
A WSRF-Compliant Debugger for Grid Applications 
 
 

Donny Kurniawan and David Abramson 
Monash e-Science and Grid Engineering Lab 

Faculty of Information Technology, Monash University 
{donny.kurniawan, david.abramson}@infotech.monash.edu.au 

 
 

Abstract 
 

Grid computing allows the utilization of vast 
computational resources for solving complex 
scientific and engineering problems. However, 
development tools for Grid applications are not 
as mature as their traditional counterparts, 
especially in the area of debugging and testing. 
Debugging Grid applications typically requires a 
programmer to address non-trivial issues such as 
heterogeneity, job scheduling, hierarchical 
resources, and security. This paper presents the 
design and implementation of a Grid service 
debug architecture that is compliant with the Web 
Service Resource Framework standard. The 
debugger provides a library with a set of well-
defined debug APIs. 
 
1. Introduction 
 

Grid computing facilitates the aggregation of 
geographically distributed resources such as data 
servers, compute clusters, and scientific 
instruments to act as a single large system. This 
virtualisation allows multiple organizations to 
cooperate on solving large-scale problems which 
cannot be addressed by a single organization [1]. 
Grid middleware provides a set of services for 
managing and controlling the resources and the 
infrastructure. The services include security, 
resource management, data management, and 
information services. This middleware defines 
protocols and standards for users to manage 
program execution, to access data, to monitor 
resources, and to query information [14]. 

Applications need to be specifically written to 
take full advantage of the remote resources. 
However, currently Grid programmers still rely 

on traditional tools and techniques that are 
designed for local development. For example, 
applications are typically written on a 
programmer's desktop and are transferred to 
remote resources to be run. Debugging these 
applications requires the programmer to log in to 
the remote nodes and to run a local debugger [2]. 
These development techniques are time 
consuming and error prone and we believe will 
hinder the adoption of the Grid. 

In the case of Grid application debugging, the 
distributed and heterogeneous nature of Grids 
presents a challenge specifically in the areas of 
heterogeneity, job scheduling, resource hierarchy, 
and security. 

Heterogeneity: A Grid testbed may consist of 
resources with different computer architectures, 
operating systems, and debuggers. Some of these 
differences are addressed by current Grid 
middleware such as Globus [10], for example, by 
providing uniform ways of invoking applications 
and transferring data files. However, these do not 
support debugging, and thus the underlying 
heterogeneity is still exposed to the programmer. 

Job scheduling: In a typical Grid environment 
program execution is managed by a local queue 
manager, which schedules jobs according to 
criteria such as resource availability and processor 
load.  This batch processing scenario makes it 
difficult to debug an application interactively 
because the programmer cannot easily determine 
when the job actually starts execution. As a result, 
programmers must resort to ad-hoc techniques 
such as polling the scheduler regularly to check 
whether the application has started, and then they 
must manually attach a debugger to the process. 
In a Grid, this process might need to be repeated 
across multiple resources, possibly using different 
local schedulers, making the technique 
cumbersome and error prone. 1-4244-0910-1/07/$20.00 ©2007 IEEE. 



Hierarchical resources: Many Grid testbeds 
are actually built from distributed clusters, 
consisting of a single front-end machine and 
multiple back-end processor nodes. These back-
end nodes are usually only accessible from the 
front-end, which may in turn be behind a gateway 
server or a firewall. Thus, debugging an 
application running on the execution nodes of a 
cluster may require access to a hierarchy of 
intermediate computers. However, depending on 
the Grid security policy in place, a programmer 
may not have direct access to all of these 
machines, again complicating debugging. 

Security: Grid level debugging must be 
secure. For example, a debugger run by one user 
must be restricted from attaching to and 
controlling another user's processes. Clearly a 
debugger must conform to the security framework 
implemented in the Grid middleware. Thus, if the 
job invocation mechanism uses X.509 certificates, 
such as used by Globus, then the debugger must 
also operate in this framework. 

We believe that many of these issues can be 
solved by building the debug architecture into the 
Grid fabric. This research paper focuses on the 
specification and design of a standard set of 
application programming interfaces (APIs) 
suitable for debugging and testing computational 
Grid applications. These services can then be used 
within a Grid level debugger, or other high level 
software tools that require these functions. The 
architecture is modular and independent of the 
particular Grid middleware and back-end debug 
servers that are used. 

The rest of the paper is organized as follows. 
Section 2 presents the design and architecture of 
the debugger. The implementation details are 
described in section 3. In section 4, we outline 
related work in the area of Grid debugging tools. 
The discussion on how our approach meets the 
challenges is given in section 5. Section 6 
presents the conclusion. 
 
2. Design and architecture 
 

The debugger is not designed as a stand-alone 
monolithic program but rather as component-
based software which includes a plug-in or an 
extension to Grid middleware. This design 
simplifies adding a debugging service to existing 

middleware. The debugger is composed of four 
components: the client, the middleware 
compatibility layer, the debug library, and the 
debug back-end. The components and the overall 
architecture are shown in figure 1. 
 

 
Figure 1. Debugger architecture 

 
Debug client. A developer utilizes the 

debugging service by using a debug client that is 
written according to client specification of the 
Grid middleware. It takes advantage of various 
services offered by the middleware such as 
security and notification services. Various APIs in 
the debug library are utilized by the client, which 
can then be implemented as a simple command-
line interface (CLI) program similar to a 
traditional CLI debugger or as a plug-in of an IDE 
such as Eclipse or NetBeans. 

Middleware compatibility layer. The 
compatibility layer is a Grid middleware plug-in 
that wraps the debug library as a Grid debugging 
service. The layer is written according to the 
extension mechanism of the middleware. This 
component acts as a translation layer between 
middleware-specific and generic debug interface. 

Debug library. The main component of the 
system is a debug library with a set of well-
defined debug APIs based on the High 
Performance Debugging Forum (HPDF) standard 
[9]. HPDF was chosen because it is the result of 
significant research on an appropriate command 
set for a parallel debugger, and it serves as a 
sound base for a debug library interface. The API 
defines a generic debug model and a collection of 
methods and objects for Grid application 
debugging. The debug library is middleware-



independent and is linked to the compatibility 
layer. 

HPDF is a collaborative effort in the area of 
parallel and distributed systems with a goal to 
define standards for debugging tools for high-
performance computers. HPDF has defined a 
standard for command-line interface parallel 
debuggers. This standard forms the model of our 
debug API. The API specifies objects and 
methods that correspond to commands in the 
HPDF standard. Not all commands are translated 
into methods since some of them are only peculiar 
to CLI tools. The API includes, for example, 
methods to define process sets, to create/delete 
breakpoints, and to control the execution of 
programs. The API is discussed in more detail in 
section 2.1. 

Debug back-end. The debug back-end 
provides functionalities as defined by the API. It 
is the component that performs the actual low-
level debug operations, for example ptrace system 
calls, on the debugged application. A traditional 
debugger such as GDB can be utilized as the 
back-end debugger by implementing an interface 
to the debug library. 
 
2.1. Debug API 
 

The debug API specifies a debug model, 
methods, and data structures using an object-
oriented paradigm. Classes are defined to 
represent entities such as processes, breakpoints, 
and events. Although the definitions are language-
independent, we adopt Java programming 
language to implement the debug library. The 
design of the API is based on the HPDF standard. 
HPDF commands, for example, focus, defset, 
load, and step are implemented as methods (see 
[15] pages 20 and 21 for definitions of these). 
However, there are several key differences 
between the API and the standard which are 
discussed below. 

CLI-specific features. The HPDF standard 
also defines CLI-specific features such as 
command history and debugger state variables. 
These features relate to the user interface aspect 
of CLI tools and they are not pertinent to API-
based debuggers. The debug API does not keep 
track of command history, however, such 
functions can be implemented in the debug client 

for user convenience. A class, DebugConfig, is 
provided to store configuration parameters. 
Various DebugConfig methods can be called to 
change the behaviour of the API. 

Output and events. In response to user input, a 
debugger typically issues a variety of messages 
through an output stream to a terminal or to a GUI 
window. Instead of a stream, the debug API 
employs an event-based mechanism with a set of 
methods and a queue. The debug client checks the 
event queue at regular intervals to retrieve debug 
messages and output. Alternatively, if the Grid 
middleware supports a notification service, the 
client can utilize it to be notified of any messages 
from the debug library. 

Processes and threads. HPDF recognizes 
three models of parallelism: processes-only, 
threads-only, and multilevel (multi-process and 
multi-thread). However, the current 
implementation of the debug library only supports 
multi-process debugging. Various methods, for 
example, focus, defSet, and undefSet are provided 
that allow programmers to debug multiple 
processes easily. 

Remote debugging. The debug API is 
augmented with a remote debugging feature. 
Although not specified in the HPDF standard, the 
feature gives more flexibility in Grid application 
debugging. The extension allows a remote 
debugger such as GDB/GDBServer to be utilized 
as the back-end debug engine. 

Debug sessions. The debug API is accessed 
through a DebugSession object which represents a 
single debugging session for a user (figure 2). It 
comprises objects for event notification 
(DebugEventManager), for storing configuration 
parameters (DebugConfig), for remote debugging 
(RemoteDebugManager), and for accessing the 
underlying back-end debugger (IDebugger). The 
API does not include any security-related 
functionality such as user identification and 
authorization. Instead, it relies on the security 
service provided by the Grid middleware. Table 1 
lists the currently implemented interfaces. 
 
General Debugger Interface 
DebugVariable[] set() 
DebugVariable set(String var) 
void set(String name, String val) 
void unset(String var) 
void unsetAll() 



 
Process Sets 
void focus(String name) 
void defSet(String name, int[] procs) 
void undefSet(String name) 
void undefSetAll() 
DebugProcess[] viewSet(String name) 
 
Debugger Initialization/Termination 
void load(String prg) 
void load(String prg, int numProcs) 
void run(String[] args) 
void run() 
void detach() 
void exit() 
 
Program Information 
DebugStackFrame[] where() 
 
Data Display and Manipulation 
String print(String expr) 
 
Execution Control 
void step() 
void stepSet(String set) 
void step(int count) 
void stepSet(String set, int count) 
void stepOver() 
void stepOverSet(String set) 
void stepOver(int count) 
void stepOverSet(String set, int 
count) 
void stepFinish() 
void stepFinishSet(String set) 
void halt() 
void haltSet(String set) 
void cont() 
void contSet(String set) 
 
Actionpoints 
void breakpoint(String loc) 
void breakpointSet(String set, String 
loc) 
void breakpoint(String loc, int 
count) 
void breakpointSet(String set, String 
loc, int count) 
void breakpoint(String loc, String 
cond) 
void breakpointSet(String set, String 
loc, String cond) 
void watchpoint(String var) 
void watchpointSet(String set, String 
var) 
DebugActionpoint[] actions() 
DebugActionpoint[] actions(int[] ids) 
DebugActionpoint[] actions(String 
type) 

void delete(int[] ids) 
void delete(String type) 
void disable(int[] ids) 
void disable(String type) 
void enable(int[] ids) 
void enable(String type) 
 
Miscellaneous 
void remote(String host, int port) 
void remoteManagerServe(int infPort, 
int supPort) 
void remoteManagerDestroy() 
boolean 
remoteManagerIsInferiorConnected() 
boolean 
remoteManagerIsSuperiorConnected() 
DebugEventQueue getEventQueue() 

Table 1. Debug API 
 

 
Figure 2. Debug library components 

 
3. Implementation of the debugging service 
 

We have implemented a Grid debugging 
service using two technologies: Globus Toolkit 4 
as the Grid middleware layer and GDB [4] as the 
back-end debug engine. Sections 3.1 and 3.2 give 
more descriptions about GT4 and GDB. Section 
3.3 presents a detailed explanation and outlines a 
sequence of events that happen in a debugging 
session. Section 3.4 discusses two clients of the 
debugging service. 



 
3.1. Globus Toolkit 4 and WSRF 
 

Globus Toolkit has been developed since the 
late 1990s to support the development of service-
oriented distributed applications and 
infrastructures [10]. It enables easy federation of 
distributed resources such as data storage, 
compute clusters, networks, and remote sensors. 
The Globus Toolkit is currently the predominant 
middleware deployed on Grid resources. 

The latest release of the toolkit, Globus 
Toolkit 4 (GT4), employs extensive use of Web 
Services to define its interfaces and component 
structures. Web Services are of special interest 
since they are implementation and platform 
independent, and their role of interconnecting 
various systems is similar to the role of Grid 
computing [11]. However, traditional Web 
Services are stateless which prevents them from 
retaining data between invocations. Various 
workarounds exist such as browser cookies and 
session identifications to enable stateful Web 
Services. Nevertheless, these workarounds are 
non-standard and may not allow communication 
between services. 

WSRF (Web Service Resource Framework) is 
a set of proposed specifications that provides a 
standard-defined way to create stateful Web 
Services [12]. These OASIS-published 
specifications allow Web Services to retain their 
states while communicating with each other or 
with other resources. Globus Toolkit 4 has been 
designed and implemented around WSRF. Its 
services are WSRF-compliant and provide API 
with C and Java bindings. 

On GT4 resources, the actual execution of 
Grid applications is handled by WS-GRAM. WS-
GRAM (Web Services Grid Resource Allocation 
and Management) is the execution manager of 
Globus Toolkit. It is a set of WSRF-compliant 
Web Services that allows users to submit, to 
monitor, and to cancel jobs on Grid resources. 
WS-GRAM itself is not a job scheduler. It utilizes 
the standard fork() system call or a local job 
scheduler, for example, PBS or LSF on the 
resources, but importantly, these are virtualised 
and are not visible to the client processes. 
 

3.2. GDB and GDBServer 
 

The GNU Debugger (GDB) [4][13] is the de 
facto source-level debugger used on many 
computer architectures. It supports programming 
languages such as C, C++, and Fortran. GDB can 
act as a software-controllable back-end debugger 
through the use of GDB/MI which is a machine 
oriented text interface to GDB. The interface 
provides means for a high-level debugger to be 
built on top of GDB. 

An advantage of using GDB as the back-end 
debug engine is the remote debugging feature 
which is handled by an auxiliary program called 
GDBServer. It performs ptrace operations on a 
debugged program on remote machines. Figure 3 
shows the interaction between GDB and 
GDBServer and how they work: 
 

 
Figure 3. GDB and GDBServer interaction 
 
1. A user logs in to a remote machine and invokes 
GDBServer with a program to be debugged. 
GDBServer then waits for a connection from 
GDB. 
2. GDB is started on a programmer’s desktop. 
3. The debugging symbol file of the program is 
loaded in GDB. 
4. The user instructs GDB to connect to the 
remote target using a TCP/IP connection. The 
user specifies the host name and the port number. 
5. The user debugs the remote program as usual 
with GDB as if the debugged program runs on the 
programmer’s desktop. 

Remote debugging using GDBServer has 
some advantages which are listed below: 



• The size of GDBServer is very small and it 
does not overload remote nodes. 

• The debugging symbol resolution is 
performed at the GDB end thus a program on 
a remote machine does not need to be 
compiled with symbols included. However, 
the user must have another copy of the 
program with the debugging symbols on the 
local machine. 

• GDB and GDBServer support debugging of 
cross-compiled applications. This allows the 
user to debug a program on a remote machine 
which has a different computer architecture 
from the user’s desktop. 
Nevertheless, in the Grid environment, 

GDBServer is not suitable for remote debugging 
since it does not address issues such as security, 
job scheduling and hierarchical resources. To 
solve this problem, we propose implementing a 
callback notification in GDBServer. We reversed 
the waiting-connecting mechanism in GDB and 
GDBServer. In this mechanism, it is GDB that 
waits for a callback connection from GDBServer. 
This technique alleviates the need to constantly 
poll the scheduler to check whether an application 
has been started. In a testbed with a hierarchy of 
resources, a programmer does not need to have 
access to intermediate machines, provided that the 
back-end node where GDBServer is running can 
access the programmer's desktop. This technique 
also adds another layer of security since the 
debugging activity is initiated by the application 
rather than by the programmer thus a user cannot 
debug another user's processes. A sample 

debugging session to illustrate this is given in 
section 3.3. 
 
3.3. Debugging a Grid application 
 

An example of debugging a Grid application 
is shown in figure 4. The description of the 
sequence of events that happen in the debugging 
session: 
1. A Grid user submits a job to WS-GRAM. The 
submitted job includes GDBServer and the 
application. Host address and port number details 
for GDBServer are also given as arguments. The 
user must have a valid Globus certificate to access 
WS-GRAM. 
2. WS-GRAM passes the job to a job scheduler. 
Depending on the scheduling criteria, the job may 
not be executed immediately. 
3. Independently, the user invokes a debug client 
that interacts with the Globus compatibility layer 
called WS-DBG. WS-DBG acts as a wrapper for 
the debug library and exposes the library as a 
WSRF-compliant debugging service. The library 
then starts GDB (arrow 6) that waits for a 
connection from GDBServer. The same X.509 
certificate that is used to access WS-GRAM is 
also required to access WS-DBG. 
4. At a scheduled time, the job scheduler executes 
the job. GDBServer is started to debug the 
application. Details of the host address and port 
number are passed to GDBServer. 
5. GDBServer contacts GDB using a TCP/IP 
connection and establishes a two-way 
communication (arrow 7). 

Figure 4. Debugging a Grid application 



6. The debug library communicates with GDB. 
API methods invoked by the user are translated as 
GDB commands using the GDB/MI interface. 
GDB instructs GDBServer (arrow 7) to perform 
the corresponding ptrace operations (arrow 8). 
 
3.4. Debug client 
 

We developed a simple command-line 
interface debug client to test the implementation 
of the debugger. It simply accepts inputs from a 
user and sends them to the debug service. The 
client is linked with GT4 client-side libraries and 
utilizes the security and authentication services of 
the middleware. A sample debugging session is 
given below. 
 
donny@attica:~$ grid-proxy-info 
... 
path     : /tmp/x509up_u1000 
timeleft : 99:19:29  (4.1 days) 
 
donny@attica:~$ java org.globus. 
monash.clients.DebugService.DebugClie
nt https://130.194.224.235:8443/wsrf/ 
services/monash/core/DebugFactoryServ
ice 
Acme Debugger: 
::> load /tmp/hello 
::> waitForExecution 
Inferior not connected yet 
Inferior not connected yet 
... 
Inferior not connected yet 
Ready to debug... 
::> run 
Debugger Out: Running 
Program Out: Hello World 
Program Out: Variable = 10 
::> exit 
Exiting... 
donny@attica:~$  
 

To use the Globus debug service, a user must 
have a valid Globus credential which is shown 
here by the grid-proxy-info command. The user 
loads the symbol file of a program and waits for a 
notification from the debug service. In another 
terminal, the user submits a job to WS-GRAM 
using the globusrun-ws command. The debug 
client is notified when the program is ready to be 
debugged (indicated by the "Ready to debug" 
message). 

In addition, using a program such as Jython 
that integrates Python with Java, the debug 
service can be accessed by clients written in other 
languages as demonstrated below. 
 
donny@attica:~$ jython 
Jython 2.1 on java1.4.2-02 (JIT: 
null) 
Type "copyright", "credits" or 
"license" for more information. 
>>> import PyDebugClient 
:: successfully loaded 
>>> PyDebugClient.debug.debugInit 
(PyDebugClient.DebugInit())   
org.globus.monash.stubs.DebugService_
instance.DebugInitResponse@1 
>>> PyDebugClient.debug.debugLoad 
("/tmp/hello") 
org.globus.monash.stubs.DebugService_
instance.DebugLoadResponse@1 
>>> PyDebugClient.debug.debugBreak 
point("main")    
org.globus.monash.stubs.DebugService_
instance.DebugBreakpointResponse@1 
>>> PyDebugClient.debug.debugRun 
(PyDebugClient.DebugRun())    
org.globus.monash.stubs.DebugService_
instance.DebugRunResponse@1 
>>> PyDebugClient.debug.debugStepOver 
(PyDebugClient.DebugStepOver())    
org.globus.monash.stubs.DebugService_
instance.DebugStepOverResponse@1 
>>> PyDebugClient.debug.debugPrint 
("var") 
'10' 
>>> 
 
4. Related work 
 

There are several debuggers that are designed 
for testing and debugging Grid applications. Some 
examples of them are: p2d2 [3], the metadebugger 
in the Harness framework [5], Net-dbx-G [6], the 
Mercury Monitoring System [7], and PDB [8]. 

The Portable Parallel/Distributed Debugger 
(p2d2) is a project at the NASA Ames Research 
Center that developed a debugger for applications 
running on heterogeneous computational Grids 
[3]. It employs a client-server architecture and 
relies on GDB [4] as the low-level portable 
debugger. Instances of GDB communicate with a 
debug server which is implemented in C++ and 
maintains a collection of C++ objects to represent 
processes and stacks. The server is controlled by a 



graphical user interface, the debug client, that 
allows users to examine the state and to control 
the execution of Grid applications. The current 
implementation of p2d2 only supports Globus 
Toolkit 2 jobs. 

Harness is a metacomputing system that 
defines a simple but powerful architectural model 
to overcome the limited flexibility of traditional 
distributed software frameworks [5]. It consists of 
a kernel and plug-ins that provide various services 
for users. It is implemented in Java to leverage the 
homogenous architecture, the JVM, over 
heterogeneous computer platforms. Harness 
provides a distributed virtual machine for 
execution of metacomputing applications written 
in Java with Remote Method Invocations (RMI). 
A metadebugger has been developed in the 
Harness framework using the Java Platform 
Debug Architecture with remote debugging 
capability. The debugger is closely intertwined 
with the framework and it cannot be used with 
other Grid middleware. 

Net-dbx-G is a web-based debugger for 
Message Passing Interface (MPI) programs 
executing on Grid resources [6]. It uses Java 
applets as the user interface and GDB [4] as the 
back-end debugger. It supports Globus Toolkit 2 
(GT2) middleware with MPICH-G2 that provides 
the MPI programming library. Debugging an 
application requires the executable to be compiled 
with the Net-dbx-G instrumentation library. When 
the application is executed, an initialization 
method in the library notifies the debug client and 
spawns a child GDB process to debug the parent 
process. The user then controls GDB from a web 
browser using the Java applets. 

The Mercury Monitoring System which is 
developed as part of the GridLab project is a 
generic Grid monitoring framework [7]. It 
provides support mainly for application 
monitoring, however, the recent release of 
Mercury allows users to perform remote 
debugging. It employs GDB and GDBServer [4]. 
GDBServer is used as the debug server on Grid 
nodes with GDB as the user interface on a 
programmer's desktop. Debugging is performed 
by sending a message to the Mercury monitoring 
library that is compiled into the application. The 
library then forks GDBServer and instructs it to 
attach to the debugged process. The developer 

controls the debug server using GDB from the 
desktop. 

PDB is an implementation of the pervasive 
debugging approach [8]. It leverages the Xen 
Virtual Machine Monitor to virtualise the system 
resources used by a debugged application. The 
virtualisation allows a user to control and to 
inspect the complete state of the application and 
the resources including their low-level details 
such as processor instructions, system timers, and 
thread schedulers. By using Xen to virtualise Grid 
resources, users can deterministically debug Grid 
applications. However, this deterministic 
debugging technique is difficult to attain for 
applications that need to be run on a large-scale 
distributed system. 

Different to all the debuggers described, our 
debugger is designed as a debug library with high-
level application programming interfaces (API) 
suitable for debugging Grid applications. It has a 
layered and modular architecture that allows it to 
be plugged into any Grid middleware and to be 
used with any debug back-ends. Our approach 
simplifies the development process by not 
requiring the debugged applications to be 
compiled with an instrumentation/monitoring 
library. 
 
5. Meeting the challenges 
 

Rather than developing, yet again, a debugger 
for a particular Grid middleware, we have 
designed and implemented a modular library that 
can accommodate different Grid middleware and 
different debug back-ends. This design simplifies 
extending existing middleware with a debugging 
service and leverages existing debuggers. 
Furthermore, the library can be utilized by other 
tools. For example, profilers and high level tracers 
can be built on top the library. In addition, tools 
for enforcing software contracts (pre and post 
conditions) [16] for Grid applications could be 
implemented with ease by leveraging the APIs. 

The current implementation of a Grid 
debugging service utilizes Globus Toolkit 4 as the 
middleware layer and GDB as the debug engine. 
A discussion on how this service meets the 
challenges listed in section 1 is given below. 

Job scheduling. By implementing a callback 
mechanism in the service, the task of initiating a 



debugging session is inherent in the way an 
application is initiated. This mechanism alleviates 
the need for a programmer to constantly poll the 
job scheduler to check whether the application has 
been started. 

Hierarchical resources. The callback 
mechanism eliminates the need for the 
programmer to access intermediate resources 
(firewall server, gateway machine, or front node) 
to debug an application. The programmer is 
required, however, to wait for an incoming 
connection from the execution node where the 
debugged application is running and this is 
managed by the new framework. 

Security. Our debugging service is 
implemented as a library that leverages the 
security and authentication services provided by 
Grid middleware. It does not require changes to 
the Grid security policy in place. In addition, 
since the debugging activity is initiated by the 
application rather than by the programmer, a user 
cannot arbitrarily debug another user's processes. 

Heterogeneity. The issue of heterogeneity is 
addressed by proposing and implementing 
standard methods and API that could support a 
number of tools and middleware for Grid 
application debugging. 

A debugger for programs running on 
heterogeneous architectures must support various 
data representations that occur because of 
different architectural features such as byte 
ordering and word length. A significant body of 
research has been conducted by our group on an 
architecture independent data format (AIF) 
[19][20][21]. When data is converted to AIF, it is 
labeled with a format descriptor string that 
describes the layout and the size of the data. AIF 
facilitates means for addressing machine 
heterogeneity in debugging Grid applications. 

We plan to adopt the Grid debugging service 
described in this paper as part of our integrated 
framework for Grid application development [17]. 
In addition, because the library is modular, it 
could be adopted as the underlying debugging 
service for other Grid tools such as g-Eclipse [18]. 
 
6. Conclusion 
 

This research paper presents the design of a 
Grid debugging service and an implementation of 

the service in the form of a WSRF-compliant 
debugger for Grid applications. A debug library 
with a set of well-defined debug API based on the 
High Performance Debugging Forum (HPDF) 
standard is also described. While a complete 
service using Globus Toolkit 4 and GDB has been 
implemented, further testing and implementation 
using other Grid middleware and debug back-ends 
need to be conducted. 
 
7. References 
 
[1] Foster, I., Kesselman, C. and Tuecke, S. 
(2001) The anatomy of the grid: enabling scalable 
virtual organizations. International Journal of 
Supercomputer Applications, 15, 200-222. 
[2] Balle, S. M. and Hood, R. T., GGF UPDT 
User Development Tools Survey, March 2004. 
[3] Hood, R. and Jost, G. A Debugger for 
Computational Grid Applications. Heterogeneous 
Computing Workshop 2000: 262-270. 
[4] GDB: The GNU Debugger Home Page, 
http://www.gnu.org/software/gdb/gdb.html. 
[5] Lovas, R. and Sunderam, V. Debugging of 
Metacomputing Applications. 
Proceedings of the 16th International Parallel and 
Distributed Processing Symposium (IPDPS-
JPDC), Fort Lauderdale, FL, USA, 2002. 
[6] Neophytou, P., Neophytou, N., Evripidou, P. 
Net-dbx-g: A Web-based Debugger of MPI 
Programs Over Grid Environments, Cluster 
Computing and the Grid, 2004. CCGrid 2004. 
IEEE International Symposium, 19-22 April 
2004, Pages:35 - 42. 
[7] Gombas, G., Marosi, C. A., and Balaton, Z. 
Grid Application Monitoring and Debugging 
Using the Mercury Monitoring System. EGC 
2005, European Grid Conference, Amsterdam, 
The Netherlands, February 14-16, 2005: 193-199. 
[8] Mehmood, R., Crowcroft, J., Hand, S., and 
Smith, S. Grid-Level Computing Needs Pervasive 
Debugging. Proceedings of Grid 2005, 6th 
IEEE/ACM International Workshop on Grid 
Computing Seattle, Washington, USA, November 
2005. 
[9] High Performance Debugging Forum's HPD 
Version 1 Standard: Command Interface for 
Parallel Debuggers, (Rev. 2.1), 1998. 
http://www.ptools.org/hpdf/draft. 



[10] Foster, I. Globus Toolkit Version 4: Software 
for Service-Oriented Systems. IFIP International 
Conference on Network and Parallel Computing, 
Springer-Verlag LNCS 3779, pp 2-13, 2005. 
[11] Atkinson, M. Rationale for choosing the 
Open Grid Services Architecture, in Grid 
Computing: Making the Global Infrastructure a 
Reality, Wiley, 2003. 
[12] The WS-Resource Framework, 
http://www.globus.org/wsrf/specs/ws-wsrf.pdf. 
[13] Debugging with GDB, 
http://sources.redhat.com/gdb/current/onlinedocs/
gdb.html. 
[14] Joseph, J. and Fellenstein, C., Grid 
Computing, Prentice Hall, 2004. 
[15] Francioni, J and Pancake, C., High 
Performance Debugging Standards Effort, 
http://web.engr.oregonstate.edu/~pancake/papers/
HPDebugForum.pdf 
[16] Meyer, B., Design by Contract, in Advances 
in Object-Oriented Software Engineering, eds. D. 
Mandrioli and B. Meyer, Prentice Hall, 1991, pp. 
1-50 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[17] Kurniawan, D., Abramson, D., Worqbench: 
an Integrated Framework for e-Science 
Application Development. e-Science meeting 
2006, Netherlands, December 2006. 
[18] g-Eclipse – Access the Grid, 
http://www.geclipse.org. 
[19] Abramson, D.A., Sosic, R. and Watson, G., 
Implementation Techniques for a Parallel Relative 
Debugger, International Conference on Parallel 
Architectures and Compilation Techniques - 
PACT '96, October 20-23, 1996, Boston, 
Massachusetts, USA. 
[20] Watson, G. and Abramson, D., Relative 
Debugging For Data Parallel Programs: A ZPL 
Case Study, IEEE Concurrency, Vol 8, No 4, 
October 2000, pp 42 – 52. 
[21] Abramson, D., Finkel, R., Kurniawan, D., 
Kowalenko, V. and Watson, G., Parallel Relative 
Debugging with Dynamic Data Structures, 16th  
International Conference on Parallel and 
Distributed Computing Systems, August 13 - 15, 
2003 Reno, Nevada, USA.  
 


