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Abstract 
1 

The unstructured Peer-to-Peer (P2P) systems usually 
use a “blind search” method to find the requested data 
object by propagating a query to a number of peers 
randomly. In order to increase the success rate of blind 
search, replication techniques are widely used in these 
systems. Most P2P systems replicate the most frequently 
accessed data objects to improve system performance. 
However, existing replication strategies cannot answer 
the question that how many replicas of an object should 
be kept in the P2P system. If an object is replicated 
excessively, it inevitably will affect the average efficiency 
of a replica, which will decrease the whole search 
performance. This paper addresses the issue of finding 
the proper number of replicas for an object according to 
its query rate. In this paper, we firstly investigate the 
precise relation among success rate, the allocation of 
replicas and query rate. Then we propose an approach of 
the allocation of copies to optimize the success rate. As a 
benchmark, our result offers a new understanding of 
replication. 
 
1. Introduction 
 

The P2P (Peer-to-Peer) computing model offers a 
radically different and appealing alternative to the 
traditional client-server model for many large-scale 
applications in distributed settings. In this model, end-
users share resources in a peer style, potentially acting as 
both client and server. The P2P approach removes single 
point failure and associated performance bottlenecks; it 
also releases the network traffic overhead by providing 
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services locally. However, locating content or service in 
an efficient and scalable way is still one of the most 
challenging problems. 

P2P systems were classified into three different cate-
gories [1]: (1) Centralized P2P systems, where a central 
directory server is used to manage the metadata (i.e. 
Napster [2]); (2) Decentralized structured P2P systems, 
where there is no central server and peers are structured 
according to some strict rules for file placement and 
object discovery [3,4,5]; (3) Decentralized unstructured 
P2P systems, where there is no coupling between topol-
ogy and data location, such as Gnutella [6], Morpheus [7] 
and KaZaA [8]. Of all the categories, the decentralized 
unstructured P2P systems are most commonly used in 
today's Internet. 

In the decentralized unstructured P2P systems, the 
peers are organized to form an ad hoc network. Each peer 
connects to a set of neighbors when it joins the network, 
through which user queries are propagated to retrieve 
data. As the P2P network topology is unrelated to the 
location of data, a peer has no idea about which peer has 
the required object, which may lead to “blind search”. 
The peers receiving a query are unrelated to the target of 
the query.  

Replication technique is often used to improve the 
performance of blind search. By proactively deploying 
data replicas on several other peers, the consumed 
messages will be decreased before hit and the hit rate will 
be improved when the number of the probe messages is 
restricted.  

Considering replication, the key question is “which, 
where, when and how many do we distribute the copies?” 
A lot of previous researches address the problem of 
“which”, “when”. However, little work has been done on 
the issues of “where” and “how many”. In the usual 
approaches, the data objects that are accessed more 
frequently are distributed with more copies, which helps 
to increase the hit rate of the popular objects, and thus the 
whole search performance can be promoted. However, 



such approaches cannot answer the question of how many 
replicas of an object should be kept in the P2P system. If 
an object is replicated excessively, it inevitably will affect 
the average efficiency of its replicas and the success rate 
gain from the less popular, which will decrease the whole 
search performance. So, what is the threshold for the 
popular objects, and if given the limited storage space 
what is the appropriate distribution according to the query 
rate among the entire objects? On the other hand, because 
the place of a replica has much effect on its value, then 
what is the impact of the topology on the number of the 
necessary replicas?  

The fundamental question we address in this paper is: 
given the query rate and the limited storage space, how to 
find out the optimal number of copies for each data 
object. 

The rest of the paper is organized as follows. In 
Section 2, we investigate the impact of topology on the 
success rate and present an allocation where the factor of 
topology is taken into account from a centralized view to 
achieve the optimal success rate. In Section 3, we present 
some comparisons with some widely used replications, 
such as proportional replication, uniform replication and 
square root replication, to verify the validity of our 
proposed strategy. In Section 4 we make some feasible 
assumptions and propose a more practical strategy for the 
allocation in the fully distributed P2P. The replication 
strategy is also compared with the optimal result in 
Section 3. Finally, this paper concludes with Section 5. 
 
2. The Optimal Allocation from a Centralized 
View 
2.1. The Unstructured Peer-to-Peer Model 
 

Considering a simple model of unstructured P2P 
system, the overlay network consists of N peers, each 
with capacity ρ , which is the set of replicas that a peer 
holds (where we assume there is no more than one copy 
per data object). Assume there� are� mψdistinct� data�
objects� in�the�system.�The�query rate vector q takes the 

form q1≥q2≥q3≥…≥qm with
1

1
m

i
i

q
=

=∑ . The query rate qi is 

the� fraction�of�all�queries�that�are�issued�for�the�ith�
object.��

Just as described in [9], we define replication strategy as 
the means specifying the number of copies for each object 
if given the distribution of access frequency. Replication 
strategy sometimes is called allocation. Here the main 
metric we consider is the success rate.  

Here�let�riψdenote�the�number�of�copies�of�the�ith�
object.� Just as described in [9], a replication strategy is 

an allocation� of� storage� rooms� to� the� data� objects�
according� to� their� access� frequency� if� given� the�
restriction�of�storage�space�and�the�query�rate�of�each�
object.� A� replication� strategy� or� allocation� is� a�
mapping�from�the�query�rate�q�to�the�copy�number�r. 
The� allocation� is� presented� by� the�
vector 1 2 3( , , ... )mr r r r r= .��

We�assume�that�the�peers�randomly�issue�queries,�
i.e.,� they� issue�queries�with� the� same�probability� in�
each� request.� In the following, we will introduce how to 
find an allocation to optimize the search success rate 
when Random Walks routing mechanism is used in the 
P2P network. 
 
2.2. The Topology and the Potential Energy 
 

The unstructured and decentralized P2P systems firstly 
arrange the peers as a logical overlay network, in which 
every peer is only aware of its neighboring peers. The 
query messages are transmitted peer by peer to retrieve 
the data. Therefore, a peer’s contribution to success rate 
lies on its capability to satisfy the queries, i.e. the 
capability of receiving messages and the query rate of the 
data objects that the peer stores. 

Suppose that the overlay network is a connected and 
undirected graph. If a replica of object i is placed on peer 
u, the value of the replica lies on the times that the object 
i is requested and query messages are routed to peer u at 
the same time.   

In the TTL-based searches, the probability that a peer 
receives messages is impacted by the forwarding pattern 
and the topology of overlay network. In flooding, only the 
queries issued by the peers within the range of peer u, i.e., 
the peers whose distance to peer u is less than TTL, can 
reach peer u. Furthermore, all the queries within the 
range of peer u inevitably can reach peer u. Therefore, in 
flooding, the contribution of a replica on peer u is closely 
related to the number of peers within the range of peer u. 
But in Random Walks, that a peer is within the range of 
peer u doesn’t mean that its queries determinately reach 
peer u for the reason of underlying topology and 
forwarding pattern. For example, when the peer 4 in 
Figure 1 receives query, the probability that peer 2, peer 3 
and peer 6 receive messages from peer 4 in Random 
Walks entirely is 1/3, i.e. the reciprocal of the degree of 
the peer 4. If every peer issues a query with TTL=1, the 
average messages received by peer 1, 2, 4 are 5/6, 5/6 and 
4/3 respectively. (Here we ignore the fact that a peer will 
not retransmit a query back, which will lead to slight 
distortion to the real P2P systems. It is more acceptable 
when the average degree is large.) 
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Figure 1. The simple model of overlay network and the 
principle of Random Walks 

We define Potential Energy E as a peer’s capability of 
receiving query messages. Then a peer’s Potential Energy 
is closely related to the Potential Energy of its neighbors 
and the probability that it can receive messages from 
neighbors. Therefore, for Random Walks, E can be 
recursively defined as: 

( / )u v v
v D

E E d
∈

=∑                               (1) 

where D is the neighbor set of peer u, dv is the degree 
of peer v, and Ev/dv is the probability that peer u can 
receive messages from peer v through the link<v, u>.  

Define E= (Ei), where Ei is the Potential Energy of 
peer i. Define matrix M= (mij). If there is a link between 
peer i and peer j, mij and mji are 1/di and 1/dj respectively, 
and others 0. Then according to 1), 

'E E M= ×                                (2) 
where E’ is an iteration of E. A peer will propagate its 

Potential Energy to its neighbors during iteration and the 
Potential Energy will converge to some stable state, in 
which the Potential Energy in every peer roughly 
represents the relative capability of receiving messages. 

We assign E the initial value 1/n since we assume that 
the peers have the same probability to generate requests. 
Thus we can obtain the Potential Energy for each peer by 
the iterative computation of (2). Since the iteration stands 
for the transition of the Potential Energy, moreover, only 
the requests within a peer’s range can reach it, the 
iteration times should be TTL, or less than TTL for the less 
precise results. And the final Potential Energy 
approximately represents the ratio of the number of 
messages that a peer receives to all the messages in the 
whole system during a period of time. 

Potential Energy implies a peer’s capability of 
receiving messages. If a replica is deployed on a peer with 
higher Potential Energy, it will satisfy more requests 
inevitably.  

The Potential Energy as a transitional parameter assists 
us to pursue the solution in the following and has little 

effect on our final conclusion, so here we do not 
investigate it more. 

 
2.3. The Potential Energy and the Optimal 
Replication Strategy 
 

Let’s firstly only consider the replicas of one object 
and assume that S requests have been randomly issued. If 
we ignore the lost messages when walkers hit the targets 
and terminate, all the messages generated during the 
process will be, 

* *M S TTL k=                  (3)  
Let ∆ denote TTL*k in the following. According to the 

definition of Potential Energy, the number of messages 
that peer u have received will be, 

* * *u u uM E M E S= = ∆                   (4) 
That is, if a replica is placed on peer u, the peer u will 

satisfy the requests for Mu times. Therefore, the search 
success rate will be 

/ *u u uSR M S E= = ∆                  (5) 
Because of the assumption that all the peers issue 

requests with the same probability, among the S requests 
above, the number of requests issued by each peer 
approximately is 

/R S N=                      (6) 
A peer u receives Mu messages and the messages 

usually come from a subset peers within its TTL range, so 
from an overall point of view a replica on peer u can 
guarantee a relatively fixed number of peers, whose 
requests can be satisfied. The fixed number will be, 

/ * *u u un M R E N= = ∆                   (7) 
Because of the same requesting probability, the search 

success rate can also be expressed as the ratio of the 
guaranteed peers to all the peers from a holistic point, 

/u uSR n N=                                    (8) 
However, if we have already placed a same replica in 

the system, we will get the less success rate than that 
given by Expression (8). This is because that the walkers 
will terminate when queries reach the first replica and be 
satisfied, and correspondingly the second peer receives 
fewer queries than that given by the Expression (4). 

As far as the success rate concerned, when we deploy 
another same replica in the system, it is less effective in 
improving the success rate since some peers’ requests 
have been guaranteed. In other words, the new deployed 
replicas are effective only for the peers that still haven’t 
been guaranteed in terms of the search success rate. 

Suppose that some replicas have been deployed in the 
system, and n peers have been guaranteed. Then if we 
also place the same replica in another peer v, the number 
of peers whose requests can be guaranteed for the first 



time (Here, the peers still haven’t been guaranteed before 
the insertion of the new replica) is, 

( - ) / * *v vn N n N E= ∆                  (9)  
According to (8), the increased gain in search success 

rate is 
2/ ( - ) / * *v v vn N N n N Eδ = = ∆                  (10) 

Only one data object is considered in the analysis 
above. Given the vector� of� query� rate of data objects, if 
a data is seldom accessed, the contribution of its copies to 
success rate is little, even though the replicas can satisfy 
all the requests of all the peers. Therefore, the relative 
gain of a new replica of object i on peer v will be 

2* *( - ) / * *vi i v i i vq q N n N Eδ δ= = ∆         (11) 
where ni is the number of peers, whose requests for 

object i have been satisfied.  
Therefore, when a unit of storage space on peer v is 

available, the decision of which copy is selected is mainly 
determined by the gain of viδ . We assume that the peers 
have been sorted in terms of their Potential Energy. From 
the largest to the least, we allocated all the storage rooms 
step by step. In each step, the copy, whose viδ  is largest, 
will be firstly deployed and it can be guaranteed that the 
success rate gain at every step is largest. Correspondingly 
the number of copies of each object, i.e. the allocation, is 
finally determined after the deployment. And the final 
optimal success rate is expected to be the sum of the gain 
in every deployment, 

| |

1

N

i
i

SR
ρ

δ
=

=∑                        (12) 

where iδ represents the gain determined by Expression 
(11) in step i. 

Theorem 1: It can be proven that the final vector r is 
optimal in terms of success rate.  

Proof: If vector r isn’t the optimal allocation, in other 
words, the copy sequence in the deployment above isn’t 
optimal, we must be able to find another sequence, in 
which the sum of success rate gain at every step is higher. 

 We assume that the mth copy of objects i and the nth 
copy of object j are respectively deployed on peer u and 
peer v at step a and step b. According to (11), at step a, 

*( - ) *( - ),m
i i k kq N n q N n k i≥   ≠                 (13)  

If the deployment at step a isn’t optimal, there must be 
another copy, such as the nth copy of object j, should be 
deployed at peer u. We also assume that the mth copy of 
object i is deployed on the peer v in the second sequence. 
If we select one from all the copies deployed after step a 
in the first sequence for peer v at step b, for the sake of 
Expression (13) and (11), the success rate gain of the mth 
copy of object i is the highest. 

Let’s examine the sum of the success rate gain in both 
sequences. 

( * *( - ) * *( - ))

( * *( - ) * *( - ))
u i i v j j

v i i u j j

E q N n E q N n

E q N n E q N n

+

 − +  
    (14) 

( ) ( *( - ) *( - ))
0

u v i i j jE E q N n q N n= −  −

≥
 

Therefore, the sum of gain in the second sequence is 
less than or equal to that in our first sequence. 

Therefore, the mth copy of object i must be deployed 
on peer u at step a in order for the maximum success rate 
gain. Similarly, it can be proven that our deployment 
sequence is optimal and the final allocation r is optimal. 

 
3. Simulations 
3.1. Simulation Model 
 

In this section, we evaluate the performance of the 
proposed method. The BA model [10] and the Waxman 
model [11] are respectively used to generate power-law 
and random graph topology. Each network has 10,000 
peers with the average degree of 3.6. Figure 2 illustrates 
the distribution of the number of the peers versus the 
degree. There are 200 distinct objects, and no same 
replicas at any peer. 
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Figure 2.The distribution of degree of Waxman 
topology and BA topology 



 In each search, we randomly select a peer to issue 
queries, and compute the success rate of 60,000 requests. 
In Random Walks scenario, k is set 3 and TTL is set 6, 
which are close to the parameters in Gnutella. The search 
success rate is considered as the main metric to evaluate 
the system performance. The parameters and their default 
values are listed in table 1. 

Table 1. The simulation parameters and its default 
values 

Parameters Default values 
Number of Pees 10,000 
Routing Mode Random walks 

Query Rate Zipf (α =0.92) 
Topology of Power law BA model 

Random Graph Waxman model 
Number of Links 18000 

Number of Objects 200 
Number of Walkers 3 
Capability per Peer 8 

TTL 6 
 
3.2. Simulations and Analysis 
 

Lv. et al in [9] examined the uniform replication 
strategy and proportional replication strategy, and finally 
proposed an optimal replication strategy of square-root 
replication to minimize the average path length. In this 
section we will make some comparisons with these 
widely used replication strategies under the topology of 
Power-law. 

Figure 3 illustrates the tendency comparison of success 
rate versus the number of replicas when different 
replication strategies are used. It shows that the success 
rate with the allocation proposed in this paper is the 
highest at any average number of copies among all the 
allocations. The uniform allocation is better with more 
copies, while the proportional allocation is better with 
fewer average copies. As a compromise, the square root 
allocation proposed in [9], works well as displayed in 
Figure 3. The proportional allocation is usually used in 
the most replications, but it is far from optimal in terms of 
success rate, usually about 10% lower than the Potential 
Energy based allocation. Other experiments not illustrated 
here show that the proposed allocation in this paper works 
more predominantly when there are more data objects and 
fewer storage rooms.  

Figure 4 represents the distribution of the number of 
copies per object. If we consider the Potential Energy 
based allocation optimal, the allocation of square root is 
relatively better, whose curve is closer to the optimal. The 
proportional allocation has a close relation to the query 
rate, so its effectiveness lies much on the access mode. 
We also can find that most replication strategies usually 

allocate excessive copies for more popular objects and too 
few for the less. 
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Figure 3. The success rate with different allocation 
strategies 
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Figure 4. The distribution of the number of copies per 
object 

 
4. The Practical Variation of the Optimal 
Allocation for Unstructured P2P 
 
4.1. Optimal Allocation for Unstructured P2P 

As an optimal allocation, the discussion in Section 3 
provides an approach and benchmark to the replication 
strategies, but it has more value in academic than in 
practice, because the allocation is in a centralized manner, 
which is not appropriate for the fully decentralized P2P 
systems, i.e., it is difficult to get the Potential Energy of 
every peer, and it is infeasible to deploy the replicas for 
each storage unit one by one. In this section, we are 
striving for a more practical allocation based on the 
conclusion in Section 3. 

Here we randomly select peers to deploy replicas on 
since it is difficult to calculate its Potential Energy. Then 



we assume that the peers in overlay network have the 
same average Potential Energy. The assumption is 
reasonable especially when several copies per object are 
deployed, for some are deployed on the peers with higher 
Potential Energy and some on with lower. Therefore, all 
the peers have the equivalent average capability of 
receiving messages.  

The number of peers has a close relation to the number 
of copies that have already been deployed. The first copy 
of a data can effectively cover ∆ peers if we ignore the 
loss because of the repeated messages passing the same 
peers. The second copy covers fewer peers than the first 
one because of the peers having been guaranteed, and so 
forth.  

Let ni denote the number of peers. We assume that 
some peers’ requests can be guaranteed after we place the 
ith copy of a data item on a randomly selected peer. i∆  
represents the increased number of peers having been 
guaranteed for the first time after the deployment of the 
ith copy. iδ stands for the increased success rate due to the 
insertion of the ith copy. Therefore, 

1

2 1 1

3 2 2

-1 -1

* /
* /

...
* /i i i

n
n n n N
n n n N

n n n N

= ∆ 
 = + ∆ − ∆ 
 = + ∆ − ∆
 
 
 = + ∆ − ∆ 

                            (15) 

By subtracting the adjacent expressions with the 
repeated iterations, we can obtain,   

-1

0
( ) (1 ( ) )

i
k i

i
k

N Nn N
N N=

− ∆ − ∆= ∆ = −∑         (16) 

1*( )i
i

N
N

−− ∆∆ = ∆                  (17) 

Expression (17) shows that the effectiveness is 
gradually decreasing with the increase of the copies of the 
objects, which is in accord with our intuition. 

Due to the imbalance of query rate, the contributions 
of two replicas of two different objects will be different, 
even though the replicas are inserted with the same 
sequence number. To take the query rate into 
consideration, the gain of the ith copy of object j will be, 

1* *( )i
ji j

Nq
N

−− ∆∆ = ∆                               (18) 

1/ * *( ) /i
ji ji j

NN q N
N

δ −− ∆= ∆ = ∆          (19) 

Then the tendencies of the gain increment of all 
objects with the increasing of copies are a cluster of 
curves, displayed in Figure 5. If we draw a horizontal line 
in Figure 5, the intersections of the line and the curves 

mean that it will deploy different copies for each object if 
we obtain the same gain increment. 

Return to the essential problem of allocation. Suppose 
that we have already deployed some replicas of objects in 
the system. If a unit of storage is available, we are always 
based on the current state to select a copy to make the 
gain increment of success rate highest according to the 
Expression (19). Therefore, after the deployment for all 
the storage space, the final gain increment of every object 
is approximately equal with the final allocation r= (r1, r2, 
r3…rm), because for a data object even with high access 
frequency, its increment gradually decreases with the 
increase of the number of its copies, as displayed by 
Expression (19). And correspondingly, i∆ of every object 
i is approximately equal after the final deployment, that 
is, 

iir∆ for every object i is approximately equal according 
to (19), where  

1* *( ) 1,2,3...i

i

r
ir i

Nq i m
N

−− ∆∆ = ∆    =        (20) 

For any two object i and j, 
11* *( ) * *( ) ji rr

i j
N Nq q

N N
−−− ∆ − ∆∆ = ∆     (21) 

-( ) /i jr r
j i

N q q
N

−∆ =                (22) 

Taking the restriction of storage space into 
consideration, 

1

log log

| |

j i
q q

i N N j
N N

m

i
i

r r

r N ρ

−∆ −∆
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 = − +
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Figure 5. The tendencies of the gain increment of 
objects with different access frequency versus the 
increasing of copies, given by the Expression (19) in an 
overlay network with 10,000 peers 



We can get the final solution to the problem of 
allocation, 

1
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      (24) 

Here we have no intention for further work on how to 
deploy the replicas in the real systems after the optimal 
allocation is given, since the problem has been discussed 
in [9]. 

4.2. Simulations 
In this section, we will exhibit some simulation results 

to verify our ratiocinations. 
Figure 6 illustrates the comparison of our theoretical 

results given by Expression (19) with the actual 
experimental result. In the simulation, a room per peer 
and only a data object are shared. 20 copies are deployed 
on the randomly selected peers in each step until 1,800 
replicas in the whole system, and the success rate is 
calculated every 60,000 queries. As Figure 6 shows, the 
result of simulation is consistent with Expression (19): the 
relation between the success rate and the number of 
copies is credible. This is our base for the following work. 
At the same time, the result indicates that our assumption, 
the peers in overlay network have the equivalent Potential 
Energy if the peer to deploy replica on is randomly 
selected, is reasonable 

Because BA topology and Waxman topology have 
equivalent peers and links and the peers are randomly 
selected, the sums of Potential Energy obtained in each 
step are approximately equal, and so the sum of vδ is, 
where v represents the peers deployed in a step. 
Therefore, the trends of success rate versus the number of 
copies under both topologies are approximately equal.  

Figure 7 illustrates the comparison of theoretic 
allocation given by Expression (24) with the experimental 
optimal one proposed in Section 3. It shows that a high 
consistency between theoretic result and the experimental 
results under both topologies, which implies that our 
allocation with practical variation is consistent to the 
optimal strategy in Section 3. Namely, our conclusion is 
also tenable in the fully distributed P2P systems. 
Furthermore, the allocation under BA topology fluctuates 
more visibly compared with the result under Waxman 
topology. This is because that the gaps of Potential 
Energy among peers in Power-law topology are more 
notable than those in random graph. 
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Figure 7. The comparison of allocation in the practical 
variation with the theoretically optimal result 
 
5. Conclusions 
 

This paper tries to resolve a question: given the fixed 
storage room and query rate, what is the optimal 
allocation in an unstructured P2P network? The relation 
between success rate and query rate is investigated and a 
centralized algorithm for the optimal success rate is 
proposed to allocate the replicas, which can be considered 
as a benchmark to evaluate the replication strategies. 
Finally a more practical variation is proposed. The 
simulation results verified the reasonability of our theory. 
Our fundamental results offer a new understanding of 
replication and show that the usual replication strategies 
are far from optimal in consideration of search success 
rate. 
 
 
 
 



References 
 
[1] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and 
replication in unstructured peer-to-peer networks”, In: Proc. of 
the 16th ACM Int'l Conf. on Supercomputing (ICS 2002). New 
York: ACM Press, 2002. 84-95. 
[2] Napster, http://www.napster.com/, 2001. 
[3] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard. 
Karp and Scott Shenker, “A Scalable Content-Addressable. 
Network”, In Proceedings of the ACM SIGCOMM 2001,, San 
Diego, CA, USA, August 2001. pp.161~172. 
[4] Ion Stoica, Robert Morris, David Karger, Frans Kaashoek, 
and Hari Balakrishnan, “Chord: A scalable peer-to-peer lookup 
service for internet applications”, In: SIGCOMM, San Diego, 
CA, USA, Aug. 2001. 

[5] B. Y. Zhao, J. Kubiatowicz, and A. Joseph, “Tapestry: An 
infrastructure for fault-tolerant wide-area location and routing”, 
Technical Report UCB/CSD-01-1141, University of California 
at Berkeley, Computer Science Department, 2001. 
[6] S. Daswani and A. Fisk, “Gnutella UDP Extension for 
Scalable Searches (GUESS) v0.1 [EB/OL]”, 
http://groups.yahoo.com/group/the_gdf/files/Proposals/GUESS/
guess_01.html, 2002-08-01 
[7] Morpheus. http://www.musiccity.com/, 2002. 
[8] KaZaA. http://www.kazaa.com/, 2002. 
[9] E.Cohen and S.Shenker, “Replication strategies in 
unstructured peer-to-peer networks”, In Proc. of ACM 
SIGCOMM’02,  San Diego, CA, USA, Aug. 2002 
[10] R. Albert, H. Jeong, and A. L. Barabasi, “Error and attack 
tolerance of complex networks”, Nature, 406, 378, 2000. 
[11] B. Waxman, “Routing of Multipoint Connections”, IEEE J. 
Select. Areas Connun, SAC-6 (9): 1617-1622, dec. 1988

 


