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Abstract 
 

Peer-to-peer file-sharing systems suffer from the over-

specification of query results due to the fact that queries 

are conjunctive and the descriptions of shared files are 

sparse.  Ultimately, longer queries, which should yield 

more accurate results, actually do the opposite.  The judi-

cious masking of query terms circumvents the shortcom-

ings of conjunctive query processing, significantly im-

proving query accuracy. 

 

 

1. Introduction 
 
Peer-to-peer (P2P) file-sharing is a popular Internet 

application, with millions of users sharing petabytes of 
data [21].  Due to this application’s scale, it is vital that 
results presented to the user are accurately ranked. 

Two characteristics of P2P file-sharing, however, make 
accurate ranking difficult: sparse description of shared 
files and conjunctive query processing [11].  Sparse de-
scription is a consequence of the fact that many (binary) 
files are described by their filenames, which are limited to 
about 200 bytes, and perhaps by a small amount of meta-
data embedded in the actual binary (e.g., ID3 data [7]).  
Benefits of conjunctive query processing include its sim-
plicity and its conservative use of network bandwidth.  
Together, these characteristics conspire to decrease the 
accuracy of search with longer queries.  This behavior is 
contrary to expected behavior of most search engines. 

Result set precision (the percentage of the result set 
that is desired) increases with query length in the P2P file-
sharing environment, as expected.  However, at some 
point, the query becomes so constrained that no instances 
of the desired result are returned, reducing overall accu-

racy (described in more detail in Section 4).  Indeed, re-
cent measurement studies suggest that most P2P network 
traffic consists of far more queries than results [19]. One 
factor for this may be over-specific queries. 

Consider a search for Mozart’s Clarinet concerto, 
preferably in the key A major, by clarinetist Michele 
Zukovsky.  We conducted a search for this song recently 
on the eDonkey file-sharing system with various combina-
tions of query terms.  This experiment revealed that in-
creasing the number of query terms generally yields fewer 
but more precise results.  However, a query containing all 
candidate query terms returned no results. (The number of 
results is denoted nresp in Table 1.) 

 

Table 1. Number of results with various queries 
issued on the eDonkey P2P file-sharing system. 

terms 

mozart clarinet A major zukovsky 

nresp / 
query 

X X    80 

X X X X  54 

X X X X X 0 

X X   X 2 

 
It is only with an appropriate subset of terms, that we 

retrieve the desired result; the last combination in Table 1 
contained only relevant results.  That this combination 
yields the correct results also proves that the empty result 
set for the full query was not caused by the desired result’s 
non-existence in the system but by query over-
specification.  Note that issuing the full query on Google 
resulted in better accuracy than did any sub-query. 

We address the query over specification problem de-
scribed above by having the client automatically mask out 
a subset of long queries before they are sent to servers.  
Shortening the query increases the size of the result set, 
thereby increasing the likelihood that it contains at least 
one instance of the desired result. 

In our experiments, masking queries has a significant 
impact on accuracy, increasing it by 40%.  To understand 
these results, two questions must be addressed: 

 
1. How should candidate query terms be chosen for 

masking? 
2. How many terms should be masked? 

 
We discuss possible alternatives in answering these two 
questions in Sections 5 and 6.  In Section 7, we differenti-
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ate a masked long query and an initially short (base) 
query, namely by how the former yields more accurate 
results.  

Masking comes at a cost; longer queries that are ex-
pected to return fewer results, conserving computing and 
network resources, no longer do so.  In our experiments, 
the number of returned results increases by a factor of 3.  
Although some may argue that the increased accuracy is a 
worth the expense, we discuss possible cost-controlling 
measures in Section 8.  Surprisingly, in some cases, it is 
possible to both increase accuracy and reduce cost. 

 

2. Query Processing Specification 
 
Each peer in the system shares an individually main-

tained local repository of binary files.  Files may be repli-
cated across peers, and each replica is identified by a user-
tuned descriptor, which also contains an identifying key 

(e.g., an MD5 hash on the file’s bits).  All replicas of the 
same file naturally share the same key.  A client’s query is 
routed to all reachable servers until the query’s time-to-
live expires. Servers compare each query to their local 
descriptors; a query matches a replica if it is contained in 
the replica’s descriptor.  In this case, the server returns its 
system identifier and the matching replica’s descriptor as 
a result. This information is necessary to allow the client 
to distinguish and download the associated file. 

Formally, let O be the set of files, M be the set of 

terms, and P be the set of peers.  Each file o1,o2∈O has a 
key associated with it, denoted ko1, such that ko1=ko2 if and 
only if o1=o2.   

Each file o has a set of terms, To⊆M, that validly de-
scribe it.  Intuitively, To is the set of all terms an average 

person might use to describe o.  Each term t∈To has a 
strength of association with o, denoted soa(t, o), where 

0≤soa(t, o)≤1 and ∑t∈Tosoa(t, o)=1.  The strength of asso-
ciation a term t has with a file o describes the relative like-
lihood that it is to be used to describe o, assuming all 
terms are independent.   The distribution of soa values for 
a file o is called the natural term distribution of o. 

A peer p∈P is defined as a pair, (Rp, g
p), where Rp is 

the peer’s set of replicas (i.e., its local repository) and gp 
is its unique identifier (e.g., its IP address).  Each replica 

r
o
p∈Rp is a copy of file o∈O, maintained by p, and has an 

associated locally maintained descriptor, d(ro
p)⊆M, which 

is a multiset of terms.  Each descriptor d(ro
p) also contains 

ko, the key of file o.  The maximum number of terms that a 
descriptor can contain is fixed. 

A query Q
o
⊆To for file o is also a multiset of terms.  

The terms in Q
o are expected to follow o’s natural term 

distribution.  When a query Q arrives at a server p, the 

server returns result set U
Q

p={(d(ro
p), g

p) | r
o

p∈Rp and 

Q⊆d(ro
p) and Q≠Ø}—membership in the result set re-

quires that a result’s descriptor contain all query terms, in 

accordance with the matching criterion. 

The client that issued Q receives result set UQ=∪pU
Q

p, 

p∈P, and groups individual results by key, forming 

G={G1, G2,…}, where Gi=(d(Gi), i, li), d(Gi)={⊕d(ri
p) | 

(d(ri
p), g

p)∈U
Q and ki=i} is the group’s descriptor, i is the 

key of Gi, and li={g
p | (d(ri

p), g
p)∈U

Q and ki=i} is the list 
of servers that returned the results in Gi. In this definition, 

⊕ denotes the multiset sum operation. 
To measure the relevance of query results to the user‘s 

desires, the client assigns a rank score to each group with 

function Fi∈F, defined as F: 2M
×2M

×Z×Z→R
+.  If 

Fi(d(Gj), Q, |Gj|, timeGj) > Fi(d(Gk), Q, |Gk|, timeGk), where 
Gj, Gk are groups, then we say that Gj is ranked higher 
than Gk with respect to query Q and ranking function Fi.  
In these definitions, |Gj| is the number of results contained 
in Gj and timeGj is the creation time of the Gj (i.e., the time 
when the first result in Gj arrived at the client). 

In commercial P2P file-sharing systems, such as vari-
ous implementations of the Gnutella protocol or eDonkey, 
file keys are generated by the MD5 or SHA-1 crypto-
graphic hash function, and results are grouped based on 
these keys.  Ranking is based on group size, as a large 
group can better ensure a quick, successful download: 

 
FG(d(G), Q, |G|, timeG) = |G|. 

 
Descriptors in these systems are generally implemented 

via filenames, but a small amount of descriptive informa-
tion may be embedded in the actual binary of the replica, 
as mentioned in Section 1.  Furthermore, when a file is 
downloaded, the descriptor of this new replica is initial-
ized as a duplicate of one of the servers’ in the result set. 

To simplify our explication, we use the term “result” 
informally to describe either a group or an individual re-
sult, and clarify the usage if necessary.  We refer to the 
collective set of terms contained in (individual result or 
group) descriptors as metadata. 

 

3. The Information Tradeoff 
 
If a user adds a unique term t to Qo then s/he increases 

the amount of information Qo contains about his/her inter-
ests by a unit.  However, due to conjunctive matching, the 

addition of t to Qo decreases P(Qo
⊆d(rp)) – the probability 

that Q
o matches d(rp) – by a factor of at least 1-(1-

soa(t,p))length(d(rp))
<1, where length(d(rp)) is the number of 

terms in d(rp); as we gain information about user interests 
linearly, we lose information about results exponentially.  
This is a problem because we may be excluding the last 
instance of the desired result from the result set (as shown 
in the example in Table 1 of Section 1) or we may be ex-
cluding information from the result set, in the form of de-
scriptor terms, that may help us identify irrelevant results. 

Alternatively, although excluding t from Q
o may in-



clude rp in the result set, a shorter Qo means that the client 
has less information on user interests, thereby reducing the 
query’s distinguishing power.  This compromises the cli-
ent’s ability to effectively rank results.  The information 

tradeoff is therefore between the user and the system: 
more user information leads to less result information, and 
less user information leads to more result information. 
Either way, query accuracy is compromised. 

We address the information tradeoff caused by long 
queries by relaxing the conjunctive matching criterion 
through masking.  In Section 8, we demonstrate how to 
exploit the additional information existing in longer que-
ries to further improve query accuracy. 

 

4. Experimental Setup 
 

We motivate our discussion on masking with some ex-
perimental results.  We simulate the performance of a P2P 
file-sharing system to test the large-scale performance of 
our methods.  In accordance with the accepted model de-
scribed in [14] and observations presented in [13], we 
include in our experimental model interest categories, a 

partitioning of O into sets Ci∈C, where Ci⊆O, and 

∪Ci=O.  Interest categories are used to model constraints 
on user interests. 

Each category Ci has popularity bi, which is skewed us-
ing a Zipf distribution, to model the fact that some interest 
categories are more popular than others.  At initialization, 
each peer p is randomly assigned a number of interests 

Ip⊆C, based on bi. 
Each file o within each instance of an interest category 

varies in popularity, which is also skewed using a Zipf 
distribution.  This popularity governs the likelihood that a 
peer who has interest in the category containing o is either 
initialized with a replica of o or decides to search for it.  
Each replica, ro

p, allocated at initialization has a randomly 
initialized descriptor subject to o’s natural term distribu-
tions.  Peer p’s interest categories also constrain its 

searches; p only searches files from ∪Li, where Li∈Ip. 
We use Web data to simulate our term distributions 

and interest categories. Web data are a convenient choice 
because they constitute a grouping of terms into docu-
ments (we use terms’ relative frequencies in documents to 
simulate natural term distributions for files) and a group-
ing of documents into domains (we use domains to simu-
late interest categories).  The use of Web data to populate 
P2P simulations is common practice (e.g., [24]).  Real 
data from P2P applications are preferable, but no standard 
sets are known [22]. (Recently, a data set for P2P text 
repositories has been designed [4], but we are considering 
the sharing of binary files.  We are currently investigating 
the creation of an appropriate data set using a P2P net-
work crawling tool we recently developed [25].) 

Our data consist of an arbitrary set of 1,000 Web 
documents from the TREC 2GB Web track (WT2G).  
These documents come from 37 Web domains.  Terms are 
stemmed, and markup and stop words are removed.  The 
final data set contains approximately 800,000 terms, some 
37,000 of which are unique.  We also conducted experi-
ments using other data sets with other data distributions, 
but, due to space constraints, we only present a represen-
tative subset of our results.   The data used for all experi-
ments can be found on our Web site [20].  The other ex-
perimental results are available on request. 

Terms for a query are picked randomly based on the 
desired file’s natural term distribution. The query length 
distribution was derived from observations of query logs 
we collected over several days in the Spring and Summer 
of 2006 using modified LimeWire file-sharing software 
(Table 2) [25]. The simulation parameters listed in Table 
3 are based on observations of real-world P2P file-sharing 
systems and are comparable to the parameters used in the 
literature. 

 

Table 2. Distribution of query lengths. 

Length 1 2 3 4 5 6 7 8 

Prob. .28 .30 .18 .13 .05 .03 .02 .01 

 

Table 3. Parameters Used in the Simulation. 

Parameter Value(s) 

Num. peers 1000 

Num. queries 10,000 

Max. descriptor size (terms) 20 

Num. terms in initial descriptors 3-10 

Num. categories of interest per peer 2-5 

Num. data objects per peer at initialization 10-30 

Num. trials per experiment 10 

 
Although other behavior is possible, we assume that 

the user identifies and downloads the correct file with a 

probability 1/rank, where rank≥1 is its position in the 
ranked set of results.   

Main performance (i.e., accuracy) is measured using a 
standard metric known as mean reciprocal rank score 

(MRR), defined as  

q

N

i
i

N

rank
MRR

q

∑ =

=

1

1

, 

where Nq is the number of queries and ranki is the rank of 
the desired result in query i's result set.  If the desired re-

sult is not in the result set, then ranki=∞.  MRR is an ap-
propriate metric in applications where the user is looking 
for a single, particular result, as is generally the case in 
P2P file-sharing systems. 



The percentage of result sets containing the desired re-

sult (percentage-contained, for short and denoted 
pctcont in the figures) is also reported.  Percentage-
contained is the upper bound for MRR: only if a result set 
contains the desired result can it contribute to MRR. 

For reference, we also use the metrics precision and re-
call in our analyses.  They have slightly different seman-
tics in the P2P environment than they do in traditional IR 
due to the existence of data replication.  Let A be the set 
of replicas of the desired file existing in the system, and R 
be the result set of the query.  Precision and recall are 
defined as 

||

||

R

RA
precision

∩
= , 

||

||

A

RA
recall

∩
= . 

Because precision and recall are often inversely re-
lated, they are often replaced by their linear combination 
in the f-score metric: 

recallprecision

recallprecision
scoref

+

××
=−

2  

 
Finally, because network load and the work peers have 

to do to process a query is proportional to the number of 
query results, we use it as our basic cost metric.  We re-
port the number of query results over the 10,000 queries 
(denoted nres) in units of107 results. 

 

5. Masking Technique 
 

Masking a term from a query results in all instances of 
the term (if the term is repeated) being removed from the 
query.  Given a query Q and a term t with a frequency 
freq(t, Q) to mask from it, we define the following opera-
tion using multiset notation: 
 

mask(Q, t) = Q – (t, freq(t, Q)). 
 

When a client masks a query, it executes the mask op-

eration on NM<|Q| unique terms from base query Q that 

are chosen by a masking metric SM.  (We refer to NM as 

the degree of masking.)  The result of the NM mask op-

erations is a masked query, QM, which is sent to servers.  
 

MaskingTechnique(SM, Q, NM) 
1. Set QM to Q. 

2. Rank t∈Q
M by masking metric SM. 

3. Mask the min(NM, |Q|-1) top SM-ranked terms 
from QM. 

 
The results of QM are grouped and ranked by the client 

as described in Section 2. 
To reiterate, masking is a technique designed to coun-

teract the conjunctive nature of queries in P2P file-sharing 
systems.  Its simplicity makes it immediately applicable to 
many P2P environments. 

6. Masking Performance 
 

The goal of masking is to increase the accuracy of 
query results by maximizing the query’s recall – specifi-
cally, to increase its likelihood of yielding the desired 
result.  The two basic questions that must be addressed are 
how many and which terms to mask. 

To maximize recall, all but one query term should be 
masked.  By the nature of conjunctive queries, the result 
sets of shorter queries are necessarily supersets of the re-
sult sets of longer queries.  The term that is left in the 
query should be the one least likely to disqualify the de-
sired result from being in the result set.  Equivalently, the 
term(s) with the greatest strength(s) of association are kept 
in the masked query. 

The problem with this technique is that the client does 
not know a priori the terms’ strengths of association.  We 
therefore use a term’s frequency within a query as a means 
of approximating it, making the assumption that the fre-
quency at which a term appears in the query is propor-
tional to the expected frequency at which it appears in a 
descriptor.  Referring back to the technique described in 
Section 5, the masking metric, SM, is “lowest freq(t, Q),” 
where t is a term in query Q.  We call this masking tech-
nique min-qtf for “minimum query term frequency.”  Max-

qtf is analogously defined. 
We report the performances of the following masking 

techniques, with masking degree NM=7, in Figure 1: 
 

• nomask – no masking, 

• min-qtf – mask the least frequent terms from Q, 

• max-qtf – mask the most frequent terms from Q, 

• min-soa – mask the lowest strength of association 
terms from Q. 

 

Max-qtf is included in the results to demonstrate how 
different masking techniques might influence the results.  
Min-soa is included how well masking would work with 
global knowledge. 

MRR is higher using masking because of the increased 
recall.  This result is directly correlated with the increase 
in f-score – the increased recall offsets the decreased pre-
cision. Percentage-contained is low without masking be-
cause queries are so selective.  In Figure 2, we show ex-
plicitly the impact that masking has on percentage-
contained. Without masking, it drops off with query 
length. With masking, it is sustained, and in fact, it 
slightly rises with query length by the design of min-qtf. 

The 35% increase in MRR is not as great as the 100% 
increase in percentage-contained because there are many 
more undesired results to contend with using masking;  
precision decreases by nearly 50%. Undesired results re-
duce the expected contribution that each result set makes 
to MRR. 
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Figure 1. Performance as a function of 
masking technique. 
 

Min-qtf slightly outperforms max-qtf because it is bet-
ter able to retrieve the desired result, as indicated by the 
increases in f-score and percentage-contained. Min-soa, as 
expected, outperforms min-qtf by 8% in terms of MRR 
because the remaining query terms after min-soa masking 
are better able to match desired results. 
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Figure 2.  Percentage of result sets con-
taining the desired result as a function of 
query length and masking technique. 
 
Both min-qtf and max-qtf have similar performances 

because their differences are only manifested with long 
queries; short queries are unlikely to repeat terms.  Be-
cause most queries are short (see Table 2), their perform-
ance differences are obscured.  By definition, in fact, min-

qtf and max-qtf are equivalent for queries containing 
fewer than three terms. The results in Figure 3 demostrate 
this phenomenon: min-qtf’s performance is equivalent to 
that of max-qtf for shorter queries, but superior for longer 
ones.  Non-masking’s MRR decreases with query size and 
min-soa performs the best, as expected.  

In spite of the similarities between min-qtf and max-qtf 
in these experiments, we use min-qtf as our basic masking 
technique for two reasons:  it performs better for longer 
queries, and yields a slightly higher f-score and percent-

age-contained.  The benefit of these characteristics will 
become clear in later sections. 

 

6.1. Using Local Statistics for Tie-Breaking 
 
The query term frequency-based masking techniques 

described above have undefined behavior when there are 
no repeated terms, which is likely the case with shorter 
queries.  We propose using a characteristic of P2P sys-
tems to address this problem:  the existence of locally 
shared data.  We assume that the data shared by a user 
reflects his/her interests.  In the event of a tie in query 
term frequency-based masking, we can refer to statistics 
kept on locally shared data for a tie-breaker. 

A term’s document frequency (df) is the count of the 
number of documents in which it occurs.  It is a common 
information retrieval metric indicating how strongly asso-
ciated a term is to a document collection.  (In our applica-
tion, a document is a descriptor and a collection is the set 
of descriptors in a peer’s local repository.)  If a term t has 
a high df(t, Rs) over repository Rs of peer s, then t is highly 
relevant to s’s interests. 

However, descriptor frequency is a measure that is 
secondary in importance to query term frequency.  Be-
cause queries are short and focus on particular data, all of 
its terms are strongly associated with the desired result. 
This is why we use local statistics as a tie-breaker instead 
of a primary masking metric.   Only in the event of a tie in 
min-qtf, therefore, do we invoke descriptor frequency. 
In this case, we mask the term that has a higher descriptor 
frequency, which we denote as max-ldf for maximum local 
descriptor frequency tie-breaking:  

 

min-qtf/max-ldf masking:  Let t1, t2 be candidates for 
masking from query Q by peer s.  If freq(t1, Q) = freq(t2, 
Q), then if df(t1, R

s) > df(t2, R
s), mask t1, else mask t2. 

 
Figure 4 shows the performance of using tie-breaking 

masking techniques.  For reference, minimum local de-
scriptor frequency tie-breaking (min-ldf) is also included.  
Max-ldf tie-breaking increases MRR by about 6%.  This is 
due to the increased selectivity of the query:  recall de-
creases by 8%, but precision increases 6% and the number 
of results decreases by 15%.  In this case, max-ldf tie-
breaking increases accuracy and decreases cost over min-

qtf alone. 
Min-ldf tie-breaking has the opposite effect.  It is less 

selective, resulting in higher recall, lower precision, and 
higher cost.  On balance, min-ldf tie-breaking decreases 
MRR and f-score even though it increases percentage-
contained. 

The use of max-ldf instead of min-ldf as a tie-breaking 
technique may seem counter-intuitive.  Max-ldf masking  
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Figure 3.  MRR as a function of query 
length and masking technique. 

 
indicates that we remove from a query Q the terms that are 
more highly associated with the local repository.  The 
justification for using max-ldf is that terms that are 
strongly associated with the local repository (those with a 
high descriptor frequency) are a strong indication of what 
the repository already contains. Leaving these terms in the 
query increases the likelihood that the client retrieves re-
sults it already possesses, so removing them from the 
query increases the likelihood of yielding new content.  
Relevant results are retrieved as we assume that all query 
terms are strongly associated with the desired result.  
Max-ldf merely makes the retrieved results distinct from 
local ones. 

Consider the query “Mozart clarinet” by a user who is 
a fan of Mozart in a P2P file-sharing network composed 
of other Mozart fans.    “Mozart” likely has a high local 
descriptor frequency, but leaving it in the query instead of 
“clarinet” (Mozart composed few pieces for the clarinet) 
will return many irrelevant results. Although the results 
may conform to the general interests of the user, they are 
the goal of the current query. 

Our use of descriptor frequency to identify unique re-
sults follows standard practice in the area of information 
retrieval.  For example, the weighting of terms by their tf-
idf values (term frequency multiplied by inverse document 
frequency) [1] is based on the premise that, although a 
term’s frequency signifies its relevance to the desired re-
sult, its degree of distribution over a document collection 
signifies its lack of distinguishing power.  Also relevant 
are recent attempts to yield query result sets that repre-
sents many diverse topics in the hope that one of them is 
desired [29]. 

Because the use of max-ldf tie-breaking increases 
query accuracy and reduces cost, we use it as our tie-
breaker in all subsequent results. 

 

7.  Combining Masking with Content-based 

Ranking 
 

So far, we have focused on improving MRR by in-
creasing the recall of long queries.  Masking addresses the 
problems associated with query over-selectivity.  In fact, 
masking works better with longer queries as shown in 
Figure 3. In this spirit, we now consider how long queries 
can be further exploited to improve accuracy. 
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Figure 4. Performance as a function of tie-
breaking masking technique. 

 
Masking a long query results in a situation that is 

unlikely to occur without masking: the co-occurrence of a 
large amount of information about user interests and a 
large amount of data from the servers.  This “high infor-
mation” situation is ideal for the application of content-
based ranking functions, which we use to compare the 
contents of queries to the contents of descriptors. 

In the results presented so far, group size was used, as 
indicated in Section 2.  Although group size considers 
neither the terms in the query, nor the terms in each re-
sult’s descriptor, it performs surprisingly well, even com-
pared with content-based ranking functions. 

In Figure 5 (originally presented in [18]) we compare 
the performance of group size with that of term frequency 
ranking (ranking by the number of query terms that are in 
a result’s descriptor, denoted tf) and time of arrival (de-
noted arrive) over various query lengths without masking.  
Term frequency and time of arrival are defined as: 

 

∑
∈

=
Qt

Gtf GdtfreqtimeGQGdF ))(,()|,|,),((  

GGarrive timetimeGQGdF =)|,|,),(( . 

 
These experiments are meant to show how content-

based ranking in general performs compared with non-
content-based ranking.  Although other content-based 
ranking functions are available (e.g., Jaccard’s coefficient, 
cosine similarity [1]), we use term frequency ranking for 
its simplicity.  Our goal is to show the applicability of 
content-based ranking, not to introduce new ranking func-
tions.  (The results using other content-based ranking 
functions are available, but the ones presented here are 



representative.)  Time of arrival is meant to indicate a 
lower bound (i.e., the non-ranking case) for ranking accu-
racy. 

Figure 5 gives a sense of the magnitude of accuracy 
improvement yielded by applying ranking functions to 
order query results.  Group size and term frequency rank-
ing outperform order-of-arrival ranking significantly for 
shorter queries, but have less of an impact for longer que-
ries. 

As originally explained in [18], group size works well 
in conjunction with the matching criterion: only files that 
are strongly associated with the query terms are likely to 
be returned as results.  The stronger the association, the 
greater the representation in the result set and the higher 
the group size score.  Furthermore, group size is also a 
measure of a file’s popularity, which many queries, by 
definition, are seeking. As shown in Figure 5, group size 
outperforms term frequency over all query lengths. 

Term frequency does not work as well because of the 
matching criterion: all results contain all query terms, ob-
scuring the results.  Furthermore, given short queries, term 
frequency is highly vulnerable to skewed term distribu-
tions in the result set – single term frequencies can vary 
substantially from descriptor to descriptor and are related 
to files’ replication degrees as well.  Longer queries are 
more effective as they put additional requirements on re-
sults to achieve high ranks. Indeed, term frequency per-
forms better with queries with two terms than with one. 
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Figure 5. MRR as a function of query length 
and ranking function without masking. 
   
As query lengths increase, however, all ranking func-

tions perform poorly, at near order-of-arrival levels.  This 
happens due to the selectivity of the longer queries, ex-
plained above.  Query accuracy is dominated by the 
matching criterion. 

With masking, however, content-based ranking should 
perform better.  Longer queries contain more information 
on user interests, and the result sets of masked query re-
sults are large enough to contain: 

 

1. At least one instance of the desired result, and 
2. Information necessary to identify it. 

 
We reiterate that group size ranking considers the con-

tent of neither the query, nor the results’ descriptors, and 
should therefore have relatively worse performance with 
longer queries than does term frequency ranking. 

In Figure 6, we compare the MRRs of group size and 
term frequency ranking over various query lengths.  As 
expected with the results shown in Figure 3, group size’s 
MRR is mostly unaffected by query length.  Its slight trend 
upward is due to the effect of min-qtf/max-ldf masking 
given longer queries. 

Term frequency ranking, on the other hand, performs 
poorly initially, but steadily increases in MRR with query 
length.  As argued above, term frequency ranking, and all 
content-based ranking functions in general, work better 
with longer queries. 

The fact that one graph is flat and the other graph 
trends upwards with query length indicates the importance 
of content-based ranking.  High information states can be 
exploited for better search accuracy. 
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Figure 6.  MRR as a function of query 
length and ranking function with masking. 
 
Term frequency works so well in an environment with 

high information that it exceeds the performance of group 
size when the query length is three or greater.  We utilize 
this bit of information by having the client dynamically 
switch between a low information (non-content-based) 
and a high information (content-based) ranking function 
based on query length: 

 
    If length(Q) ≥ TQ, then rank with Fh, else rank with Fl. 

 
If the query length is greater than or equal to threshold 

T
Q
=3, then rank the results with the high information 

ranking function, Fh=Ftf.  Otherwise, rank the results with 
the low information ranking function, F

l=FG.  The per-
formance of the dynamic ranking technique is shown in 
Figure 7, denoted gsize/tf.  Dynamic ranking increases 



overall MRR by approximately 3%.  Overall accuracy 
improvement is tempered by the fact that most queries are 
short (i.e., of the low information variety). 

 

8. Controlling Cost 
 

Up to this point, our goal has been to maximize MRR.  
We have been successful, increasing it by over 40%.  
However, the cost of masking, as shown in Figure 4 (as 
well as the example in Table 1), is quite high:  the number 
of results returned to the client increases by a factor of 
three.  We consider two ways of reacting to the cost in-
crease:  reducing the masking degree and retrieving a ran-
dom subset of results from the server. 

Note, however, that the cost of masking is, in some re-
spects, overstated.  It can be argued that a user who puts 
in the effort to add more terms to a query is entitled to 
higher accuracy and the same system load as a user who 
issues a short query.  The true benefits of accurate initial 
query results are not reflected in our experimental results:  
users who yield accurate query results likely issue fewer 
subsequent queries for the same file and likely download 
fewer files “on impulse.” 

Besides being more accurate, long masked queries are 
similar, and in some cases lower, in cost compared with 
short, unmasked queries.  As shown in Figure 7, the cost 
of a masked query of length one varies depending on the 
masking technique.  Min-qtf cost is greater because its 
goal is to maximize recall.  However, by adding the selec-
tivity-improving tie-breaker (min-qtf/max-ldf and gsize/tf), 
the cost per single-term query is actually lower than in the 
non-masking case by 10%. 

 

8.1. Varying Masking Degree 
 
Query cost is directly related to masking degree as 

shown in Figure 8.  The percentage increase in cost, how-
ever, is much greater than the percentage increase in MRR 
with query length.  A reasonable way to reduce cost, 
therefore, is to reduce masking degree. 

One way of manipulating masking degree is based on 
network load.  During the day, for instance, the network 
load is likely high, and during the night, it is likely low 
[15].  Correspondingly, the degree of masking can be low 
during the day and high during the evening to reduce net-
work contention.  Because of the random connectivity of 
P2P file-sharing overlay networks, however, neighboring 
peers may be in different time zones or different parts of 
the world.  This makes time-based masking degree unreli-
able.  Another way of measuring network load is by re-
cording the number of incoming queries.  A high volume 
of incoming queries indicates high load and should trigger 
a low masking degree.  Techniques for varying masking 
degree to control cost are the subject of future work. 

0

20

40

60

80

100

120

140

160

180

200

nomask min-qtf min-qtf/max-ldf gsize/tf

Masking Technique

N
u
m

. 
R

e
s
u
lt
s
 p

e
r 

Q
u
e
ry

 
Figure 7.  Number of results per query as a 
function of masking technique. Nomask re-
fers to a single term base query. 
 

8.2. Sampling Results from Servers 
 

Another way of addressing query cost is by having the 
server return a random subset of matching results [23].  
We propose Bernoulli sampling as a means of reducing 
this cost: for each query Q that arrives at server s, and for 

each replica r∈Rs, 
 

If Q⊆d(rs), return d(r) with probability Pm. 
 

Sampling should reduce the size of the result set by a 
factor P

m, yet preserve the overall distribution of query 
results (e.g., precision).  The question is how sampling 
affects accuracy. 
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Figure 8.  MRR and total number of results 
as a function of masking degree. 
 
Figure 9 shows the changes in performance with de-

creasing sampling rates.  Predictably, cost decreases by 
75% with a 25% sampling rate, but MRR decreases by 
only less than 20%, which makes it still 20% more accu-
rate than the non-masking case.  Moreover, cost decreases 
by more than 35% compared with the non-masking case.  
By combining masking with result sampling, therefore, we 
are able to both increase accuracy and decrease cost. 



To match the MRR of the non-masking case, we set the 
sampling rate to Pm=0.1.  At this rate, the number of re-
sults decreases by 90% making its cost over 75% lower 
than in the non-masking case. 

The reason for the lower cost is obvious; it is a direct 
consequence of sampling.  The reason that MRR is pre-
served, however, is due to the fact that more query result 
sets contain more instances of the desired result when 
using masking as suggested in Figure 2. The sampling rate 
can decrease with an increase in the number of occur-
rences of the desired result in the average result set. 

For example, assume a result set contains Nd and Nu 
desired and undesired results, respectively.  If a fraction, 
(Nd – 1)/Nd, of them is randomly sampling away, then: 

 
1. By expectation, the result set still contains one 

instance of the desired result, 
2. The size of the result set is reduced by a factor 

1–(Nd – 1)/Nd. 
Moreover, combining conditions 1 and 2 means that 

the worst-case rank of the desired result, which is Nu+1, 
improves because Nu decreases.  This has a positive effect 
on the contribution this result set has on MRR.  This bene-
fit is particularly pronounced with longer queries as empty 
result sets contribute nothing to MRR. 

For example, in our case, with masking, the average 
number of query results is approximately 140.  We can 
approximate Nd as the product of average precision and  
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Figure 9. Performance as a function of 
sampling rate. 
 

size of the result set.  Because precision is 19% on aver-

age (not shown), Nd=(0.19)(140)≈27 and Nu=113 in an 
average result set.  With a sampling rate of Pm=0.25, there 

should still be NdP
m
≈7 instances of the desired result in 

the sampled result set even though 75% of the results have 
been removed.  The minimum contribution of this result 
set to MRR increases from 1/114 (Nu=113 plus one unique 
desired result) to 1/29 (Nu=28 with sampling plus one 
unique desired result).  In theory, Pm could as low as 1– 

(Nd –1)/Nd≈0.04 and still contain an instance of the de-

sired result.  However, due to expected variances in result 
set sizes, such a Pm is not advisable. 

 

9. Related Work 
 
Much of today's work in P2P information retrieval (IR) 

research focuses on identifying highly reliable peers and 
giving them specialized roles in statistics maintenance, 
indexing, and routing [3][17][24][28].  The performances 
of such systems are impressive; however, the application 
domain is different than the one we consider.  We make 
no assumptions about the relative capabilities of the peers.  
Specifically, other solutions are architectural in nature, 
designating some peers are designated for specialized 
roles.  Our work, in contrast, makes no distinction among 
the functionality of the peers.  One benefit of our model is 
that our work is more applicable to ad-hoc environments.  
Secondly, many of these works perform retrieval on text 
documents.  We assume much sparser descriptors. 

Our work also bears many similarities to that of meta-
search engines [5].  The problems related to such systems 
include source selection, merging of results from inde-
pendent sources, and query dispatching (the process of 
translating a query for each server's particular interface).  
Solutions include source sampling to determine content 
and the use of ontologies for result ranking [2].  Meta-
search engines, however, operate in a highly stable and 
centralized environment that is not typical of P2P file-
sharing systems. 

Some P2P systems use past results to bias peer behav-
ior in the network.  Positive feedback from a peer in-
creases the priority of its future results [15].  These sys-
tems require that peers maintain statistics on neighbors, 
which may not be scalable in a large system and impracti-
cal, given system unreliability. 

Some systems employ distributed hash tables, or more 
recently, trees, to reduce search cost in distributed envi-
ronments [16][27].  Because these search methods are 
based on exact key matching, multi-term queries are diffi-
cult to implement (e.g., semi-join-like techniques over 
multiple inverted lists have been proposed [10]). Masking 
facilitates the use of the proposed search structures be-
cause it can reduce a query to a single term, making key 
indices immediately applicable.  In a similar way, masking 
can also relieve the “word-mismatch” problem in informa-
tion retrieval – when two people independently use differ-
ent word sets to describe the same data [26]. 

One alternative to masking is to use of query expansion 
to improve query performance in P2P file-sharing systems 
[6].  This work attempts to build a distributed semantic 
network of terms, revealing generalizations and syno-
nyms, which can be used to increase the recall of a query.  
Besides the difficulty of maintaining the semantic net-
work, a problem of this technique is that it may lead to a 



“drift” in the original semantics of the query.  As we know 
of no experimental validation of this technique, it difficult 
to accurately gauge its performance. 

Finally, masking is similar to the practice of reconcil-
ing “failed” database queries – queries that return empty 
results [8].  Reconciling failed queries requires changing 
of eliminating selection conditions, changing its seman-
tics.  Masking, in contrast, aims to retrieve the originally 
desired result. 

 

10. Conclusions and Future Work 
 
Masking works by increasing the recall of queries.  By 

keeping only the most relevant terms in the masked query, 
accuracy is improved by over 40%. 

Masking cost is manageable by tuning the masking de-
gree or randomly sampling the result sets returned by 
servers.  Ideally, 100Nd/(Nd-1)% of the results can be 
sampled away. By sampling, we were able to reduce cost 
by over 35% compared with the non-masking case, while 
preserving an improvement in accuracy of 20%. 

The masking techniques presented here are but a first 
step of a general process and are subject to many optimi-
zations.  One area of optimization we are working on is 
server-side masking.  As servers contain a different view 
of the system, it is possible that they can give better hints 
on improving masking performance in terms of cost and 
benefit.  Second, the use of server-side masking could 
avoid the conservative technique of maximizing recall by 
masking out all but one term at the client.   Third, server-
side masking could make time-zone based masking degree 
(see Section 8.1) simpler to implement.  Another area we 
are considering is the collection of statistics in terms of 
network load and replication degrees [9] to determine a 
good dynamic ranking threshold value and sampling rate. 
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