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Background

DNA

Computationally, a string over 

alphabet {A,C,G,T}

Genome

Collection of all DNA in a cell

Gene

Encodes the recipe for 

producing proteins

Protein

A sequence of amino acids

Source: http://rex.nci.nih.gov/behindthenews/ugt/05ugt/ugt05.htm
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DNA

Protein Synthesis in an Eukaryotic Cell

Source: Science Primer, NCBI, NIH.

http://en.wikipedia.org/wiki/Image:Proteinsynthesis.png

Genome

Gene

Regulatory elements

Proteins

Sequence Discovery Gene structure prediction

RNA structure prediction

Protein structure prediction

Structure

Gene to protein annotation

Gene expression analysis

Microarray experiments

RNA interference

Metabolic networks/pathway

Function
Tree of life

Speciation

Evolutionary Studies

Haplotype analysis

Nucleotide polymorphism

Population Genetics
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GenBank

“An annotated collection of all publicly available nucleotide 

and amino acid sequences.”

As of October 2005, the 

NCBI’s public collection 

contained:

•109.8 G bases, and

•60.3 million sequences,

obtained from over 

•165,000 organisms

Source: NCBI GenBank http://www.ncbi.nih.gov/GenBank/index.htm
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UniprotKB/Swiss-Prot

A knowledge base 
for protein 
sequences.

Contains annotated 
protein sequences

Contains 201,594 
sequences,
73,123,101 amino 
acids.

Source: http://ca.expasy.org/sprot/relnotes/relstat.htm
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Primary HPC Uses in Biology

Massive Parallelism

Sequencing: Pyrosequencing, 

Nanopore, Polony

Data assembly and mining

Databases of genomes and derived 

information

Sequence comparisons (Smith-

Waterman, BLAST)

http://www.mcb.harvard.edu/branton/index.htm

Pyrosequencing
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Primary HPC Uses in Biology

NP-hard Problems

Intractable (computationally expensive)

Exact solutions for small inputs

Approximate solutions for moderate to large inputs

Structure prediction and functional analysis

protein folding

Reconstructing evolutionary histories 

Phylogenetic Relationships

Comparative Genomics
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Topics for this Tutorial

Review high-performance methods in 
computational genomics that belong one of the 
following classes

1. Compare one sequence vs. another sequence 

Application: Sequence alignment

2. Compare one sequence against many sequences

Application: Querying a database

3. Analyze multiple sequences 

Applications: Clustering, Genome Assembly

4. Reconstruction of Evolutionary Histories

Part I

Part II

Part III
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Tutorial Schedule

Tuesday 7pm-10pm

7:00pm – 7:10pm: Welcome and Introduction

7:10pm – 7:40pm: Part I

7:40pm – 8:30pm: Part II

8:30pm – 8:45pm: Break

8:45pm – 9:00pm: Part II

9:00pm – 9:55pm: Part III

9:55pm – 10:00pm: Conclusion
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Part I: 

Sequence Alignment and 

Database Querying
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Why Compare One Sequence to Another?

•Mutation natural genetic variations

T
im

e

• Mutations are random events 

•The effect of only some mutation 

events carry over to future 

generations

• Sequence comparison key for 

evolutionary studies

A genome mutating over generations

A C A G A G T A – A C

A C A T A – T A G A C

substitution deletion insertion

s1:

s2:

Alignment between

s1 and s2
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How to Compare Two Sequences?

Problem:

Given two sequences s1 and s2 over a fixed alphabet , what is the 

set of variations that best describes the genetic transformation from 

s1 to s2 (or equivalently, from s2 to s1)?

• Based on either 

maximizing an alignment

score or minimizing edit

distance

• Standard dynamic 

programming techniques

Combinatorial Optimality Probabilistic Optimality

• Based on finding a most 

probable set of changes in 

aligning two sequences

• Hidden-Markov Model 

(HMM) techniques
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Two Important Types of Alignments

Global Alignment between s1 and s2

Optimal global and local alignments can be computed in O(|s1|.|s2|) run-time and O(|s1|+|s2|) space

…

Local Alignment between a substring of s1 and

a substring of s2

For detecting highly 

conserved regions (eg., 

genes) between two 

sequences (eg., genomes)
…

s1

s2

s1

s2

Preferred Applications

For detecting two highly 

similar sequences

(eg., two homologous 

proteins)
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Need for a Fast Alignment Method

Let us say, we have a newly found gene candidate, snew, in an arbitrary 

organism. Next, we want to locate “similar” genes in other organisms.

1. Concatenate all sequences in 

our genomic database into one 

sequence, say sd

2. Compute the local alignment 

between snew and sd

3. Report all “significant” local 

alignments

One Approach:
sd

snew

good local alignments

Run-time: O(|sd|.|snew|)

Very long 

query time !!

x103

x1011
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Basic Local Alignment Search Tool 

(BLAST)

Altschul et al. (1990) developed a program called BLAST 
to quickly query large sequence databases

Input:
Query sequence q and a sequence database D

Output:
List of all significant local alignment hits ranked in increasing 
order of E-value (aka p-value, which is the probability that a 
random sequence scores more than q against D). 
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BLAST Algorithm

0. Preprocess: Build a lookup table of size | |w for all w-length words 
in D

AA AC AG AT CA CC CG CT GA GC GG GT TA TC TG TT

S1: C A G T C  C T
S2: C G  T T C G C

1  2  3  4  5  6 7

S1,1S1,2 S1,3 S1,4S1,5 S1,6

S2,1 S2,2
S2,3S2,4

S2,5

S2,6

Seeds

={A,C,G,T}

w = 2

42 (=16) entries in lookup table

Preprocessing is a one time activity

Lookup table:
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BLAST Algorithm …

1. Identify Seeds: Find all w-length substrings in q that are also in D 
using the lookup table

2. Extend seeds: Extend each seed on either side until the aggregate 
alignment score falls below a threshold 

• Ungapped: Extend by only either matches or mismatches

• Gapped: Extend by matches, mismatches or a limited number of 
insertion/deletion gaps

3. Record all local alignments that score more than a certain statistical
threshold

4. Rank and report all local alignments in non-decreasing order of E-
value
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Illustration of BLAST Algorithm

…

G

C

A

T
A

T
T

G G G G G T T A G C A T C G G G G G G G

…

…

G

C

A

T
A

T
T

G G G G G T T A G C A T C A G G G G G G…

Ungapped

Extension

Gapped

Extension

(over a band 

of

diagonals)

query

query

database

database

seed
seed

extend

extend
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Different Types of BLAST Programs

blastn nucleotide nucleotide

Program Query Database

blastp protein/peptide protein/peptide

blastx nucleotide protein/peptide

tblastn protein/peptide nucleotide

tblastx nucleotide nucleotide

http://www.ncbi.nlm.nih.gov/blast
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An Example: Querying gene CCR5 

against GenBank
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An Example: Querying Result (Page I)
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An Example: Querying Result (Page II)

This query 

takes

roughly 10 

seconds



IPDPS’07 Tutorial HPC Methods for Computational Genomics 26

What if the Database Does Not Fit in the Main 

Memory?

Darling et al. (2003) show the effect by performing a blastn search when run on a system 
with 128 MB RAM. The increase in run-time is due to I/O .

Source: Darling et al. (2003)
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HPC for BLAST 

Sequential BLAST is suitable for small number of queries

HPC solutions for BLAST were developed to cater to large number 
of queries and also to address the rapid growth in database sizes

We will review two HPC solutions for BLAST:

1. mpiBLAST:

Darling et al. (2003), “The Design, Implementation, and Evaluation of 
mpiBLAST”, Proc. ClusterWorld.

2. ScalaBLAST:

Oehmen and Nieplocha (2006), “ScalaBLAST: A Scalable 
Implementation of BLAST for High-Performance Data-Intensive 
Bioinformatics Analysis”, IEEE Transactions on Parallel and 
Distributed Systems, 17(8):740-749.
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mpiBLAST

Input
Set of Queries, Q={q1,q2,...,qm}, and 

Database D={s1,s2,…,sn}

Let p denote the number of processors, M= 1 i m|qi|, and N= 1 i n|si|

Algorithm follows the master-worker paradigm (1 master, p-1 workers)

Assumption:
Q is small enough to fit in the main memory of each worker

Preferred:
Each worker processor has access to a local disk storage supporting contention-free 
local I/O
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mpiBLAST: The Parallel Algorithm

The database D is fragmented
into numerous disjoint pieces: 

F={f1,f2,…,fk},  k>>p

The master processor 
broadcasts all queries in Q to 
workers

The master processor records 
the list of “owners” for each 
database fragment

The master then marks all 
fragments as unassigned

Each worker pi reads a subset 
Fi of F into its local storage, 
s.t., F=U1 i p-1Fi

Each worker sends the list of 
its local fragments to the 
master for housekeeping, and 
also reports that it is idle

Master Worker

T
im

e
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mpiBLAST: Algorithm …

The master assigns each database 
fragment to one worker. The fragment 
and order in which to assign is 
dynamically determined in a “greedy”
fashion, as follows: 

Each pi is allocated all its unique 
fragments first

Once such unique fragments are 
exhausted, a fragment f is assigned to 
pi, if f Fi and f is duplicated in least 
number of other workers

Finally, the remaining unassigned 
fragments are assigned to workers in 
decreasing order of their degrees of 
duplication

The master processor ranks and 
outputs the hits for each BLAST 
query

Each worker processor searches
(ie., performs serial BLAST of Q
against) a database fragment 
assigned by the master. 

If a fragment is not present in the 
local storage, it is copied from the 
corresponding worker that has it

After searching each fragment, the 
results are communicated to the 
master processor

Master Worker
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mpiBLAST: Run-time 

Database size is 5.1 GB 

Super-linear speedup observed as more memory becomes available for caching 
a bigger chunk of the local database fragments

However, efficiency drops because of serial processing of output (during the 
final reporting step)

“Green Destiny”:

-Beowulf cluster with a 

100 Mb/s Ethernet

-Each compute node has a 

667 MHz TM5600 CPU, 

640 MB RAM, and a 20 

GB local hard drive

Source: from Darling et al. (2003)
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mpiBLAST: Effect of the Input and 

Output Processing Overhead

Lin et al. (2005) observed an 

almost linear speedup
Lin et al. (2005) also observed a 

steep rise in the non-search time 

when the number of database 

fragments was increased (keeping 

number of processors fixed).

Source: Lin et al. (2005) Source: Lin et al. (2005)
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mpiBLAST: Recent Improvements and 

Updates

Parallel I/O for output processing (mpiBLAST-

PIO)

(Local sorting + global merging) for all output records 

corresponding to each query

Improved scalability

http://mpiblast.lanl.gov/

Parallel I/O
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ScalaBLAST: Main Ideas

Removes I/O dependency by loading the entire target database into 
(distributed) memory

All processors can access the entire database through Global Array,
which is an interface for non-uniform memory access

A query is evaluated entirely by a single processor group to avoid 
the serialization of reporting results later

Supports layered parallelism:

The work related to each query is shared by processors in a MPI process
group (compute nodes of an SMP node)

The query list itself is partitioned among the process groups
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ScalaBLAST: Data and Processor Organization

memory

Process Group

memory

memory

memoryGlobal Array (distributed)D

p0 p1

p2 p3

p4
p5

p6 p7

m0

m1

m3

m2

An example with 8 processors:

g0

g1

g3

g2

m0 m1 m2 m3

Q
g0 g1 g2 g3
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ScalaBLAST: The Algorithm

1. Both the database D and query list Q are evenly partitioned across processor groups 
over their sizes

2. In each process group gi, the corresponding p0’ and p1’ perform BLAST search on 
the local query list, one query at a time. For a given query q,

- p0’ performs the BLAST operation on the first half on the database while p1’
performs BLAST operation on the second half

- Results for q are then trivially merged, ranked and reported by one of the 
processors

3. Each process element posts a non-blocking request for the next portion of database 
resident in a remote memory, before starting to compute BLAST operation on 
the current portion of database. This pre-fetching masks communication 
overhead with computation
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ScalaBLAST: Performance Results

Database: 1.5 million protein sequences 503 characters 

Query: 1,000 sequences of total size 709 Kbytes

Experimental Platforms:
MPP2, a distributed memory machine with 1.5 GHz Itanium II processors and 
Quadrics Elan-4 interconnect, 6 to 8 GB RAM/per node

SGI Altix, an SMP with 128 1.5 GHz Itanium II processors and with 256 GB.

Source: Oehman and Nieplocha (2006)

~ 1.4~ 98.5< 0.1

~ 1.5~ 98.3< 0.3

~ 2.5~ 95~ 2.5

Output %Query %Setup %

Phase-wise Run-time 

|Q|=100

p=8

|Q|=1000

p=8

|Q|=1000

p=32



IPDPS’07 Tutorial HPC Methods for Computational Genomics 38

More information about ScalaBLAST

http://hpc.pnl.gov/projects/scalablast/
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Selected Bibliography for Alignment Topics

Papers
- S. Needleman and C. Wunsch (1970). A general method applicable to the search for similarities in the amino 

acid sequence of two proteins, J. Molecular Biology, 48:443-453.

- D. Hirschberg (1975). A linear space algorithm for computing maximal common subsequences. 
Communications of the ACM, 18(6):341-343.

- T. Smith and M. Waterman (1981). Overlapping genes and information theory, J. Theoretical Biology, 91:379-
380.

- O. Gotoh (1982). An improved algorithm for matching biological sequences. J. Molecular Biology, 162(3):705-
708.

- J. Fickett (1984). Fast optimal alignment. Nucleic Acids Research, 12(1):175-179.

- M.S. Gelfand et al. (1996). Gene recognition via spliced alignment. Proc. National Academy of Sciences,
93(17):9061-9066.

- A. Delcher et al. (1999). Alignment of whole genomes. Nucleic Acids Research, 27(11):2369-2376.

- X. Huang and K. Chao (2003). A generalized global alignment algorithm. Bioinformatics, 19(2):228-233.

- S. Rajko and S. Aluru (2004). Space and time optimal parallel sequence alignments. IEEE Transactions on 
Parallel and Distributed Systems, 15(12):1070-1081.

Books
- D. Gusfield (1997). Algorithms on strings, trees and sequences: Computer Science and Computational Biology. 

Cambridge University Press, Cambridge, London.

- J. Setubal and J. Meidanis (1997). Introduction to computational molecular biology. PWS Publishing Company, 
Boston, MA.

- B. Jackson and S. Aluru (2005). Chapter: “Pairwise sequence alignment” in Handbook of computational 
molecular biology, Ed. S. Aluru, Chapman & Hall/CRC Press.
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Selected Bibliography for BLAST Related Topics

Serial BLAST
- S. Altschul et al. (1990). Basic Local Alignment Search Tool, J. Molecular Biology, 215:403-410.

- W. Gish and D.J. States (1993).  Identification of protein coding regions by database similarity search. Nature 
Genetics. 3:266-272. 

- T.L. Madden et al. (1996). Applications of network BLAST server. Meth. Enzymol. 266:131-141. 

- S. Altschul, et al. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search 
programs. Nucleic Acids Research, 25:3389-3402.

- Z. Zhang et al. (2000). A greedy algorithm for aligning DNA sequences. J. Computational Biology, 7(1-
2):203-214.

HPC BLAST
- T. Rognes (2001). ParAlign: A parallel sequence alignment algorithm for rapid and sensitive database 

searches, Nucleic Acids Research, 29:1647-1652.

- R. Bjornson et al. (2002). TurboBLAST®: A parallel implementation of BLAST built on the TurboHub, Proc. 
International Parallel and Distributed Processing Symposium.

- A. Darling, L. Carey and W.C. Feng (2003). The design, implementation, and evaluation of mpiBLAST, Proc.
ClusterWorld.

- D. Mathog (2003). Parallel BLAST on split databases, Bioinformatics, 19:1865-1866.

- J. Wang and Q. Mu (2003). Soap-HT-BLAST: High-throughput BLAST based on web services, 
Bioinformatics, 19:1863-1864.

- H. Lin et al. (2005). Efficient data access for parallel BLAST, Proc. International Parallel and Distributed 
Processing Symposium.

- K. Muriki, K. Underwood and R. Sass (2005). RC-BLAST: Towards a portable, cost-effective open source 
hardware implementation, Proc. HiCOMB 2005.

- M. Salisbury (2005). Parallel BLAST: Chopping the database, Genome Technology, pp 21-22.
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NCBI BLAST - Web Resources

NCBI BLAST Webpage: 
http://www.ncbi.nlm.nih.gov/BLAST/

For a comprehensive list of BLAST related 

references:
http://www.ncbi.nlm.nih.gov/blast/blast_references.shtml
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Part II:

Large-Scale Sequence Analysis
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Genome Assembly

Input: Multiple copies of the same genome

Process: Randomly fragment each copy
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Genome Assembly

Output: Unordered genome fragments
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Sequence Assembly Required!
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5’ 3’AAAAAAAmRNA

3’ 5’TTTTTTTcDNA

ESTs

EST Clustering
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Genes Are Not Uniformly Sampled

Gene 1 Gene 3Gene 2

High expression

Low expression

No expression
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EST Based Gene Discovery

genomic

DNA

ESTs

exon1 intron1 exon2 intron2 exon3

mRNA
exon1 exon2 exon3

3’

5’

5’

3’

cDNA
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Single Nucleotide Polymorphisms (SNPs)

ATGTTTAAAGACTACCATGATGGTTATG

ATGTTTAAAGACTACCATGATGGTTATG

ATGTTTAAAGACTGCCATCATGGTTATG

ATGTTTAAAGACTGCCATCATGGTTATG

ATGTTTAAAGACTGCCATCATGGTTATG

ATGTATAAAGACTGCCATGATGGTTATG

ATGTATAAAGACTGCCATGATGGTTATG

Allele 1

Allele 2

Allele 3
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SNPs Based on Assembly

ATGTTTAAAGACTACCATGATGGTTATG

ATGTTTAAAGACTACCATGATGGTTATG

ATGTTTAAAGACTGCCATCATGGTTATG

ATGTTTAAAGACTGCCATCATGGTTATG

ATGTATAAAGACTGCCATGATGGTTATG

ATGTATAAAGACTGCCATGATGGTTATG

ATGT?TAAAGACT? CCAT?ATGGTTATG Consensus

Alignment of 

related genomic 

sequences
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SNPs Based On Clustering

ATGTTTAAAGACTACCATGATGGTTATG

ATGTTTAAAGACTACCATGATGGTTATG

ATGTTTAAAGACTGCCATCATGGTTATG

ATGTTTAAAGACTGCCATCATGGTTATG

ATGTATAAAGACTGCCATGATGGTTATG

ATGTATAAAGACTGCCATGATGGTTATG

ATGTTTAAAGACTGCCATGATGGTTATG

Samples that

are aligned

to the consensus

Genome
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Naïve Approach

All vs. All alignments + post processing

Compute-intensive and wasteful!

33 million fragments for mouse assembly

7+ million human ESTs
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Typical Methodology

Identify pairs of fragments that have a good exact 

match (promising pairs).

Restrict alignment computations to promising 

pairs.

Perform post-processing.
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Lookup Table Pair Generation

AA AC AG AT CA CC CG CT GA GC GG GT TA TC TG TT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

8 2 1

5

C A T T A T T A G G A

10 9 4

7

3

6

1 2 3 4 5 6 7 8 9 10 11
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Problems for Large-scale Analysis

Longer matches are revealed as multiple short 
matches in a lookup table based approach.

Matches are arbitrarily generated.

Linear space for uniformly random overlaps with 
constant coverage but worst-case quadratic in the 
non-uniform case.
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PaCE Methodology

Reduce space requirement from quadratic to linear.

Generate promising pairs in decreasing order of maximal 

common substring length.

Constant time per generation of a pairwise maximal 

common substring.

Significantly reduce number of alignments without 

affecting quality.

Massively parallel processing – reduce run-time; increase 

available memory.
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A Specific Application: 

Maize Genome Assembly
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Why sequence the maize genome?

Maize (i.e., corn) is an economically important crop.

Best studied model organism for the cereal crops.

Just as the human genome project will intensify upcoming 

medical advances, cereal genomes (rice and maize) will 

help improve worldwide food production.



IPDPS’07 Tutorial HPC Methods for Computational Genomics 59

Typical Assembly Strategy

pairs

O(n2l2) run-time

Exact Matching 

Filter

2

n

Directly detect

promising pairs

O(n) pairs

O(nl2) run-time
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Genome Assembly Example

Human Genome Assembly (Venter et al. 2001):

Input: 27 million fragments

Program: Celera Assembler

10,000 CPU hours for detecting overlaps 

Parallelized to run on 64 GB shared memory machine + 10 4-

processor SMPs with 4-GB memory

10,000 CPU hours for the rest
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Maize Genome Assembly

Maize genome is comparable in size to the 

human genome (2.5 GB) but is highly 

repetitive (65-80%). About 15-20% is gene 

space.

NSF Workshop in July 2001 to debate 

sequencing strategies
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Maize Genome Assembly

NSF funded pilot projects (2002; $10.2 million):

“gene-enrichment” – Consortium for Maize  

Genomics (Danforth Center, TIGR, Purdue & Orion 

Genomics)

Methylation filtration (MF)

High Cot selection (HC)

BAC sequencing – Rutgers & Univ. of Arizona.

Dept. of Energy (DOE) added about 2.4 million 

fragments.
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Methylation Filtration

ATATGTGACCA TTGTGAACCTT

methylated region methylated region

1.) Fragment

2.) Clone into

special

bacteria

3.) Sequence
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High Cot Selection

repeat region repeat region

1.) Fragment

dsDNA

2.) Denature

into ssDNA

4.) Sequence

remaining ssDNA

3.) Slowly reform

dsDNA
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Random vs. Biased Sampling

Uniform  case – O(n) overlaps

Non-uniform case – O(n2) overlaps

Uniform layout Nonuniform layout
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PaCE Methodology

First cluster, then assemble.

Two sequences fall in the same cluster if there is a chain of 

overlaps that leads from one sequence to the other.

Each cluster can be assembled into a contig.
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Clustering Strategy

Initially, treat each sequence as a cluster by itself.

If two sequences from two different clusters show 

significant overlap, merge the clusters.

Use union-find data structure.
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Processing High-quality Overlaps first is 

important!

Successful overlap results in

Merging of two clusters.

No need to test other promising pairs of fragments 

where a member of the pair comes from each 

constituent cluster. 
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Clustering Heuristic

i
j

Promising pairs Pairs aligned Clustering

j
l

j
l Pair generation order 

matters !

i
j

i
j

k
l

k
l

k
l

i
l

i
l

i
l

i
k

i
k

i
k

Initialize: {i}, {j}, {k}, {l}

{i,j}, {k}, {l}

{i,j}, {k,l}

{i,j,k,l}

Alignment unnecessary!



IPDPS’07 Tutorial HPC Methods for Computational Genomics 70

Pair Generation Methodology

Generate pairs

In non-increasing order of maximal common substring length

On-demand without storing previously generated pairs

O(1) amortized time per pair

Using linear space
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PaCE Software Architecture

GST Construction
On-demand pair 

generation

Pair

Selection

Alignment

Evaluation

Cluster

Management

Construction

Phase

Parallel Clustering Phase
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Generalized Suffix Tree (GST)
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Parallel Construction of GST

. . . . . . . . .

Proc #1 Proc #2 Proc #p. . .

Virtual root

Exact

word length

O(nl/p) leaves O(nl/p) leaves O(nl/p) leaves. . .
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Parallel Construction of GST

Bucket the suffixes of the sequences based on the 

first k bases.

Redistribute the suffixes in parallel such that each 

processor owns a set of buckets.

Build GST locally in each processor.

In each processor,  #leaves = O(nl/p)

Run-time = O(nl2/p)
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GST Construction on BlueGene/L

Input: 250 million bases
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Pair Generation Algorithm 

Process the nodes in the local GST in the 

decreasing order of string-depth and generate 

pairs at each node.

Generate a pair at a node only if the 

corresponding overlap is maximal.
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Main Idea of the Algorithm

• Maximal match

c1 c2

c3 c4

s1

s2

v

root

(s1,i)

…
c 2 c

4 . . .

=x
i

j

(s2,j)

…
c 2 c

4 . . .

(s1,i+1) (s2,j+1)
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Left Character Sets (lsets)

leaf-set(v) = set of strings whose suffixes are 

present in the subtree of v.

lset (v) = partition of leaf-set(v) into | |+1 subsets, 

lA(v), lC(v), lG(v), lT(v), l (v).
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A

G

T

Gs’

Right Maximality

s(i) and s’(j) are in 
subtrees of two 
different children of u

Left Maximality

s[i-1] s’[j-1], if i>1
and j>1

i

j

lset (A)

lset (C)

lset (G)

lset (T)

u

u1 u4u3u2

Pair generation at an internal node u

…
A G

…
T…

…
C

s(i) s’(j)

Maximal Match Detection

s

Run-time: O(1) per pair 
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Run-time for Pair Generation

Sorting of nodes in the local GST 

= O(nl/p)

Processing of all nodes in the local GST

= O( # pairs generated )
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Number of Duplicates

F1

F2

# of times a pair is generated 

# of distinct maximal common substrings

(of length )

eg., (F1,F2) is generated at most twice.

| |, | |
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Possible Fragment Overlaps

F1

F2

b

a

c

d

F1
F2

F1
F2

F1
F2

F1
F2

a . . . c b . . . c

b . . . d a . . . d

– Compute only lower and upper rectangles

– Do banded dynamic programming
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Parallel Clustering Phase

Clusters

Send promising pairs 

for alignment

Send new promising 

pairs and results of 

alignment

Local GST

Master Processor

Slave #1

Local GST

Slave #p

. . .
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Clustering Phase Performance on 

BlueGene/L

Run-time for clustering phase
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Overview of Assembly Pipeline

1.) Collect data

2.) Clean up data

3.) Mask repeats

4.) Cluster data

5.) Assemble smaller

subproblems
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Maize Assembly on BlueGene/L

10289131,0241.25

TotalClusteringTree

Construction

PaCE Runtimes (in minutes)Number of 

nodes

Number of 

Input Bases

(in billions)
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Maize Assembly on BlueGene/L 

75722.38,1921.15

13111.28,1920.5

TotalClusteringTree

Construction

PaCE Runtimes (in minutes)Number of 

processors

Number of 

Input Bases

(in billions)
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Maize Assembled Genomic Islands (MAGIs)

217,106Contigs

44.9%GC Content

329.61 MBAssembly Size

4.78Avg GSS per contig

1,518Avg contig len

567,797Non-repetitive

Singletons

3,202,268Input Sequences

MAGI v4.0 
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Gene “archipelagoes”

MAGI3.1_4593  (12,498 bp)
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Gene “archipelagoes”
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Maize assembly Portal
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More information …

PaCE software download
http://www.ece.iastate.edu/~aluru/software/PaCE

Over 50 academic/governmental/non-profit users from 10 
countries.

2 companies.

Maize Assembly Website

http://www.plantgenomics.iastate.edu/maize

Used by researchers from Berkeley, Cornell, Purdue, Penn 
State, Dupont, BASF etc.
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More Information …

Publications:

On Maize Assembly

S.J. Emrich et al. (2004). A strategy for assembling the maize (Zea mays L.) genome, 
Bioinformatics, 20(2):140-147.

A. Kalyanaraman et al. (2006). Assembling genomes on large scale parallel computers, Proc.
International Parallel and Distributed Processing Symposium.

On PaCE

A. Kalyanaraman et al. (2003). Space and time efficient parallel algorithms and software for 
EST clustering, IEEE Transactions on Parallel and Distributed Systems, 14(12):1209-1221.

A. Kalyanaraman et al. (2003). Efficient clustering of large EST data sets on parallel 
computers, Nucleic Acids Research, 31(11):2963:2974.

On Maize Genomics

Y. Fu et al. (2005). Quality assessment of maize assembled genomic islands (MAGIs) and large-
scale experimental verification of predicted novel genes. Proceedings of the National Academy 
of Sciences, 102(34):12282-12287.
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US $32 million project by NSF, DOE, and USDA for 
large-scale sequencing.

Goal is to sequence all genes, determine their order and 
orientation, and anchor them to genetic/ physical maps.

Projects started November 15, 2005.

Future of Maize Genome Sequencing 

Project
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$32 million B73 maize genome 

sequencing consortium

Courtesy of the NSF

Washington University*

University of Arizona

Iowa State University

Cold Spring Harbor
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Another Application: Mouse 

EST Clustering
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Mouse EST clustering

Input:

A random subset of 56,470 UniGene clusters downloaded in 

March 2006

3.78 million total entries including ESTs and full-length cDNAs

Output:

60,862 clusters with more than one sequence

Average cluster = 55; Largest = 807,671

83% of clusters are composed of a single UniGene
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Validation

Single-linkage clustering performs at most n merges.

When comparing to UniGene, one measure of accuracy is 
the number of additional or missed merges performed.

Ignoring clusters of size 1, our data suggest that over 98% 
of the links in UniGene were correctly determined by 
PaCE.
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Clustering accuracy

UniGene clustering

decisions

PaCE clustering

decisions

45,0583,213,87826,125

False negativesFalse positives
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Run-time Scaling: Mouse EST 

Clustering
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PaCE: Promising Pairs Statistics
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Selected Bibliography on EST Clustering and 

Genome Assembly

P. Green (1994). Phrap - the assembler. http//www.phrap.org.

J.D. Kececioglu and E.W. Myers (1995). Combinatorial algorithms for DNA sequence 
assembly, Algorithmica, 13(1):7-51.

G. Sutton et al. (1995). TIGR assembler: A new tool for assembling large shotgun
sequencing projects, Genome Science and Technology, 1:9-19.

X. Huang and A. Madan (1999). CAP3: A DNA sequence assembly program, Genome
Research, 9(9):868-877.

F. Liang et al. (2000). An optimized protocol for analysis of EST sequences, Nucleic
Acids Research, 28(18):3657-3665.

E.W. Myers et al. (2000). A whole-genome assembly of drosophila, Science,
287(5461):2196-2204. 

P.A. Pevzner et al. (2001). An Eulerian path approach to DNA fragment assembly, 
Proceedings of the National Academy of Sciences USA, 98(17):9748-9753.

A. Christoffels et al. (2001). STACK: Sequence Tag Alignment and Consensus 
Knowledgebase, Nucleic Acids Research, 29(1):234-238.

K. Pedretti (2001). Accurate, parallel clustering of EST (gene) sequences, Master's 
Thesis, University of Iowa.

S. Batzoglou et al. (2002). ARACHNE: A whole-genome shotgun assembler, Genome
Research, 12(1):177-189.
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Selected Bibliography on EST Clustering and 

Genome Assembly …

J. Pontius et al. (2003). UniGene: a unified view of the transcriptome. The NCBI 
Handbook.

G. Pertea et al. (2003). TIGR Gene Indices clustering tool (TGICL): A software system 
for fast clustering of large EST datasets, Bioinformatics, 19(5):651-652.

K. Malde et al. (2003). Fast sequence clustering using a suffix array algorithm,
Bioinformatics, 19(10):1221-1226.

J.C. Mullikin and Z. Ning (2003). The phusion assembler, Genome Research, 13(1):81-
90.

X. Huang et al. (2003). PCAP: A whole-genome assembly program, Genome Research,
13(9):2164-2170.
A. Kalyanaraman et al. (2003). Space and time efficient parallel algorithms and software for EST 
clustering, IEEE Transactions on Parallel and Distributed Systems, 14(12):1209-1221.

A. Kalyanaraman et al. (2003). Efficient clustering of large EST data sets on parallel computers, 
Nucleic Acids Research, 31(11):2963:2974.

P.Havlak et al. (2004). The atlas genome assembly system, Genome Research,
14(4):721-732.
A. Kalyanaraman et al. (2006). Assembling genomes on large scale parallel computers, Proc.
International Parallel and Distributed Processing Symposium.
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Part III:

HPC for Phylogenetics
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www.phylo.org
A community project, funded by an $11.6M NSF Information 

Technology Research grant

Cyber Infrastructure for Phylogenetic Research

• Georgia Institute of Technology:    D.A.

Bader

• University of New Mexico: B.M.E.

Moret, T. Williams

• UC San Diego: F. Berman, P. Bourne

• Yale: M. Donoghue

• U Texas-Austin: T. Warnow, D.M. Hillis, 

W. Hunt, D. Miranker, L. Meyers

• U Pennsylvania: J. Kim 

• U Connecticut: P. Lewis

• U Arizona: D. Maddison, W. Maddison

• UC Berkeley: B. Mischler, E. Myers, S. 

Rao, S. Russell

• Florida State U: D. Swofford

• American Museum of Natural History: 

W. Wheeler
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Phylogeny

Orangutan Gorilla Chimpanzee Human
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Phylogeny informs everything in biology

It relates organisms and genes.

It helps us understand and predict:

interactions between genes (genetic networks)

functions of genes

relationship between genotype and phenotype

drug and vaccine development

origins and spread of disease

origins and migrations of humans



IPDPS’07 Tutorial HPC Methods for Computational Genomics 108

The Tree of Life: The Ultimate Phylogeny

CIPRES aims to establish 
the cyber infrastructure 
(platform, software, 
database) required   to 
attempt a reconstruction of 
the Tree of Life

(10-100M organisms)
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Comparative Genomics

Chicken Human

NCBI accession #NC_001807NCBI accession #NC_001323
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Phylogenetic Trees

Represents evolutionary relationships

Leaves of the tree contain known taxa

Internal vertices represent ancestral species

Edges represent evolutionary events
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Eukaryotic Cell
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Types of Phylogenies

Relationships between taxa

Species Trees

Gene Trees

Data

Morphological

Tree of Life Web (Maddison/Maddison): http://tolweb.org/

Nuclear Genome

Organelle Genome
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Example Phylogenies

EHV2HVS
KHSV

EHV1

HSV2

HSV1

VZV

HCMV

EBV

HHV7

HHV6

PRV

Tobacco

Platycodon

Cyananthus

Codonopsis

Triodanus

Asyneuma

Legousia

Adenophora

Campanula

Symphyandra

Trachelium

Merciera

Wahlenbergia
2.42

0.18

2.82
0.77

3.22

3.39

1.61
1.28

2.59

4.68

3.32
2.22

10.75

2.25

0.78

4.34

1.75

4.25

1.61

0.83

0.063

0.94
0.23

Campanulaceae (Bluebell Flowers)

Some herpesvirus known to affect humans

Leeches
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Commercial Aspects of Phylogeny Reconstruction

Identification of microorganisms
public health entomology

sequence motifs for groups are patented

example: differentiating tuberculosis strains

Dynamics of microbial communities
pesticide exposure: identify and quantify microbes in soil

Vaccine development
variants of a cell wall or protein coat component

porcine reproductive and respiratory syndrome virus isolates from US and Europe were separate 
populations

HIV studied through DNA markers

Biochemical pathways
antibacterials and herbicides

Glyphosate (Roundup , Rodeo , and Pondmaster ): first herbicide targeted at a pathway not present 
in mammals

phylogenetic distribution of a pathway is studied by the pharmaceutical industry before a drug is 
developed

Pharmaceutical industry
predicting the natural ligands for cell surface receptors which are potential drug targets

a single family, G protein coupled receptors (GPCRs), contains 40% of the targets of most 
pharm. companies



IPDPS’07 Tutorial HPC Methods for Computational Genomics 115

Techniques

Maximum parsimony

Occam’s razor: simplest explanation for evolution, 

minimizes the sum of the number of evolutionary 

events along the tree branches

Maximum likelihood

Statistical methods that use an evolutionary model 

such as the transition/transversion rate ratio for the 

nuclear genome
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Exploiting data about 

gene content and gene order
has proved extremely challenging from a computational 
perspective

tasks that can easily be carried out in linear time for DNA data
have required entirely new theories (such as the computation of 
inversion distance) or appear to be NP-hard

The focus has thus been on simple genomes, preferably 
genomes

consisting of a single chromosome, and 

where evolution can reasonably be assumed to have been driven 
mostly through gene order changes.
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Cell Organelles

Chloroplasts and mitochondria have such 
genomes: around 120 genes for the 
chloroplasts of higher plants and typically 
37 genes for the mitochondria of 
multicellular animals, in both cases packed 
onto a single chromosome. 

The gene content of these genomes is fairly 
constant across a wide phylogenetic range, 
differences are mostly in the ordering of the 
genes.

Mitochondria

Chloroplast
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GRAPPA: Genome 

Rearrangements Analysis
Genome Rearrangements Analysis under Parsimony and 
other Phylogenetic Algorithms

http://www.cc.gatech.edu/~bader/code.html

Freely-available, open-source, GNU GPL

already used by other computational phylogeny groups, Caprara, 
Pevzner, LANL, FBI, Smithsonian Institute, Aventis, 
GlaxoSmithKline, PharmCos.

Gene-order Phylogeny Reconstruction
Breakpoint Median

Inversion Median

over one-billion fold speedup from previous codes

Parallelism scales linearly with the number of processors
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Using GRAPPA to solve 

Campanulaceae Phylogeny

On the 512-processor IBM Linux 
cluster, we ran the full analysis (all 14 
billion trees) in under 1.5 hours – a 
1,000,000-fold speedup (and using true 
inversion distance) compared with the 
best previous code BPanalysis

256 IBM Netfinity 4500R nodes of dual 733MHz Intel 
Pentium III processors, interconnected with Myrinet
2000

Current release of GRAPPA (v. 1.6) 
now takes minutes to solve the same 
problem on several processors
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Tobacco

Bob Jansen, UT-Austin;

Linda Raubeson, Central Washington U

Campanulaceae
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Gene Order Phylogeny

Many organelles appear to evolve mostly through 

processes that simply rearrange gene ordering 

(inversion, transposition) and perhaps alter gene 

content (duplication, loss).

Chloroplast have a single, typically circular, 

chromosome and appear to evolve mostly through 

inversion:

i -1
i j j+1 i -1

-j
-i j+1

The sequence of genes i, i+1, …, j is inverted and every gene is flipped.
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Breakpoint Analysis

(Sankoff & Blanchette 1998)

For each tree topology do
somehow assign initial genomes to the internal nodes

repeat

for each internal node do

compute a new genome that minimizes the distances to its three 
neighbors

replace old genome by new if distance is reduced

until no change

Sankoff & Blanchette implemented this in a C++ package

This is NP-hard, even for just three taxa!

(2
n

-5
)!

! 
=

 (
2

n
-5

) 
(2

n
-7

) 
…

5
3

  
tr

ee
s

u
n

k
n

o
w

n
 i

te
ra

ti
v

e 
h

eu
ri

st
ic

N
P

-h
ar

d



IPDPS’07 Tutorial HPC Methods for Computational Genomics 123

Algorithm Engineering Works!

We reimplemented everything –

the original code is too slow and not as flexible as we wanted. 

Our main dataset is a collection of chloroplast data from the flowering plant 

family Campanulaceae (bluebells):

13 genomes of 105 gene segments each

On a Pentium III Linux PC:

BPAnalysis processes 10-12 trees/minute

Our implementation processes over 50,000 trees/minute

Speedup ratio is over 5,000!!

On synthetic datasets, we see speedups from 300 to over 50,000…
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High-Performance Computing Techniques

Availability of hundreds of powerful processors

Standard parallel programming interfaces

Message passing interface (MPI)

OpenMP or POSIX threads

Algorithmic libraries for SMP clusters

SIMPLE

Goal: make efficient use of parallelism for

exploring candidate tree topologies

sharing of improved bounds
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Parallelization of the Phylogeny Algorithm

Enumerating tree topologies is pleasantly parallel and 
allows multiple processors to independently search the 
tree space with little or no overhead

Improved bounds can be broadcast to other processors 
without interrupting work

Load is evenly balanced when trees are cyclically 
assigned (e.g. in a round-robin fashion) to the processors

Linear speedup
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How Bill Gates’s Only Journal Paper Relates to 

Computational Biology
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Inversion Distance

(Hannenhalli-Pevzner Theory)
NP-hard for unsigned permutations [Caprara 97]

Polynomial for signed permutations [Hannenhalli & Pevzner 95]

Compute combinatorial terms from the cycle graph

d = b – c + h + f  [Bafna & Pevzner 93, Setubal & Meidanis 97]

b = number of breakpoints

c = number of cycles

h = number of hurdles

f = (0/1) Is there a fortress?

O(n (n)) time, [Berman and Hannenhalli 96]

where (n) is the inverse Ackerman function (practically a constant no greater than 4)

New result: O(n) inversion distance, [Bader, Moret, Yan 01]

faster and simpler algorithm, both in theory and in practice

High Impact work: already cited over 125 times!
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GRAPPA Remarks

Our reimplementation led to numerous extensions as well as to new 

theoretical results

GRAPPA has been extended to inversion phylogeny, with linear-time 

algorithms for inversion distance and a new approach to exact inversion 

median-of-three.

High-performance implementations enable:

better approximations for difficult problems (MP, ML)

true optimization for larger instances

realistic data exploration (e.g., testing evolutionary scenarios, assessing 

answers obtained through other means, etc.)

Our analysis of the Campanulaceae dataset confirmed the conjecture 

of Robert Jansen et al. – that inversion is the principal process of 

genome evolution in cpDNA for this group.
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Reconstruction Software: single chromosome, 

organellar size (< 200 genes)

1998 BP Analysis
Sankoff

8 taxa 1 day

13 taxa 250 years

2000 GRAPPA
13 taxa 1 day (512 proc. cluster)

(200 serial, 100,000 parallel)

2001 GRAPPA
13 taxa 1 hour (laptop)

(2,000,000 serial)

20 taxa 3 million years

2003 DCM-GRAPPA
1,000 taxa 2 days

(effectively unbounded speedup)

2004 DCM-GRAPPA
Handles unequal gene content

(first method with this capability)
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Challenges in Phylogeny

Network evolution

Recombination events

Large-scale phylogeny reconstruction

Scalability and Accuracy

Comparison and accuracy of techniques and 

heuristics
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Cyberinfrastructure Challenges

Current HPC systems are designed for 
physics-based simulations that use

Floating-point, linear algebra
Top 500 List measures Linpack!

Regular operations (high-degrees of locality)
e.g., Matrices, FFT, CG 

Low-order polynomial-time algorithms

Focus of current HPC systems:
Dense linear algebra

Sparse linear algebra

FFT or multi-grid

Global scatter-gather operations

Dynamically evolving coordinate grids

Dynamic load-balancing

Particle-based or lattice-gas algorithms

Continuum equation solvers

Computational biology and 
bioinformatics often require

Integer performance
Strings, trees, graphs

Combinatorics
Optimization, LP

Computational geometry 

Irregular data accesses

Heuristics and solutions to NP-hard 
problems

Next-generation
cyberinfrastructure must take 
Biology into consideration
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Parsimony Codes

Phylip (Felsenstein)
http://evolution.genetics.washington.edu/phylip.html

Hennig86 (Farris)
http://www.cladistics.org/

Nona (Goloboff) and TNT (Goloboff, Farris, Nixon)
http://www.cladistics.com/

PAUP* (Swofford)
http://paup.csit.fsu.edu/

MEGA (Kumar, Tamura, Jakobsen, Nei)
http://www.megasoftware.net/

GRAPPA (Bader, Moret, Warnow)
http://www.phylo.unm.edu/
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Likelihood Codes

Phylip (Felsenstein)

http://evolution.genetics.washington.edu/phylip.html

PAUP* (Swofford)

http://paup.csit.fsu.edu/

PAML (Yang)

http://abacus.gene.ucl.ac.uk/software/paml.html

FastDNAml (Olsen, Matsuda, Hagstrom, Overbeek)

http://geta.life.uiuc.edu/~gary/programs/fastDNAml.html

Felsenstein’s List of Software:

http://evolution.genetics.washington.edu/phylip/software.html
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