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Abstract

The integration of multiple predictors promises higher

prediction accuracy than the accuracy that can be obtained

with a single predictor. The challenge is how to select the

best predictor at any given moment. Traditionally, multi-

ple predictors are run in parallel and the one that generates

the best result is selected for prediction. In this paper, we

propose a novel approach for predictor integration based

on the learning of historical predictions. It uses classifica-

tion algorithms such as k-Nearest Neighbor (k-NN) based

supervised learning to forecast the best predictor for the

workload under study. Then only the forecasted best pre-

dictor is run for prediction. Our experimental results show

that it achieved 20.18% higher best predictor forecasting

accuracy than the cumulative MSE based predictor selec-

tion approach used in the popular Network Weather Ser-

vice system. In addition, it outperformed the observed most

accurate single predictor in the pool for 44.23% of the per-

formance traces.

1 Introduction

Grid computing [11] enables entities to create a Vir-

tual Organization (VO) to share their computation resources

such as CPU time, memory, network bandwidth, and disk

bandwidth. Predicting the dynamic resource availability is

critical to adaptive resource scheduling. However, deter-

mining the most appropriate resource prediction model a

priori is difficult due to the multi-dimensionality and vari-

ability of system resource usage. First, the applications may

exercise the use of different type of resources during their

executions. Some resource usages such as CPU load may be

relatively smoother whereas others such as network band-

width are bustier. It is hard to find a single prediction model
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which works best for all types of resources. Second, dif-

ferent applications may have different resource usage pat-

terns. The best prediction model for a specific resource of

one machine may not wok best for another machine. Third,

the resource performance fluctuates dynamically due to the

contention created by competing applications. Indeed, in

the absence of a perfect prediction model, the best predictor

for any particular resource may change over time.

This paper introduces a Learning Aided Adaptive Re-

source Predictor (LARPredictor), which can dynamically

choose the best prediction model suited to the workload

at any given moment. By integrating the prediction results

generated by the best predictor of each moment during the

application run, the LARPredictor can outperform any sin-

gle predictor in the pool. It differs from the traditional mix-

of-expert resource prediction approach in that it does not

require running multiple prediction models in parallel all

the time to identify the best predictors. Instead, the Princi-

pal Component Analysis (PCA) and classification algorithm

such as k-Nearest Neighbor (k-NN) are used to forecast the

best prediction model from a pool based on the monitoring

and learning of the historical resource availability and the

corresponding prediction performance.

The LARPredictor is inspired by the VMPlant [19]

project, which provides automated cloning and configura-

tion of Virtual Machines (VMs). The virtual machines are

highly configurable in terms of hardware and software. It is

possible to adapt the machine configurations to the chang-

ing workload to exploit better resource allocation. The

learning aided adaptive resource performance prediction

can be used to support dynamic VM provisioning by pro-

viding accurate prediction of the resource availability of the

host server and the resource demand of the applications that

are reflected by the hosting virtual machines.

Our experimental results based on the analysis of a set of

virtual machine trace data show:

1. The best prediction model is workload specific. In the

absence of a perfect prediction model, it is hard to find a

single predictor which works best across virtual machines



which have different resource usage patterns.

2. The best prediction model is resource specific. It is

hard to find a single predictor which works best across dif-

ferent resource types.

3. The best prediction model for a specific type of re-

source of a given VM trace varies as a function of time.

The LARPredictor can adapt the predictor selection to the

change of the resource consumption pattern.

4. In the experiments with a set of trace data, The

LARPredictor outperformed the observed single best pre-

dictor in the pool for 44.23% of the traces and outperformed

the cumulative MSE based prediction model used in the

Network Weather Service system (NWS) [30] for 66.67%

of the traces. It has the potential to consistently outperform

any single predictor for variable workloads and achieve

18.63% lower MSE than the model used in the NWS.

The rest of the paper is organized as follows: Section 2

gives an overview of related work. Section 3 briefly intro-

duces virtual machine concepts and presents the prototype

of virtual machine resource prediction. Section 4 describes

the linear time series prediction models used to construct

the LARPredictor and Section 5 describes the learning tech-

niques used for predictor selection. Section 6 details the

work flow of the learning aided adaptive resource predic-

tor. Section 7 discusses the experimental results. Section 8

summarizes the work and describes future direction.

2 Related Work

Time series analysis has been studied in many areas such

as financial forecasting [22], biomedical signal processing

[21], and geoscience [5]. In this work, we focus on the time

series modeling for computer resource performance predic-

tion.

In [6] and [7], Dinda et al. conducted extensive study

of the statistical properties and the predictions of host load.

Their work indicates that CPU load is strongly correlated

over time, which implies that history-based load prediction

schemes are feasible. They evaluated the predictive power

of a set of linear models including autoregression (AR),

moving average (MA), autoregression integrated moving

average (ARIMA), autoregression fractionally integrated

moving average (ARFIMA), and window-mean models.

Their results show that the AR model is the best in terms of

high prediction accuracy and low overhead among the mod-

els they studied. Based on their conclusion, the AR model is

included in our predictor pool to leverage its performance.

To improve the prediction accuracy, various adaptive

techniques have been exploited by the research community.

In [32], Yang et al. developed a tendency-based prediction

model that predicts the next value according to the tendency

of the time series change. Some increment/decrement value

are added/subtracted to the current measurement based on

the current measurement and some other dynamic informa-

tion to predict the next value. Zhang et al. improved the per-

formance of tendency-based model by using a polynomial

fitting method to generate predictions based on the data sev-

eral steps backward [35]. In addition, in [20], Liang et. al

proposed a multi-resource prediction model that uses both

the autocorrelation of the CPU load and the cross corre-

lation between the CPU load and free memory to achieve

higher CPU load prediction accuracy. Vazhkudai et al.

[27][28] used linear regression to predict the data transfer

time from network bandwidth or disk throughput.

The Network Weather Service (NWS) [30] performs pre-

diction of both network throughput and latency for host ma-

chines distributed with different geographic distances. Both

the NWS and the LARPredictor use the mix-of-expert ap-

proach to select the best predictor at any given moment.

However, they differ from each other in the way of best pre-

dictor selection. The prediction model used in the NWS

system runs a set of predictors in parallel to track their pre-

diction accuracies. A cumulative error measurement, Mean

Square Error (MSE), is calculated for each predictor. The

one that generates the lowest prediction error for the known

measurements is chosen to make a forecast of future mea-

surement values. Section 6 shows that the LARPredictor

only uses parallel prediction during the training phase. In

the testing phase, it uses the PCA and k-NN classifier to

forecast the best predictor for the next value based on the

learning of historical prediction performances. Only the

forecasted best predictor is run to predict the next value.

The mix-of-expert approach has been applied to the text

recognition and categorization area. The combination of

multiple classifiers has been proved to be able to increase

the recognition rate in difficult problems when compared

with single classifier [15]. Different combination strategies

such as weighted voting and probability-based voting and

dimensionality reduction based on concept indexing are in-

troduced in [16].

3 Virtual Machine Resource Prediction

Overview

This section gives an overview of virtual machine re-

source prediction, including the virtual machine concepts

in the context of resource prediction and the resource pre-

diction prototype.

3.1 Virtual Machine

A “classic” virtual machine (VM) enables multiple inde-

pendent and isolated operating systems to run on one phys-

ical machine, efficiently multiplexing system resources of

the host machine [14]. It provides a secure and isolated en-

vironment for application execution [10]. Compared with
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a physical machine, it is highly customizable in terms of

hardware (such as CPU, memory, and disk space) and soft-

ware (such as operating system and applications) and can

be easily checkpointed and migrated to achieve host load

balancing [3].

In a classic virtual machine, virtualization software,

which is often referred to as the Virtual Machine Monitor

(VMM), is placed between the underlying hardware (host)

and conventional software (guest). The VMM manages

both the hardware resources and the guest operating sys-

tem (OS) and application programs compiled for that oper-

ating system. When the guest OS performs certain opera-

tions, such as a privileged instruction that directly involves

the shared hardware resources, the operation is intercepted

by the VMM, checked for correctness and performed by the

VMM on behalf of the guest machine [25]. Thus monitor-

ing of the guest VM’s usage of host hardware resources can

naturally be done at the VMM layer. When an application

is scheduled to run on a dedicated virtual machine, which is

called the application-centric VM, the VM guest’s resource

performance metrics, such as CPU load, memory usage, I/O

activity, and network bandwidth utilization, collected by the

VMM reflect the application resource usage and can be used

to characterize the application workload [33][34]. In addi-

tion, the prediction of the VM resource usage reflects the

future application resource demand.

Our learning based adaptive predictor can be generally

used for the prediction of any time series including the VM

resource performance. The prototype introduced in Sec-

tion 3.2 can work with different types of virtual machines

such as Xen [9] and VMware [1]. The prediction of the

resource performance of VMs in a given time frame can

be used to guide the dynamic VM provisioning in the VM

management systems such as the VMPlant [19], the Virtual

Workspace [18], and the Xenoserver [23].

3.2 Virtual Machine Resource Prediction
Prototype

Our virtual machine resource prediction prototype, illus-

trated in Figure 1, models how the VM performance data

are collected and used to predict the value for future time to

support resource allocation decision-making.

A performance monitoring agent is installed in the

VMM. In our implementation, VMware’s ESX virtual ma-

chines are used to host the application execution and the

vmkusage tool [29] of ESX is used to monitor and collect

the performance data of the VM guests and host from the

/proc of the host server. The tool samples every minute,

and updates its data every five minutes with an average of

the one-minute statistics over the given five-minute inter-

val. The collected data is stored in a Round Robin Database

(RRD), the performance database. Table 1 shows the list of
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Figure 1. Virtual Machine Resource Usage

Prediction Prototype

The monitor agent, which is installed in the Virtual Machine Monitor

(VMM), collects the VM resource performance data and stores them in the

round robin VM Performance Database. The profiler extracts the perfor-

mance data of a given time frame for the VM indicated by VMID and devi-

ceID. The LARPredictor select the best prediction model based on learning

of historical predictions, predicts the resource performance for time t+1,

and stores the prediction results in the prediction database. The prediction

results can be used to support the resource manager to perform dynamic

VM resource allocation. The Performance Quality Assuror (QA) audits
the LARPredictor’s performance and orders re-training for the predictor if

the performance drops below a predefined threshold.

performance features under study in this work.

The profiler retrieves the VM performance data, which

are identified by vmID, deviceID, and a time window, from

the RRD. The data of each VM device’s performance metric

form time series (xt−m+1, · · · , xt) with an identical inter-

val, where m is the data retrieval window size. The retrieved

performance data with the corresponding time stamps are

stored in the prediction database. The [vmID, deviceID,

timeStamp, metricName] forms the combinational primary

key of the database.

The LARPredictor takes the time series performance

data (yt−m, · · · , yt−1) as inputs, selects the best prediction

model based on the learning of historical prediction results,

and predicts the resource performance ŷt of future time.

The detail description of the LARPredictor’s work flow is

given in Section 6. The predicted results are stored in the

prediction DB and can be used to support the resource man-

ager’s dynamic VM provisioning decision-making.

The Prediction Quality Assuror (QA) is responsible for

monitoring the LARPredictor’s performance in terms of

MSE. It periodically audits the prediction performance by

calculating the average MSE of historical prediction data

stored in the prediction DB. When the average MSE of the

audit window exceeds a predefined threshold, it directs the

LARPredictor to re-train the predictors and the classifier us-

ing recent performance data stored in the database.

3



Performance Description

Metrics

CPU Ready The percentage of time that the virtual

machine was ready but could not get

scheduled to run on a physical CPU.

VCPUx The percentage of physical CPU

resources used by a virtual CPU.

(ex.VCPU0)

Mem Size Current amount of memory in bytes

the virtual machine has.

Mem Swap Amount of swap space in bytes used

by the virtual machine.

Net RX/TX The number of packets and the

MBytes per second that are

transmitted and received by a NIC.

Disk RD/WR The number of I/Os and KBytes

per second that are read from and

written to the disk.

Table 1. Performance metric list

4 Time Series Models for Resource Perfor-

mance Prediction

Time series is defined as an ordered sequence of val-

ues of a variable at equally spaced time intervals. A gen-

eral linear process {Zt} is one that can be represented as a

weighted linear combination of the present and past terms

of a white noise process:

Zt = at + Ψ1at−1 + Ψ2at−2 + · · · (1)

where {Zt} denotes the observed time series, {at} denotes

an unobserved white noise series, and {Ψi} denotes the

weights. In this paper, performance snapshots of virtual

machine’s resources including CPU, memory, disk, and net-

work bandwidth are taken periodically to form the time se-

ries {Zt} under study.

Time series analysis accounts for the fact that those data

points taken over time may have an internal structure (such

as autocorrelation, trend, or seasonal variation) that should

be accounted for. The purpose of time series analysis is

generally two-fold: to understand or model the stochastic

mechanism that gives rise to an observed series and to pre-

dict or forecast future values of a series based on the his-

tory of that series [4]. Time series analysis techniques have

been widely applied to forecasting in many areas such as

economic forecasting, sales forecasting, stock market anal-

ysis, communication traffic control, and workload projec-

tion. In this work, simple time series models, such as

LAST, sliding-window average (SW AVG), and autoregres-

sive (AR), are used to construct the LARPredictor to sup-

port online prediction. However, the LARPredictor proto-

type may be generally used with other prediction models

studied in [7][30][32].

LAST model: The LAST model predicts all future values

to be the same as the last measured value:

Zt = Zt−1 (2)

SW AVG model: The sliding-window average model pre-

dicts the future values by taking the average over a fixed-

length history:

Zt =
1

m

t−1
∑

i=t−m

Zi (3)

AR model: A pth-order autoregressive process Zt can be

represented as follows:

Zt = Ψ1Zt−1 + Ψ2Zt−2 + · · · + ΨpZt−p + at (4)

The current value of the series Zt is a linear combination

of the p latest past values of itself plus a term at, which

incorporates everything new in the series at time t that is

not explained by the past values. Yule-Walker technique is

used in the AR model fitting in this work.

Generally, LAST performs better for smooth trace data

and AR performs better for peaky data. In this paper, an

approach to dynamically construct a resource predictor us-

ing multiple predictors such as LAST, AR, and SW AVG is

proposed to predict the VM resource performance.

The prediction performance is measured in mean

squared error (MSE) [17], which is defined as the average

squared difference between independent observations and

predictions from the fitted equation for the corresponding

values of the independent variables.

MSE(θ̂) = E[(θ̂ − θ)2] (5)

where θ̂ is the estimator of a parameter θ in a statistical

model.

5 Algorithms for Prediction Model Selection

In the absence of a perfect generation model, the best

resource prediction model varies with the machine work-

load. Learning algorithms are used to learn the relationship

between the workload and suited prediction model. In this

work, classification algorithms are used to forecast the best

prediction model for a given workload based on the learning

of historical predictions.

In this work, the k-NN classifier is used for best predictor

selection. To reduce the dimension of the classification fea-

ture space, the Principal Component Analysis (PCA) tech-

nique is used. While we have chosen to use the k-NN al-

gorithm due to its prior success in a large number of clas-

sification problems, such as handwritten digits and satellite

image scenes, our methodology may be generally used with

other types of classification algorithms.
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5.1 k-Nearest Neighbor

The k-Nearest Neighbor (k-NN) classifier is memory-

based. Its training data consist of the N pairs

(x1, p1), · · · , (xN , pN ) where pi is a class label taking val-

ues in 1, 2, · · · , P . In this work, the P represents the num-

ber of prediction models in the pool. The training data are

represented by a set of points in the feature space, where

each point xi is associated with its class label pi. Classi-

fication of testing data xj is made to the class of the clos-

est training data. For example, given a test data xj , the k

training data xr, r = 1, · · · , k closest in distance to xj are

identified. The test data is classified by using the majority

vote among the k (an odd number) neighbors.

Since the features under study, such as CPU percent-

age and network received bytes/sec, have different units of

measure, all features are normalized to have zero mean and

unit variance [26]. In this work, “closest” is determined by

Euclidean distance:

dij = ‖xi − xj‖ . (6)

The k-NN classifier can be applied to different time se-

ries without modification. To address the problem associ-

ated with high dimensionality, various dimension reduction

techniques can be used in the data preprocessing.

5.2 Principal Component Analysis

The Principal Component Analysis (PCA) [8][26]is a

linear transformation representing data in a least-square

sense. The principal components of a set of data in ℜp pro-

vide a sequence of best linear approximations to those data,

of all ranks q ≤ p.

Denote the observations by x1, x2, · · · , xN , and the para-

metric representation of the rank-q linear model is as fol-

lows:

f(λ) = µ + Vqλ, (7)

where µ is a location vector in ℜp, Vq is a p × q ma-

trix with q orthogonal unit vectors as columns, which are

called eigenvectors, and λ is a vector of q parameters, which

are called eigenvalues. These eigenvectors are the principal

components. The corresponding eigenvalues represent the

contribution to the variance of data. Often there will be just

a few (= k) large eigenvalues and this implies that k is the

inherent dimensionality of the subspace governing the data.

When the k largest eigenvalues of q principal components

are chosen to represent the data, the dimensionality of the

data reduces from q to k.

In this work, the PCA is used to reduce the prediction

input data dimensions. This helps to reduce the computing

intensity of the subsequent classification process.
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Figure 2. Learning Aided Adaptive Resource

Predictor Workflow

The input data are normalized and framed with the prediction window size
m. The Principal Component Analysis (PCA) is used to reduce the di-

mension of the input data from the window size m to n(n < m). All

prediction models are run in parallel in the training phase to identify the

best predictor for each set of training data. The classifier is used to forecast

the best predictor for the testing data based on the knowledge gained from

the training data. Only the best predictor is used to predict the future value

of the testing data.

6 Learning Aided Adaptive Resource Predic-

tion

This section describes the work flow of the Learning

Aided Adaptive Resource Predictor (LARPredictor) illus-

trated in Figure 2. The prediction consists of two phases:

a training phase and a testing phase. During the train-

ing phase, the best predictors for each set of training data

are identified using the traditional mix-of-expert approach.

During the testing phase, the classifier forecasts the best

predictor for the test data based on the knowledge gained

from the training data and historical prediction perfor-

mance. Then only the selected best predictor is run to

predict the resource performance. Both phases include the

data pre-processing and the Principal Component Analysis

(PCA) process.

The features under study in this work, as shown in Table

1, include CPU, memory, network bandwidth, and disk I/O

usages. Figure 3 illustrates how the features are processed

to form the prediction database. Since the features have

different units of measure, a data pre-processor was used to

normalize the input data with zero mean and unit variance.

The normalized data are framed according to the prediction

window size to feed the PCA processor.

The PCA processor takes the pre-processed performance
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First, the u training data X1×u is normalized to X′

1×u
and subsequently framed to X′

(u−m+1)×m
according to the predictor order m. The PCA

processor is used to reduce the dimension of each set of training data from m to n before prediction. Then the predictors are run in parallel with the

inputs X′′

(u−m+1)×n
and the one that gives the smallest MSE is identified as the best predictor to be associated with the corresponding training data in the

prediction database. The dimension reduction of the testing data is similar to the training data’s and is not shown here.

data as inputs and conducts the linear transformation of the

data to select the principal components based on the prede-

fined minimal fraction variance. For example, in the train-

ing phase, the PCA processor takes the pre-processed per-

formance data X′

(u−m+1)×m as inputs, where u is the to-

tal number of input data and m is the prediction window

size. Then it conducts linear transformation of the input

data and selects the first n (n < m) principal components to

project the data into a n-dimensional feature space. In our

implementation, the minimal fraction variance was set to

extract exactly two principal components (n = 2). There-

fore, at the end of process, the input data dimension gets

reduced from the prediction window size m to n and the

vector X′′

(u−m+1)×n, is generated.

6.1 Training Phase

The training phase mainly consists of two processes:

Prediction model fitting and best predictor identification.

The training data with their corresponding best predictors

are used for the k-NN classification in the testing phase.

The LAST and SW AVG models do not involve any un-

known parameters. They can be used for predictions di-

rectly. The parametric prediction models such as the AR

model, which contain unknown parameters, require model

fitting. The model fitting is a process to estimate the un-

known parameters of the models. The Yule-Walker equa-

tion [4] is used in the AR model fitting in this work.

For window based prediction models, such as SW AVG

and AR, the PCA algorithm is applied to reduce the input

data dimension. The naive mix-of-expert approach is used

to identify the best predictor pi for each set of pre-processed

training data (exp.(x′

ix
′

i+1 . . . x′

i+m−1)). All prediction

models are run in parallel with the training data and the one

which generates the least MSE of prediction is identified as

the best predictor pi, which is a class label taking values in

(LAST, AR, SW AVG) to be associated with the training

data. The u pairs of PCA-processed training data and the

corresponding best predictors [(x′′

1 , p1), · · · , (x
′′

u, pu)] form

the training data of the classifiers.

As a non-parametric classifier, the k-NN classifier does

not have an obvious training phase. Its major task of this

phase is to label the training data with class definitions.

6.2 Testing Phase

Similar to the training phase, the testing data are normal-

ized using the normalization coefficient derived from the

training phase and framed with the prediction window size

m. Then the PCA is used to reduce the dimension of the

preprocessed testing data
(

y′

t−my′

t−m+1 . . . y′

t−1

)

from m

to n.

In the testing phase of k-NN classifier based LARPre-

dictor, the Euclidean distances between all PCA–processed

test data
(

y′′

t−n y′′

t−n+1 . . . y′′

t−1

)

and all training data

X′′

(u−1+m)×n in the reduced n dimensional feature space

are calculated and the k (k = 3 in our implementation)

training data which have the shortest distances to the testing

data are identified. The majority vote of the k nearest neigh-

bors’ best predictor will be chosen as the best predictor to

predict ŷ′

t based on the (y′

t−m, y′

t−m+1, · · · , y
′

t−1) in case

of the AR model or the SW AVG model and ŷ′

t = y′

t−1 in

case of the LAST model. The prediction performance can

be obtained by comparing the predicted value ŷ′

t with the

normalized observed value y′

t.

The testing phase differs from the training phase in that

it does not require running multiple predictors in parallel to

identify the one which is best suited to the data and gives

the smallest MSE. Instead, it forecasts the best predictor

by learning from historical predictions. The reasoning here

is that these nearest neighbors’ workload characteristics are

closest to the testing data’s and the predictor that works best

for these neighbors should also work best for the testing

data.

7 Empirical Evaluation

We have implemented a prototype for the LARPredic-

tor including Perl and Shell scripts of the profiler to ex-

tract and profile the performance data from the round robin
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performance database, and a Matlab implementation of the

LARPredictor. This section evaluates the prediction per-

formance of the LARPredictor using traces of five virtual

machines as follows:

VM1: Hosts a web server, Globus GRAM/MDS and

GridFTP services, and a PBS head node.

VM2: Hosts a Linux-based port-forwarding proxy for

VNC sessions.

VM3: Hosts a WindowsXP based calendar.

VM4: Hosts a web server, a list server, and Wiki server.

VM5: Hosts a web server.

These virtual machines were hosted by a physical ma-

chine with an Intel(R) Xeon(TM) 2.0GHz CPU, 4GB mem-

ory, and 36GB SCSI disk. VMware ESX server 2.5.2 was

running on the physical host. The vmkusage tool was run

on the ESX server to collect the resource performance data

of the guest virtual machines every minute and store them

in a round robin database. The profiler was used to extract

the data with given VMID, DeviceID, performance metric,

starting and ending time stamps, and intervals. In this ex-

periment, the performance data of a 24-hour period with

5-minute intervals were extracted for VM2, VM3, VM4,

and VM5. The data of a 7-day period with 30-minute in-

tervals of VM1 were extracted. During the 7-day period,

total 310 jobs were executed varying with a mix of 93.55%

short running jobs (1-2 seconds), 3.87% medium running

jobs (2-10 minutes), and 2.58%long running jobs (45-50

minutes). The data of a given VMID, DeviceID, and per-

formance metrics form a time series under study. The time

series data were normalized with zero mean and unit vari-

ance.
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Figure 5. Best Predictor Selection for Trace

VM2 PktIn
Predictor Class: 1 - LAST, 2 - AR, 3 - SW AVG

7.1 Best Predictor Selection

This set of experiments illustrates the adaptive predic-

tor selection of the LARPredictor. The k-NN classifier was

used to forecast the best predictor among the LAST, AR,

and SW-AVG for the workload understudy. Only the se-

lected best predictor is used for performance prediction.

VM2 was used in the experiments. Figure 4 shows the pre-

dictor selections for CPU fifteen minute load average during

a 12 hour period with a sampling interval of 5 minutes. The

top plot shows the observed best predictor by running three

prediction models in parallel. The middle plot shows the

predictor selection of the LARPredictor and the bottom plot

shows the cumulative MSE based predictor selection used

in the NWS. Similarly the predictor selection results of the

trace data of network packets in per second is shown in Fig-

ure 5.

These experimental results show that the best prediction

model for a specific type of resource of a given trace varies

as a function of time. In the experiment, the LARPredic-

tor can better adapt the predictor selection to the chang-

ing workload than the cumulative MSE based approach pre-

sented in the NWS. The LARPredictor’s average best pre-

dictor forecasting accuracy of all the performance traces of

the five virtual machines is 55.98%, which is 20.18% higher

than the accuracy achieved by the cumulative MSE based

predictor used in the NWS for the workload studied.

7.2 VM Performance Trace Prediction

This set of experiments is used to check the prediction

performance of the LARPredictor. Section 7.2.1 shows the
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P-LAR LAR LAST AR SW

CPU_usedsec 0.6976 0.9508 1.1436 0.9456 1.0352

CPU_ready 0.6775 0.9632 1.1699 0.9579 1.0333

Memory_size 0.2071 0.2389 0.2298 0.2379 0.4883

Memory_swapped 0.2071 0.2386 0.2298 0.2379 0.4883

NIC1_received 0.3981 0.5436 1.836 0.5436 0.9831

NIC1_transmitted 0.3776 0.5845 1.8236 0.5845 0.9829

NIC2_received 0.9788 0.9912 1.4392 0.9966 1.0397

NIC2_transmitted 0.3983 0.5463 1.8406 0.5463 0.9843

VD1_read 0.9062 1.0215 1.2849 0.9754 1.0511

VD1_write 0.7969 0.9587 1.1905 0.9473 1.0566

VD2_read 1 1.2156 1.4191 1.1536 1.035

VD2_write 0.662 0.9931 1.1572 0.9929 1.0292

Perf.Metrics

Predictors

Table 2. Normalized Prediction MSE Statis-
tics for Resources of VM1

duration = 168 hours, interval = 30 minutes, prediction order = 16

prediction accuracy of the k-NN based LARPredictor and

all the predictors in the pool. Section 7.2.2 benchmarks the

performance of the LARPredictors and the cumulative MSE

based prediction model used in the NWS.

In the experiments, ten-fold cross validation were per-

formed for each set of time series data. A time stamp was

randomly chosen to divide the performance data of a vir-

tual machine into two parts: 50% of the data was used to

train the LARPredictor and the other 50% was used as test

set to measure the prediction performance by calculating its

prediction MSE.

7.2.1 Performance of k-NN based LARPredictor

The k-NN algorithm was used for classification in this ex-

periment. In the training phase, the training data were used

to derive the regression coefficients of the AR model. In

addition, the three prediction models were run in parallel.

The prediction error was calculated by comparing the pre-

dicted value with the observed value. For each prediction,

the model that gave the smallest absolute value of the error

was identified as the best predictor to be associated with the

corresponding training data.

In the testing phase, the 3NN classifier was used to fore-

cast the best predictors of the testing data. First, for each

set of testing data of the prediction window size, the PCA

was applied to reduce the data dimension from m, which

was 5 or 16, to n = 2 in this experiment. Then the Eu-

clidean distances between the test data and all the training

data in the reduced feature space were calculated. The three

training data which had the shortest distances to the testing

data were identified and the majority vote of their associ-

ated best predictors was forecasted to be the best predictor

of the testing data. At last, the forecasted best predictor was

run to predict the future value of the testing data. The MSE

Perform. Metrics VM1 VM2 VM3 VM4 VM5

CPU_usedsec AR AR AR AR* AR*

CPU_ready AR AR* AR* AR* AR

Memory_size LAST AR* AR* LAST AR*

Memory_swapped LAST AR* NaN LAST AR*

NIC1_received AR* AR AR* AR NaN

NIC1_transmitted AR* AR* AR* AR NaN

NIC2_received AR* LAST NaN AR SW_AVG

NIC2_transmitted AR* AR* NaN AR* AR

VD1_read AR AR NaN AR SW_AVG

VD1_write AR AR NaN SW_AVG* AR

VD2_read SW_AVG AR AR AR* NaN

VD2_write AR AR AR* AR* AR

Table 3. Best Predictors of All the Trace Data
The predictors shown in the table have the smallest MSE among all the

three predictors (LAST, AR, and SW AVG). The “*” symbol indicates that

the LARPredictor outperforms the best predictor in the predictor pool.

of each time series was calculated to measure the perfor-

mance of the LARPredictor. Table 2, shows the a sample

(VM1) of the prediction performance of the LARPredictor

with current implementation (LAR) and the three predic-

tion models including LAST, AR, and SW AVG (SW) for

all resource performance traces of the five virtual machines.

Also shown in these tables is the computed MSE for a per-

fect LARPredictor (P-LAR). The MSE of the P-LAR model

shows the upper bound of the prediction accuracy that can

be achieved by the LARPredictor. The MSE of the best pre-

dictor among LAR, LAST, AR, and SW AVG is highlighted

with italic bold numbers.

Table 3 shows the best predictor among LAST, AR, and

SW AVG for all the resource performance metrics and VM

traces. The symbol “*” indicates the cases in which the

LARPredictor achieved equal or higher prediction accuracy

than the best of the three predictors. Overall, the AR model

performed better than the LAST and the SW AVG models.

The above experimental results show:

1. It is hard to find a single prediction model among

LAST, AR, and SW AVG that performs best for all types

of resource performance data for a given VM trace. For

example, for the VM1’s trace data shown in Table 2, each

of the three models (LAST, AR, and SW) outperformed the

other two for a subset of the performance metrics.

2. It is hard to find a single prediction model that perform

best consistently for a given type of resources across all the

VM traces. In the experiment, only the AR model worked

best for the predictions of CPU traces.

3. The LARPredictor achieved better-than-expert perfor-

mances using the mix-of-expert approach for 44.23% of the

workload traces. It shows the potential for the LARPredic-

tor to outperform any single predictor in the pool and ap-

proach the prediction accuracy of the P-LAR by improving

the best predictor forecasting / classification accuracy. How

to further improve the predictor classification accuracy is a

topic of our future research.
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Figure 6. Predictor Performance Comparison
(VM4)

1 - CPU usedsec, 2 - CPU ready, 3 - Mem size, 4 - Mem swap,

5 - NIC1 rx, 6 - NIC1 tx, 7 - NIC2 rx, 8 - NIC2 tx,

9 - VD1 read, 10 - VD1 write, 11 - VD2 read, 12 - VD2 write

7.2.2 Performance Comparison of the LARPredictors

and the Cumulative MSE based Predictor

This section compares the prediction accuracy of the

LARPredictors and the NWS predictor. Figure 6, shows

an example (VM4) of the prediction accuracy of the per-

fect LARPredictor that has 100% best predictor forecasting

accuracy (P-LARP), the k-NN based LARPredictor (Knn-

LARP), the cumulative MSE of all history based predictor

used in the NWS (Cum.MSE), and the cumulative MSE of a

fixed window size (n=2 in this experiment) based predictor

used in the NWS (W-Cum.MSE).

The experimental results show that without running

all the predictors in parallel all the time, for 66.67% of

the traces, the LARPredictor outperformed the cumula-

tive MSE based predictor used in the NWS. The perfect

LARPredictor shows the potential to achieve 18.6% lower

MSE in average that the cumulative MSE based predictor.

7.3 Discussion

PCA is an optimal way to project data in the mean-

square sense. The computational complexity of estimat-

ing the PCA is O(d2W ) + O(d3) for the original set of

W × d-dimensional data [2]. In the context of resource per-

formance time series prediction, W = 1 and d is the predic-

tion window size. The typical small input data size in this

context makes the use of the PCA feasible. There also ex-

ist computationally less expensive methods [24] for finding

only a few eigenvectors and eigenvalues of a large matrix;

in our experiments, we use appropriate Matlab routines to

realize these.

The k-NN does not have an off-line learning phase. Its

“training phase” is simply to index the N training data for

later use. Therefore, its training complexity is O(N) both

in time and space. In the testing phase, the k nearest neigh-

bors of a testing data can be obtained O(N) time by using

a modified version of quicksort [31]. There are fast algo-

rithms for finding nearest-neighbors [12][13] also.

Three simple time series models were used in this ex-

periment to show the potential of using dynamic predic-

tor selection based on learning to improve prediction ac-

curacy. However, the LARPredictor prototype may be gen-

erally used with other more sophisticated prediction models

such as these studied in [7][30][32]. Generally, the more

predictors in the pool and the more complex the predictors

are, it is more beneficial to use the LARPredictor because

the classification overhead can be better amortized by run-

ning only single predictor at any given time.

8 Summary

The best prediction model varies with the types of re-

sources and workload from time to time. We have devel-

oped a time series resource prediction model, LARPredic-

tor, which can adapt the predictor selection to the changing

workload. The k-NN classifieris used to forecast the best

predictor for the workload based on the learning of histor-

ical load characteristics and prediction performance. The

principal component analysis technique has been applied to

reduce the input data dimension of the classification pro-

cess. Our experimental results with the traces of the full

range of virtual machine resources including CPU, mem-

ory, network and disk show that the LARPredictor can ef-

fectively identify the best predictor for the workload and

achieve prediction accuracies that are close to or even bet-

ter than any single best predictor.

Different predictors tend to work best for workloads with

different characteristics. We plan to incorporate more pre-

diction models such as those presented in [7][32] into the

predictor pool to leverage their prediction power for differ-

ent type of workload and develop a quantitative method to

access the LARPredictor’s applicability to time series pre-

dictions in other areas. We are also working on how to im-

prove the best predictor forecasting accuracy to further im-

prove the resource prediction performance. In addition, we

plan to study the relationship between the computing com-

plexity and the prediction performance.
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