avoid network traffic congestion; (4) it provides a full-
duplex service to the application layer; (5) it has imple-
mented the very familiar BSD Socket programming inter-
faces for the CDP program developers.
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Figure 4. OSI Reference Model, TCP/IP Refer-
ence Model, and CDP Protocol Stack

3.2 Protocol Design

Figure 5 shows the CDP header format. The CDP header
can be viewed as a merging of the IP header into the TCP
header with certain customizations being applied.

In Figure 5, the destination node is used for addressing
and routing. The 4-tuple <destination node, destination
port, source node, source port> is used to identify a unique
CDP connection, while the ”sequence number” field iden-
tifies an individual CDP packet on a specific connection.
CDP does not support selective or negative acknowledg-
ments. So the receiver uses the ”acknowledgment number
field to tell the other side that it has successfully received
up through but not including the datagram specified by the
”acknowledgment number. The ”flags” field contains some
control flags similar to TCP header.

We do not allow fragment and de-fragment in CDP. Fur-
thermore, we also do not calculate checksum for the CDP
datagram. This is because both underlying subnets are
error-free.

Options (optional)

Destination Address

Source Address

Header ChecksumprotocolTTL

Total Length

fragment offsetidentification

ver IHL ToS

destination node destination port

source node source port

sequence number

acknowledgment number

flags total length

Options (optional)

Checksum Urgent Pointer

windowflags

acknowledgment number

sequence number

source port destination port

TCP Header

IP Header

CDP Header

Figure 5. CDP Packet Header Format

As for the CDP connection, the finite state automata used
to direct the connection state transition is shown in Figure
6. This finite state automata is similar to the one used in

server: cdp_listen()

cdp_close()
send: FIN

recv: ACK timeout

client: cdp_connect()
send: SYN

cdp_close()

recv: fin; send: ACK

starting point

passive open
send: SYN,ACK

recv: SYN;

recv: ACK

active close

state transitions of server
state transitions of client

CLOSED

LISTEN

ESTABLISHED

FIN_WAIT

connection established

CLOSE_WAIT

passive close

SYN_RECV SYN_SEND

recv: SYN,ACK;

cdp_close()

RST, or PIN timeout

send: ACK

active open

Figure 6. CDP State Transition Diagram

TCP/IP. The difference is that, instead of using the 4-way
handshake protocol [11] to terminate a CDP connection,
we employs a simplified 2-way handshake protocol. Be-
cause we do not want to support a ”half-close” connection
in CDP. This makes sense to most applications. When the
user closes the connection at its side, usually it means that it
does not have data to send out and does not want to receive
data from the other side. So it is no problem to close the
whole connection.

4 CDP Protocol Implementation

In this section, we introduce the multithreaded method-
ology used in the implementation of CDP protocol. To
make the description easy to understand, we start from a
brief introduction to the CDP programming interface. The
CDP API is similar to the BSD socket API [12]. It consists
of socket(), bind(), listen(), connect(), accept(), send(),
recv(), and close(). The semantics of these functions are
the same as their counterparts in the BSD socket API, ex-
cept minor differences in the argument list. This implies
that CDP supports the client/server programming model as
well.
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4.1 CDP Socket

The internals of CDP can be viewed as a collection of
data objects (e.g. socket) and a set of TNT threads that op-
erate on those data objects in parallel. See Figure 7. The
most important data object is the CDP socket, or socket for
short. Socket has two functions. First, it acts as the inter-
face (through the file descriptor: fd[]) to the user. Second,
it represents the CDP connection endpoint. All information
about a CDP connection is maintained in the socket, and
all operations on the connection are actually performed on
the socket related. The sockets are linked into hash lists to
improve the efficiency of socket searching. See Figure 7.
The hash key is a function of the 3-tuple <destination port,
source node, source port>. The hash function ensures that
each hash list is evenly populated. Locks are attached to
the socket and the hash list to guarantee mutually exclusive
access.

4.2 CDP Threads

Figure 7 shows that there are three kinds of threads in
a CDP program: user thread, receiving thread, and timer
thread. These threads cooperate with each other to realize
the full functions of the CDP protocol.
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Figure 7. CDP Threads and Data Objects

The user threads are created by the user. They are not
part of the CDP implementation. However, the user threads
may call CDP API (send(), recv(), bind(), listen(), etc.) to
access the internal CDP data objects, e.g. the socket. The
user thread can establish a lot of CDP connections at run-
time. But, at any moment, it can only work on one connec-
tion, i.e. operate one socket. The user thread accesses the
socket through file descriptor, instead of traveling the hash
lists to search for a socket. This follows the Unix conven-
tion. Sometimes, the user threads may insert a new socket
into the hash list (by calling accept() or connect()), but they
never delete sockets from the hash list.

The receiving threads are created by the C64 runtime
system. They are TNT threads [3]. Therefore, their execu-
tion is not preemptable and can not be interrupted. The re-
ceiving threads always poll on the ”incoming packet port”

for new incoming packets. See Figure 7. These ”incoming
packet ports” are the places where the underlying protocol
handler put the incoming packets. All receiving threads per-
form the same routine: polling on a specific port for incom-
ing packets; fetching a packet from the port if there is one
available; searching the socket hash list and looking for the
socket that needs to take this packet; processing the packet
and the socket according to the operations specified by the
CDP protocol. The packet is dropped or queued into the
receiving buffer of the socket according to the result of the
processing. The receiving threads neither insert sockets in
the hash list, nor delete sockets from the hash list.

There is only one timer thread in the C64 runtime sys-
tem. The timer thread is responsible for processing the syn-
chronous events in the CDP program. A large number of
these synchronous events are the timeout retransmission of
CDP packets. Every one second, the timer thread is woke
up from sleep by the hardware timer. It then traverses ev-
ery hash list and visits every socket to handle the timeout
events. If the timer thread founds that the current socket be-
ing visited is in closed state, or needs to be closed, it will
remove the socket from the hash list. Timer thread will go
to sleep again after it finishes visiting all the sockets in the
program. Timer thread is the only thread that can remove
socket from the hash list, but it never inserts new socket
into it.

4.3 Parallelism

Generally, the performance of a network protocol is
largely decided by the efficiency of the receiving side. This
is easy to understand because it does not make much sense
to send out more data if the receiver can not handle it.
Therefore, the performance of CDP can be stated as: ”the
number of CDP packets that can be processed per time unit
by the receiving side”. This can be characterized by the
equation below:

P = N̄ × t × ρ(t) (1)

In equation 1, N̄ is the average number of packets can be
processed by a single receiving thread per time unit, assum-
ing that the underlying network link has infinite bandwidth.
Its value is inverse proportional to the number of operations
that need to be performed when processing one CDP packet.
Actually, this is largely decided by the protocol design. t is
the number of receiving threads used in the system. It is
treated as a configurable system parameter. ρ(t) is a fac-
tor that measures the parallelism in the program. ρ(t) is a
function of t. If t increases, ρ(t) will decrease because the
overhead of resource contention increases. The maximum
value of ρ(t) equals to 1 when t is 1. Generally, ρ(t) is de-
cided by the resource contention among the CDP threads.
Higher contentions causes lower parallelism, which means
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smaller value of ρ(t). So, ρ(t) is inverse proportional to the
resource contention.

According to Figure 7 and the discussion above, two
kinds of resources may limit the parallelism of a CDP pro-
gram: the incoming packet port and the socket hash list.

The incoming packet port is implemented as a container
data structure (list, queue, etc.). A lock is associated with
each port to guarantee mutually exclusive access. The in-
coming packet port is the interface between the CDP receiv-
ing thread and the underlying device driver. Since the cost
of copying a new CDP packet from the port is almost a con-
stant, the only thing that may affect the performance scala-
bility of CDP is the number of ports being used in the C64
runtime system. The experimental results show that one in-
coming packet port can support 16 receiving threads with-
out harming the performance scalability too much. Section
5 has a very detailed discussion. Here we will concentrate
on the socket hash list.

The access efficiency of the socket hash list has a great
impact on the performance scalability of CDP. This is be-
cause all receiving threads need to traverse the socket hash
list before they can do any operation on a socket. There are
three kinds of operations performed on the hash list: socket
insertion, socket deletion, and socket searching. The socket
insertion operation happens when a connection is estab-
lished and is only performed by the user threads. The socket
deletion operation happens when a connection is closed and
is only performed by the timer thread. These two kinds of
operations are not as frequent as the socket searching oper-
ation, which happens every time when an incoming packet
is received by a receiving thread. All these operations on
the hash list need to be performed exclusively if they may
cause data conflict.

sock sock sock sock sock sock

sock sock sock sock socksock

: read/write lock

: spin lock

NULhash list

hash list(a)

(b)

NUL

Figure 8. (a) Coarse-Grain Lock & (b) Fine-
Grain Lock

The coarse-grain lock schema is shown in Figure 8(a). In
this design, each socket in the hash list is associated with a
spin lock to make sure that, at any moment, only one thread
can operate on it. The integrity of the whole list is protected
by a spin lock on the list head. No matter which operation
(insertion, deletion, and searching) is performed, the thread
first tries to grab the spin lock on the list head. If the thread
failed to get the lock, it will busy wait. Otherwise, it will

hold it until the operation is finished, i.e. either the socket
has been found or been inserted (removed) into(from) the
list. After a thread has found the expected socket on the
hash list, it also needs to grab the spin lock on the target
socket before it can make any changes on that socket.

It is easy to see that, in the coarse-grain lock algorithm,
the receiving threads are forced to traverse the hash list se-
quentially, even they may just search for different sockets.
A more efficient solution is shown in Figure 8(b). The orig-
inal spin lock is splitted into two: one is the read/write lock,
which is used to protect the list pointer on the socket; the
other one is the normal spin lock, which is used to protect
the CDP connection related data fields. The lock on the
list head is replaced with a read/write lock, to make sure
that multiple threads can traverse the hash list simultane-
ously. When a thread wants to search a socket on the hash
list, it does not need to lock the whole list. It only needs
to read lock the read/write locks on the current node be-
ing visited. When a thread wants to insert(delete) a socket
into(from) the hash list, it needs to write lock the read/write
lock on the related list node to make sure that integrity of
the list is maintained. For the socket insertion operation,
the new socket is always inserted on the list head. There-
fore, only the read/write lock on the list head needs to be
write lock’ed. For the socket deletion operation, two con-
secutive list nodes need to be write lock’ed. They are the
node to be deleted and the node previous to it. Because
only timer thread can delete socket from the list, it is the
only thread that tries to grab two locks at the same time.
Therefore, deadlock will never happen. Although the socket
insertion/deletion operation will force other threads that ac-
cess the same socket to wait, it does not lock the whole
linked-list. The threads that try to operate on other segment
of the list can still proceed.

We did not consider using lock-free algorithms [13] [7]
to implement the socket hash list. [13] uses extra auxiliary
nodes in the linked-list to help implementing lock-free oper-
ations. This algorithm consumes more memory and makes
the linked-list structure and operations more complicated
than our algorithm. [7] depends on the hardware double-
compare-and-swap atomic primitive which is not supported
on the C64 architecture.

The fine-grain lock solution leverages the different
linked-list access patterns of different types of CDP threads.
The philosophy of this scheme is to make the common cases
fast and keep the the whole design simple. In Section 5, we
have compared the two design alternatives and shown that
the fine-grain lock solution has much better performance
scalability than the coarse-grain lock design.
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5 Evaluation

We have designed two experiments to evaluate the CDP
implementation. One is to investigate the performance scal-
ability of CDP; the other is to assess the CDP throughput
performance on the real hardware.

5.1 Performance Scalability

The first experiment is performed on the C64 FAST sim-
ulator. FAST is an execution-driven, binary-compatible
simulator for the C64 multithreaded architecture. It can
accurately model the functional behavior of each hardware
component in the C64 chip. Although FAST is not cycle-
accurate, it still estimates the hardware performance by
modeling the instruction latencies and resource contentions
at all levels of the C64 system. In the experiment, we mea-
sured the number of cycles that a CDP program need to pro-
cess a specified number of CDP packets. We also measured
the speedup obtained when using different number of CDP
receiving threads.

The test case used in the experiment is a microbench-
mark. At the beginning of the program, 128 connections
are created. The number of connections is not fixed but
fluctuates around 128 at runtime. This is to model the con-
nection creation/termination events in the real world. Later,
the specified number (1-128) of CDP receiving threads are
spawned. These threads are not preemptable and can not
be interrupted. Once running, the receiving threads poll
on the incoming packet ports for new packets. An extra
TNT thread is created to dynamically generate random CDP
packets and feed them into the incoming packet ports. To
make the experiment model easy to analyze, we assume that
the underlying network link has infinite bandwidth and ev-
ery thread read their own packet port. This implies that,
when a receiving thread reads the port, a packet is always
ready to be copied. There is no latency in between.

Figure 9 shows the performance scalability of the CDP
protocol. We fed 256,000 packets into the program and
spawned different number (1-128) of receiving threads to
handle them. All packets have the same amount of payload:
1472 bytes. The figure shows both the execution time (cycle
number) of the program and the speedup when using more
than one receiving threads.

Figure 9 also shows the experimental results of two
different design alternatives: the fine-grain lock and the
coarse-grain lock. The figure tells that the performance of
both versions scale up when we increase the number of CDP
receiving threads from 1 to 128. However, the scalability of
the fine-grain lock version is better than the coarse-grain
lock version. For the program using fine-grain lock, the
execution time reduced from 2162.8M cycles to 26.2 cy-
cles after increasing the number of receiving threads from
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Figure 9. CDP Performance Scalability: Fine-
Grain Lock vs. Coarse-Grain Lock

1 to 128. Thus, the speedup is 82.55. For the test program
using coarse-grain lock, the execution time reduced from
2228.3M cycles to 151.8M cycles under the same condi-
tion. Its speedup is only 14.46, much less than the program
using fine-grain lock. This means that the coarse-grain lock
causes higher resources contention than fine-grain lock, as
we have argued in section 4.
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Figure 10. CDP Performance Scalability Un-
der Different Number of Ports:(a) time curves
(b) speedup curves

Figure 10 shows how CDP performance scalability is af-
fected by the number of incoming packet ports used in CDP.
We have measured the execution time (Figure 10(a)) and
speedup (Figure 10(b)) of the test program when processing
256,000 packets (using 1 128 receiving threads) under dif-
ferent number of incoming packet ports. The results show
that, when the number of ports is less than 8, the speedup
will stop scaling before the number of receiving threads
reaches 128. If the number of ports equals to 8, the speedup
scales very well in the range of 1 to 128 receiving threads.
To continue increasing the port number will not help im-
proving the speedup. See the curves denoted as 16-port and
8-port in Figure 10(b).

We did not conduct the same experiment for test pro-
gram with more than 128 receiving threads. Because there
are only 160 thread units on the C64 chip. Some of them
are reserved for other user/system tasks. Therefore, we be-
lieve 128 is a very aggressive upper bound for the number
of receiving threads that we can use in a CDP program.
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5.2 Throughput Performance

In order to evaluate the efficiency of CDP, we have de-
signed an experiment which measures the throughput per-
formance of a single-thread version of CDP on real ma-
chine. The throughput metric is important because CDP
is supposed to be used in an environment where bulk data
transfer is the majority network traffic. We have performed
the same experiment for TCP and UDP, and found that the
performance of CDP can compete with TCP and UDP, even
CDP runs at user-level but TCP and UDP run in the Linux
kernel.

Because the C64 hardware is still under development, we
do not have the real C64 machine to run the CDP program.
Meanwhile, the C64 simulator does not support full-system
simulation [9] [10] [8]. It only simulate the architectural
behavior of the C64 chip. Therefore, it is not possible to
generate the true CDP performance number on the C64 sim-
ulator.

For this reason, we adapted the CDP TNT thread version
to Pthread and ran CDP as a user-level program on Linux.
We utilize the packet socket [12] interface (supported by all
Linux distributions) to directly access the Ethernet device.
Through this interface, we can encapsulate our proprietary
CDP packet in the Ethernet frame and broadcast it to the
Ethernet. Although the performance number obtained in
this way is not 100% accurate, it still gives us enough in-
sight into the CDP performance character.

The experiment was conducted on two compute nodes of
a Penguin Performance Cluster, which is built by the Pen-
guin Computing Inc.. Both of the nodes have the same hard-
ware configuration (an AMD Opteron 200 processor, dual
Broadcom BCM5721 Gigabit Ethernet cards, 4GB of ECC
DDR SDRAM, with Linux kernel 2.4 installed). The test
case is a client/server program. The client, using different
protocols, tries its best to send as many datagrams (fixed
size) to the server side as possible.
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Figure 11. Throughput of CDP, UDP, and TCP
under different message sizes: 1-1472 bytes

Figure 11 is the result of the experiment. The curves
show the throughput of each protocol at different message
sizes. The peak number of CDP throughput performance

is 884Mbps on Gigabit Ethernet. For the other two proto-
cols, the peak number of UDP is 920Mbps, and 927Mbps
for TCP. All of these three protocols reach their peak per-
formance number at message size 1472 bytes. We stopped
at 1472 bytes because of the Ethernet MTU (1514 bytes).
As we can see from the numbers, the peak throughput of
CDP is a little bit smaller than TCP and UDP. This does not
mean, however, that the design and implementation of CDP
are poor. There are three reasons that can explain this re-
sult: (1) CDP has more interprocess context switches. The
CDP test case needs at least 3 pthreads at runtime, while
the test cases using TCP or UDP use only one Linux na-
tive process. Since the POSIX thread is implemented as a
native process on Linux platform, there are more processes
competing for processors in the CDP test case than in the
TCP or UDP test case. (2) CDP has more memory-memory
copies. In the CDP test case, user data need first be copied
into the internal buffer of the CDP library, then be copied
into Linux kernel space for further transfer. In the test cases
using TCP or UDP, user data is directly copied into the ker-
nel space. Compared with TCP or UDP, CDP test case
needs two more memory copies in a send/receive session.
(3) CDP has more kernel-mode/user-mode switches. In the
CDP test cases, CDP library is running at user-level, while
TCP and UDP are running at kernel-level. There are more
kernel-mode/user-mode switches in the CDP test case than
in the TCP or UDP test cases.

All of these are adverse factors that cause performance
degradation in the CDP test case. However, these negative
factors do not exist in the real C64 hardware platform. On
the real C64 hardware, CDP protocol runs at kernel-level (as
TNT threads) in the C64 thread virtual machine. There is
no kernel-mode/user-mode switches, and no extra memory
to memory copies either. Moreover, the TNT threads run
on separate C64 hardware thread units and the execution of
TNT threads are NOT preemptable. So, there is no compe-
tition for processors and no inter-process context switches.
With these advantages from the real C64 platform, the per-
formance of CDP will increase and may outperform TCP/IP.
(currently, the peak performance of CDP is within the range
of 95.4% of the TCP peak performance and 96.1% of the
UDP peak performance).

In order to make an accurate comparison between CDP
and TCP/IP & UDP/IP, we need to offset the negative ef-
fects caused by extra kernel-mode/user-mode switches and
inter-process context switches in the CDP test case. We
can achieve this in two ways: either add some ”counter-
balance code” in the TCP/UDP test cases, or directly im-
plement CDP in Linux kernel. However, both methods are
not quantitatively accurate. So, we do not have the motiva-
tion to make such a kind of comparison. After all, it is not
our intention to design a new protocol to beat TCP/IP and
replace it.
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6 Related work

There are not many literatures concentrate on the imple-
mentation of a network protocol. [5] introduces the expe-
rience in running TCP/IP protocol stack on wireless sensor
network. [6] is about the work on implementing TCP/IP on
small embedded devices. These devices are usually 8-bit
or 16-bit microcontrollors, not a multi-core chip like C64.
[11] contains a thorough explanation of how TCP/IP proto-
cols are implemented in the 4.4BSD operating system. [14]
is a similar book that gives a comprehensive introduction to
the TCP/IP implementation in the Linux kernel. However,
all of these works are focused on implementing the func-
tions and features of TCP/IP protocol that are documented
in RFC. They seldom discuss the implementation method-
ology.

7 Conclusions

Based on the discussions on the experimental results, we
have these conclusions: (1) Given a multithreaded architec-
ture like C64, it is possible to develop a light-weight com-
munication protocol for it such that the implementation of
the protocol effectively leverages the massive thread-level
parallelism provided by the hardware and thus obtains very
good performance scalability. (2) The communication pro-
tocol we developed for C64 is efficient. The throughput
performance of the single-thread (Pthread) version of CDP
is 884Mbps on the Gigabit Ethernet, even it is running at
the user-level on a Linux machine.

8 Future work

Currently, on the host side of the C64 supercomputer,
CDP is implemented as a user-level protocol by using the
Pthread library. Our next step is to move it to the kernel
and incorperate the CDP module into the Linux protocol
stack. This can enhance the CDP performance on the host
side. In addition, on the C64 node, we will explore some
efficient synchronization methods and try to exploit more
thread-level parallelism.
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