
Masked Queries for Search Accuracy in Peer-to-Peer File-Sharing Systems

Wai Gen Yee, Linh Thai Nguyen, Ophir Frieder
Department of Computer Science

Illinois Institute of Technology

Chicago, IL 60616

yee@iit.edu, nguylin@iit.edu, ophir@ir.iit.edu

Abstract

Peer-to-peer file-sharing systems suffer from the over-

specification of query results due to the fact that queries

are conjunctive and the descriptions of shared files are

sparse. Ultimately, longer queries, which should yield

more accurate results, actually do the opposite. The judi-

cious masking of query terms circumvents the shortcom-

ings of conjunctive query processing, significantly im-

proving query accuracy.

1. Introduction

Peer-to-peer (P2P) file-sharing is a popular Internet

application, with millions of users sharing petabytes of
data [21]. Due to this application’s scale, it is vital that
results presented to the user are accurately ranked.

Two characteristics of P2P file-sharing, however, make
accurate ranking difficult: sparse description of shared
files and conjunctive query processing [11]. Sparse de-
scription is a consequence of the fact that many (binary)
files are described by their filenames, which are limited to
about 200 bytes, and perhaps by a small amount of meta-
data embedded in the actual binary (e.g., ID3 data [7]).
Benefits of conjunctive query processing include its sim-
plicity and its conservative use of network bandwidth.
Together, these characteristics conspire to decrease the
accuracy of search with longer queries. This behavior is
contrary to expected behavior of most search engines.

Result set precision (the percentage of the result set
that is desired) increases with query length in the P2P file-
sharing environment, as expected. However, at some
point, the query becomes so constrained that no instances
of the desired result are returned, reducing overall accu-

racy (described in more detail in Section 4). Indeed, re-
cent measurement studies suggest that most P2P network
traffic consists of far more queries than results [19]. One
factor for this may be over-specific queries.

Consider a search for Mozart’s Clarinet concerto,
preferably in the key A major, by clarinetist Michele
Zukovsky. We conducted a search for this song recently
on the eDonkey file-sharing system with various combina-
tions of query terms. This experiment revealed that in-
creasing the number of query terms generally yields fewer
but more precise results. However, a query containing all
candidate query terms returned no results. (The number of
results is denoted nresp in Table 1.)

Table 1. Number of results with various queries
issued on the eDonkey P2P file-sharing system.

terms

mozart clarinet A major zukovsky

nresp /
query

X X 80

X X X X 54

X X X X X 0

X X X 2

It is only with an appropriate subset of terms, that we

retrieve the desired result; the last combination in Table 1
contained only relevant results. That this combination
yields the correct results also proves that the empty result
set for the full query was not caused by the desired result’s
non-existence in the system but by query over-
specification. Note that issuing the full query on Google
resulted in better accuracy than did any sub-query.

We address the query over specification problem de-
scribed above by having the client automatically mask out
a subset of long queries before they are sent to servers.
Shortening the query increases the size of the result set,
thereby increasing the likelihood that it contains at least
one instance of the desired result.

In our experiments, masking queries has a significant
impact on accuracy, increasing it by 40%. To understand
these results, two questions must be addressed:

1. How should candidate query terms be chosen for

masking?
2. How many terms should be masked?

We discuss possible alternatives in answering these two
questions in Sections 5 and 6. In Section 7, we differenti-

1-4244-0910-1/07/$20.00 ©2007 IEEE.

ate a masked long query and an initially short (base)
query, namely by how the former yields more accurate
results.

Masking comes at a cost; longer queries that are ex-
pected to return fewer results, conserving computing and
network resources, no longer do so. In our experiments,
the number of returned results increases by a factor of 3.
Although some may argue that the increased accuracy is a
worth the expense, we discuss possible cost-controlling
measures in Section 8. Surprisingly, in some cases, it is
possible to both increase accuracy and reduce cost.

2. Query Processing Specification

Each peer in the system shares an individually main-

tained local repository of binary files. Files may be repli-
cated across peers, and each replica is identified by a user-
tuned descriptor, which also contains an identifying key

(e.g., an MD5 hash on the file’s bits). All replicas of the
same file naturally share the same key. A client’s query is
routed to all reachable servers until the query’s time-to-
live expires. Servers compare each query to their local
descriptors; a query matches a replica if it is contained in
the replica’s descriptor. In this case, the server returns its
system identifier and the matching replica’s descriptor as
a result. This information is necessary to allow the client
to distinguish and download the associated file.

Formally, let O be the set of files, M be the set of

terms, and P be the set of peers. Each file o1,o2∈O has a
key associated with it, denoted ko1, such that ko1=ko2 if and
only if o1=o2.

Each file o has a set of terms, To⊆M, that validly de-
scribe it. Intuitively, To is the set of all terms an average

person might use to describe o. Each term t∈To has a
strength of association with o, denoted soa(t, o), where

0≤soa(t, o)≤1 and ∑t∈Tosoa(t, o)=1. The strength of asso-
ciation a term t has with a file o describes the relative like-
lihood that it is to be used to describe o, assuming all
terms are independent. The distribution of soa values for
a file o is called the natural term distribution of o.

A peer p∈P is defined as a pair, (Rp, g
p), where Rp is

the peer’s set of replicas (i.e., its local repository) and gp
is its unique identifier (e.g., its IP address). Each replica

r
o
p∈Rp is a copy of file o∈O, maintained by p, and has an

associated locally maintained descriptor, d(ro
p)⊆M, which

is a multiset of terms. Each descriptor d(ro
p) also contains

ko, the key of file o. The maximum number of terms that a
descriptor can contain is fixed.

A query Q
o
⊆To for file o is also a multiset of terms.

The terms in Q
o are expected to follow o’s natural term

distribution. When a query Q arrives at a server p, the

server returns result set U
Q

p={(d(ro
p), g

p) | r
o

p∈Rp and

Q⊆d(ro
p) and Q≠Ø}—membership in the result set re-

quires that a result’s descriptor contain all query terms, in

accordance with the matching criterion.

The client that issued Q receives result set UQ=∪pU
Q

p,

p∈P, and groups individual results by key, forming

G={G1, G2,…}, where Gi=(d(Gi), i, li), d(Gi)={⊕d(ri
p) |

(d(ri
p), g

p)∈U
Q and ki=i} is the group’s descriptor, i is the

key of Gi, and li={g
p | (d(ri

p), g
p)∈U

Q and ki=i} is the list
of servers that returned the results in Gi. In this definition,

⊕ denotes the multiset sum operation.
To measure the relevance of query results to the user‘s

desires, the client assigns a rank score to each group with

function Fi∈F, defined as F: 2M
×2M

×Z×Z→R
+. If

Fi(d(Gj), Q, |Gj|, timeGj) > Fi(d(Gk), Q, |Gk|, timeGk), where
Gj, Gk are groups, then we say that Gj is ranked higher
than Gk with respect to query Q and ranking function Fi.
In these definitions, |Gj| is the number of results contained
in Gj and timeGj is the creation time of the Gj (i.e., the time
when the first result in Gj arrived at the client).

In commercial P2P file-sharing systems, such as vari-
ous implementations of the Gnutella protocol or eDonkey,
file keys are generated by the MD5 or SHA-1 crypto-
graphic hash function, and results are grouped based on
these keys. Ranking is based on group size, as a large
group can better ensure a quick, successful download:

FG(d(G), Q, |G|, timeG) = |G|.

Descriptors in these systems are generally implemented

via filenames, but a small amount of descriptive informa-
tion may be embedded in the actual binary of the replica,
as mentioned in Section 1. Furthermore, when a file is
downloaded, the descriptor of this new replica is initial-
ized as a duplicate of one of the servers’ in the result set.

To simplify our explication, we use the term “result”
informally to describe either a group or an individual re-
sult, and clarify the usage if necessary. We refer to the
collective set of terms contained in (individual result or
group) descriptors as metadata.

3. The Information Tradeoff

If a user adds a unique term t to Qo then s/he increases

the amount of information Qo contains about his/her inter-
ests by a unit. However, due to conjunctive matching, the

addition of t to Qo decreases P(Qo
⊆d(rp)) – the probability

that Q
o matches d(rp) – by a factor of at least 1-(1-

soa(t,p))length(d(rp))
<1, where length(d(rp)) is the number of

terms in d(rp); as we gain information about user interests
linearly, we lose information about results exponentially.
This is a problem because we may be excluding the last
instance of the desired result from the result set (as shown
in the example in Table 1 of Section 1) or we may be ex-
cluding information from the result set, in the form of de-
scriptor terms, that may help us identify irrelevant results.

Alternatively, although excluding t from Q
o may in-

clude rp in the result set, a shorter Qo means that the client
has less information on user interests, thereby reducing the
query’s distinguishing power. This compromises the cli-
ent’s ability to effectively rank results. The information

tradeoff is therefore between the user and the system:
more user information leads to less result information, and
less user information leads to more result information.
Either way, query accuracy is compromised.

We address the information tradeoff caused by long
queries by relaxing the conjunctive matching criterion
through masking. In Section 8, we demonstrate how to
exploit the additional information existing in longer que-
ries to further improve query accuracy.

4. Experimental Setup

We motivate our discussion on masking with some ex-
perimental results. We simulate the performance of a P2P
file-sharing system to test the large-scale performance of
our methods. In accordance with the accepted model de-
scribed in [14] and observations presented in [13], we
include in our experimental model interest categories, a

partitioning of O into sets Ci∈C, where Ci⊆O, and

∪Ci=O. Interest categories are used to model constraints
on user interests.

Each category Ci has popularity bi, which is skewed us-
ing a Zipf distribution, to model the fact that some interest
categories are more popular than others. At initialization,
each peer p is randomly assigned a number of interests

Ip⊆C, based on bi.
Each file o within each instance of an interest category

varies in popularity, which is also skewed using a Zipf
distribution. This popularity governs the likelihood that a
peer who has interest in the category containing o is either
initialized with a replica of o or decides to search for it.
Each replica, ro

p, allocated at initialization has a randomly
initialized descriptor subject to o’s natural term distribu-
tions. Peer p’s interest categories also constrain its

searches; p only searches files from ∪Li, where Li∈Ip.
We use Web data to simulate our term distributions

and interest categories. Web data are a convenient choice
because they constitute a grouping of terms into docu-
ments (we use terms’ relative frequencies in documents to
simulate natural term distributions for files) and a group-
ing of documents into domains (we use domains to simu-
late interest categories). The use of Web data to populate
P2P simulations is common practice (e.g., [24]). Real
data from P2P applications are preferable, but no standard
sets are known [22]. (Recently, a data set for P2P text
repositories has been designed [4], but we are considering
the sharing of binary files. We are currently investigating
the creation of an appropriate data set using a P2P net-
work crawling tool we recently developed [25].)

Our data consist of an arbitrary set of 1,000 Web
documents from the TREC 2GB Web track (WT2G).
These documents come from 37 Web domains. Terms are
stemmed, and markup and stop words are removed. The
final data set contains approximately 800,000 terms, some
37,000 of which are unique. We also conducted experi-
ments using other data sets with other data distributions,
but, due to space constraints, we only present a represen-
tative subset of our results. The data used for all experi-
ments can be found on our Web site [20]. The other ex-
perimental results are available on request.

Terms for a query are picked randomly based on the
desired file’s natural term distribution. The query length
distribution was derived from observations of query logs
we collected over several days in the Spring and Summer
of 2006 using modified LimeWire file-sharing software
(Table 2) [25]. The simulation parameters listed in Table
3 are based on observations of real-world P2P file-sharing
systems and are comparable to the parameters used in the
literature.

Table 2. Distribution of query lengths.

Length 1 2 3 4 5 6 7 8

Prob. .28 .30 .18 .13 .05 .03 .02 .01

Table 3. Parameters Used in the Simulation.

Parameter Value(s)

Num. peers 1000

Num. queries 10,000

Max. descriptor size (terms) 20

Num. terms in initial descriptors 3-10

Num. categories of interest per peer 2-5

Num. data objects per peer at initialization 10-30

Num. trials per experiment 10

Although other behavior is possible, we assume that

the user identifies and downloads the correct file with a

probability 1/rank, where rank≥1 is its position in the
ranked set of results.

Main performance (i.e., accuracy) is measured using a
standard metric known as mean reciprocal rank score

(MRR), defined as

q

N

i
i

N

rank
MRR

q

∑ =

=

1

1

,

where Nq is the number of queries and ranki is the rank of
the desired result in query i's result set. If the desired re-

sult is not in the result set, then ranki=∞. MRR is an ap-
propriate metric in applications where the user is looking
for a single, particular result, as is generally the case in
P2P file-sharing systems.

The percentage of result sets containing the desired re-

sult (percentage-contained, for short and denoted
pctcont in the figures) is also reported. Percentage-
contained is the upper bound for MRR: only if a result set
contains the desired result can it contribute to MRR.

For reference, we also use the metrics precision and re-
call in our analyses. They have slightly different seman-
tics in the P2P environment than they do in traditional IR
due to the existence of data replication. Let A be the set
of replicas of the desired file existing in the system, and R
be the result set of the query. Precision and recall are
defined as

||

||

R

RA
precision

∩
= ,

||

||

A

RA
recall

∩
= .

Because precision and recall are often inversely re-
lated, they are often replaced by their linear combination
in the f-score metric:

recallprecision

recallprecision
scoref

+

××
=−

2

Finally, because network load and the work peers have

to do to process a query is proportional to the number of
query results, we use it as our basic cost metric. We re-
port the number of query results over the 10,000 queries
(denoted nres) in units of107 results.

5. Masking Technique

Masking a term from a query results in all instances of
the term (if the term is repeated) being removed from the
query. Given a query Q and a term t with a frequency
freq(t, Q) to mask from it, we define the following opera-
tion using multiset notation:

mask(Q, t) = Q – (t, freq(t, Q)).

When a client masks a query, it executes the mask op-

eration on NM<|Q| unique terms from base query Q that

are chosen by a masking metric SM. (We refer to NM as

the degree of masking.) The result of the NM mask op-

erations is a masked query, QM, which is sent to servers.

MaskingTechnique(SM, Q, NM)
1. Set QM to Q.

2. Rank t∈Q
M by masking metric SM.

3. Mask the min(NM, |Q|-1) top SM-ranked terms
from QM.

The results of QM are grouped and ranked by the client

as described in Section 2.
To reiterate, masking is a technique designed to coun-

teract the conjunctive nature of queries in P2P file-sharing
systems. Its simplicity makes it immediately applicable to
many P2P environments.

6. Masking Performance

The goal of masking is to increase the accuracy of
query results by maximizing the query’s recall – specifi-
cally, to increase its likelihood of yielding the desired
result. The two basic questions that must be addressed are
how many and which terms to mask.

To maximize recall, all but one query term should be
masked. By the nature of conjunctive queries, the result
sets of shorter queries are necessarily supersets of the re-
sult sets of longer queries. The term that is left in the
query should be the one least likely to disqualify the de-
sired result from being in the result set. Equivalently, the
term(s) with the greatest strength(s) of association are kept
in the masked query.

The problem with this technique is that the client does
not know a priori the terms’ strengths of association. We
therefore use a term’s frequency within a query as a means
of approximating it, making the assumption that the fre-
quency at which a term appears in the query is propor-
tional to the expected frequency at which it appears in a
descriptor. Referring back to the technique described in
Section 5, the masking metric, SM, is “lowest freq(t, Q),”
where t is a term in query Q. We call this masking tech-
nique min-qtf for “minimum query term frequency.” Max-

qtf is analogously defined.
We report the performances of the following masking

techniques, with masking degree NM=7, in Figure 1:

• nomask – no masking,

• min-qtf – mask the least frequent terms from Q,

• max-qtf – mask the most frequent terms from Q,

• min-soa – mask the lowest strength of association
terms from Q.

Max-qtf is included in the results to demonstrate how
different masking techniques might influence the results.
Min-soa is included how well masking would work with
global knowledge.

MRR is higher using masking because of the increased
recall. This result is directly correlated with the increase
in f-score – the increased recall offsets the decreased pre-
cision. Percentage-contained is low without masking be-
cause queries are so selective. In Figure 2, we show ex-
plicitly the impact that masking has on percentage-
contained. Without masking, it drops off with query
length. With masking, it is sustained, and in fact, it
slightly rises with query length by the design of min-qtf.

The 35% increase in MRR is not as great as the 100%
increase in percentage-contained because there are many
more undesired results to contend with using masking;
precision decreases by nearly 50%. Undesired results re-
duce the expected contribution that each result set makes
to MRR.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

nomask min-qtf max-qtf min-soa

Masking Technique

mrr

f-score

pctcont

nres

Figure 1. Performance as a function of
masking technique.

Min-qtf slightly outperforms max-qtf because it is bet-
ter able to retrieve the desired result, as indicated by the
increases in f-score and percentage-contained. Min-soa, as
expected, outperforms min-qtf by 8% in terms of MRR
because the remaining query terms after min-soa masking
are better able to match desired results.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8

Query Length

P
e
rc

e
n
ta

g
e
-c

o
n
ta

in
e
d

nomask

min-qtf

Figure 2. Percentage of result sets con-
taining the desired result as a function of
query length and masking technique.

Both min-qtf and max-qtf have similar performances

because their differences are only manifested with long
queries; short queries are unlikely to repeat terms. Be-
cause most queries are short (see Table 2), their perform-
ance differences are obscured. By definition, in fact, min-

qtf and max-qtf are equivalent for queries containing
fewer than three terms. The results in Figure 3 demostrate
this phenomenon: min-qtf’s performance is equivalent to
that of max-qtf for shorter queries, but superior for longer
ones. Non-masking’s MRR decreases with query size and
min-soa performs the best, as expected.

In spite of the similarities between min-qtf and max-qtf
in these experiments, we use min-qtf as our basic masking
technique for two reasons: it performs better for longer
queries, and yields a slightly higher f-score and percent-

age-contained. The benefit of these characteristics will
become clear in later sections.

6.1. Using Local Statistics for Tie-Breaking

The query term frequency-based masking techniques

described above have undefined behavior when there are
no repeated terms, which is likely the case with shorter
queries. We propose using a characteristic of P2P sys-
tems to address this problem: the existence of locally
shared data. We assume that the data shared by a user
reflects his/her interests. In the event of a tie in query
term frequency-based masking, we can refer to statistics
kept on locally shared data for a tie-breaker.

A term’s document frequency (df) is the count of the
number of documents in which it occurs. It is a common
information retrieval metric indicating how strongly asso-
ciated a term is to a document collection. (In our applica-
tion, a document is a descriptor and a collection is the set
of descriptors in a peer’s local repository.) If a term t has
a high df(t, Rs) over repository Rs of peer s, then t is highly
relevant to s’s interests.

However, descriptor frequency is a measure that is
secondary in importance to query term frequency. Be-
cause queries are short and focus on particular data, all of
its terms are strongly associated with the desired result.
This is why we use local statistics as a tie-breaker instead
of a primary masking metric. Only in the event of a tie in
min-qtf, therefore, do we invoke descriptor frequency.
In this case, we mask the term that has a higher descriptor
frequency, which we denote as max-ldf for maximum local
descriptor frequency tie-breaking:

min-qtf/max-ldf masking: Let t1, t2 be candidates for
masking from query Q by peer s. If freq(t1, Q) = freq(t2,
Q), then if df(t1, R

s) > df(t2, R
s), mask t1, else mask t2.

Figure 4 shows the performance of using tie-breaking

masking techniques. For reference, minimum local de-
scriptor frequency tie-breaking (min-ldf) is also included.
Max-ldf tie-breaking increases MRR by about 6%. This is
due to the increased selectivity of the query: recall de-
creases by 8%, but precision increases 6% and the number
of results decreases by 15%. In this case, max-ldf tie-
breaking increases accuracy and decreases cost over min-

qtf alone.
Min-ldf tie-breaking has the opposite effect. It is less

selective, resulting in higher recall, lower precision, and
higher cost. On balance, min-ldf tie-breaking decreases
MRR and f-score even though it increases percentage-
contained.

The use of max-ldf instead of min-ldf as a tie-breaking
technique may seem counter-intuitive. Max-ldf masking

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3 4 5 6 7 8

Query Length

M
R

R

nomask

min-qtf

max-qtf

min-soa

Figure 3. MRR as a function of query
length and masking technique.

indicates that we remove from a query Q the terms that are
more highly associated with the local repository. The
justification for using max-ldf is that terms that are
strongly associated with the local repository (those with a
high descriptor frequency) are a strong indication of what
the repository already contains. Leaving these terms in the
query increases the likelihood that the client retrieves re-
sults it already possesses, so removing them from the
query increases the likelihood of yielding new content.
Relevant results are retrieved as we assume that all query
terms are strongly associated with the desired result.
Max-ldf merely makes the retrieved results distinct from
local ones.

Consider the query “Mozart clarinet” by a user who is
a fan of Mozart in a P2P file-sharing network composed
of other Mozart fans. “Mozart” likely has a high local
descriptor frequency, but leaving it in the query instead of
“clarinet” (Mozart composed few pieces for the clarinet)
will return many irrelevant results. Although the results
may conform to the general interests of the user, they are
the goal of the current query.

Our use of descriptor frequency to identify unique re-
sults follows standard practice in the area of information
retrieval. For example, the weighting of terms by their tf-
idf values (term frequency multiplied by inverse document
frequency) [1] is based on the premise that, although a
term’s frequency signifies its relevance to the desired re-
sult, its degree of distribution over a document collection
signifies its lack of distinguishing power. Also relevant
are recent attempts to yield query result sets that repre-
sents many diverse topics in the hope that one of them is
desired [29].

Because the use of max-ldf tie-breaking increases
query accuracy and reduces cost, we use it as our tie-
breaker in all subsequent results.

7. Combining Masking with Content-based

Ranking

So far, we have focused on improving MRR by in-
creasing the recall of long queries. Masking addresses the
problems associated with query over-selectivity. In fact,
masking works better with longer queries as shown in
Figure 3. In this spirit, we now consider how long queries
can be further exploited to improve accuracy.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

none min-qtf min-qtf/max-ldf min-qtf/min-ldf

Masking Technique

mrr

f-score

pctcont

nres

Figure 4. Performance as a function of tie-
breaking masking technique.

Masking a long query results in a situation that is

unlikely to occur without masking: the co-occurrence of a
large amount of information about user interests and a
large amount of data from the servers. This “high infor-
mation” situation is ideal for the application of content-
based ranking functions, which we use to compare the
contents of queries to the contents of descriptors.

In the results presented so far, group size was used, as
indicated in Section 2. Although group size considers
neither the terms in the query, nor the terms in each re-
sult’s descriptor, it performs surprisingly well, even com-
pared with content-based ranking functions.

In Figure 5 (originally presented in [18]) we compare
the performance of group size with that of term frequency
ranking (ranking by the number of query terms that are in
a result’s descriptor, denoted tf) and time of arrival (de-
noted arrive) over various query lengths without masking.
Term frequency and time of arrival are defined as:

∑
∈

=
Qt

Gtf GdtfreqtimeGQGdF))(,()|,|,),((

GGarrive timetimeGQGdF =)|,|,),((.

These experiments are meant to show how content-

based ranking in general performs compared with non-
content-based ranking. Although other content-based
ranking functions are available (e.g., Jaccard’s coefficient,
cosine similarity [1]), we use term frequency ranking for
its simplicity. Our goal is to show the applicability of
content-based ranking, not to introduce new ranking func-
tions. (The results using other content-based ranking
functions are available, but the ones presented here are

representative.) Time of arrival is meant to indicate a
lower bound (i.e., the non-ranking case) for ranking accu-
racy.

Figure 5 gives a sense of the magnitude of accuracy
improvement yielded by applying ranking functions to
order query results. Group size and term frequency rank-
ing outperform order-of-arrival ranking significantly for
shorter queries, but have less of an impact for longer que-
ries.

As originally explained in [18], group size works well
in conjunction with the matching criterion: only files that
are strongly associated with the query terms are likely to
be returned as results. The stronger the association, the
greater the representation in the result set and the higher
the group size score. Furthermore, group size is also a
measure of a file’s popularity, which many queries, by
definition, are seeking. As shown in Figure 5, group size
outperforms term frequency over all query lengths.

Term frequency does not work as well because of the
matching criterion: all results contain all query terms, ob-
scuring the results. Furthermore, given short queries, term
frequency is highly vulnerable to skewed term distribu-
tions in the result set – single term frequencies can vary
substantially from descriptor to descriptor and are related
to files’ replication degrees as well. Longer queries are
more effective as they put additional requirements on re-
sults to achieve high ranks. Indeed, term frequency per-
forms better with queries with two terms than with one.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 2 3 4 5 6 7 8

Query Length

M
R

R

gsize

tf

arrive

Figure 5. MRR as a function of query length
and ranking function without masking.

As query lengths increase, however, all ranking func-

tions perform poorly, at near order-of-arrival levels. This
happens due to the selectivity of the longer queries, ex-
plained above. Query accuracy is dominated by the
matching criterion.

With masking, however, content-based ranking should
perform better. Longer queries contain more information
on user interests, and the result sets of masked query re-
sults are large enough to contain:

1. At least one instance of the desired result, and
2. Information necessary to identify it.

We reiterate that group size ranking considers the con-

tent of neither the query, nor the results’ descriptors, and
should therefore have relatively worse performance with
longer queries than does term frequency ranking.

In Figure 6, we compare the MRRs of group size and
term frequency ranking over various query lengths. As
expected with the results shown in Figure 3, group size’s
MRR is mostly unaffected by query length. Its slight trend
upward is due to the effect of min-qtf/max-ldf masking
given longer queries.

Term frequency ranking, on the other hand, performs
poorly initially, but steadily increases in MRR with query
length. As argued above, term frequency ranking, and all
content-based ranking functions in general, work better
with longer queries.

The fact that one graph is flat and the other graph
trends upwards with query length indicates the importance
of content-based ranking. High information states can be
exploited for better search accuracy.

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 2 3 4 5 6 7 8

Query Length

M
R

R

gsize

tf

gsize/tf

Figure 6. MRR as a function of query
length and ranking function with masking.

Term frequency works so well in an environment with

high information that it exceeds the performance of group
size when the query length is three or greater. We utilize
this bit of information by having the client dynamically
switch between a low information (non-content-based)
and a high information (content-based) ranking function
based on query length:

 If length(Q) ≥ TQ, then rank with Fh, else rank with Fl.

If the query length is greater than or equal to threshold

T
Q
=3, then rank the results with the high information

ranking function, Fh=Ftf. Otherwise, rank the results with
the low information ranking function, F

l=FG. The per-
formance of the dynamic ranking technique is shown in
Figure 7, denoted gsize/tf. Dynamic ranking increases

overall MRR by approximately 3%. Overall accuracy
improvement is tempered by the fact that most queries are
short (i.e., of the low information variety).

8. Controlling Cost

Up to this point, our goal has been to maximize MRR.
We have been successful, increasing it by over 40%.
However, the cost of masking, as shown in Figure 4 (as
well as the example in Table 1), is quite high: the number
of results returned to the client increases by a factor of
three. We consider two ways of reacting to the cost in-
crease: reducing the masking degree and retrieving a ran-
dom subset of results from the server.

Note, however, that the cost of masking is, in some re-
spects, overstated. It can be argued that a user who puts
in the effort to add more terms to a query is entitled to
higher accuracy and the same system load as a user who
issues a short query. The true benefits of accurate initial
query results are not reflected in our experimental results:
users who yield accurate query results likely issue fewer
subsequent queries for the same file and likely download
fewer files “on impulse.”

Besides being more accurate, long masked queries are
similar, and in some cases lower, in cost compared with
short, unmasked queries. As shown in Figure 7, the cost
of a masked query of length one varies depending on the
masking technique. Min-qtf cost is greater because its
goal is to maximize recall. However, by adding the selec-
tivity-improving tie-breaker (min-qtf/max-ldf and gsize/tf),
the cost per single-term query is actually lower than in the
non-masking case by 10%.

8.1. Varying Masking Degree

Query cost is directly related to masking degree as

shown in Figure 8. The percentage increase in cost, how-
ever, is much greater than the percentage increase in MRR
with query length. A reasonable way to reduce cost,
therefore, is to reduce masking degree.

One way of manipulating masking degree is based on
network load. During the day, for instance, the network
load is likely high, and during the night, it is likely low
[15]. Correspondingly, the degree of masking can be low
during the day and high during the evening to reduce net-
work contention. Because of the random connectivity of
P2P file-sharing overlay networks, however, neighboring
peers may be in different time zones or different parts of
the world. This makes time-based masking degree unreli-
able. Another way of measuring network load is by re-
cording the number of incoming queries. A high volume
of incoming queries indicates high load and should trigger
a low masking degree. Techniques for varying masking
degree to control cost are the subject of future work.

0

20

40

60

80

100

120

140

160

180

200

nomask min-qtf min-qtf/max-ldf gsize/tf

Masking Technique

N
u
m

.
R

e
s
u
lt
s
 p

e
r

Q
u
e
ry

Figure 7. Number of results per query as a
function of masking technique. Nomask re-
fers to a single term base query.

8.2. Sampling Results from Servers

Another way of addressing query cost is by having the
server return a random subset of matching results [23].
We propose Bernoulli sampling as a means of reducing
this cost: for each query Q that arrives at server s, and for

each replica r∈Rs,

If Q⊆d(rs), return d(r) with probability Pm.

Sampling should reduce the size of the result set by a
factor P

m, yet preserve the overall distribution of query
results (e.g., precision). The question is how sampling
affects accuracy.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 1 2 3 4 5 6 7

Degree of Masking

mrr

nres

Figure 8. MRR and total number of results
as a function of masking degree.

Figure 9 shows the changes in performance with de-

creasing sampling rates. Predictably, cost decreases by
75% with a 25% sampling rate, but MRR decreases by
only less than 20%, which makes it still 20% more accu-
rate than the non-masking case. Moreover, cost decreases
by more than 35% compared with the non-masking case.
By combining masking with result sampling, therefore, we
are able to both increase accuracy and decrease cost.

To match the MRR of the non-masking case, we set the
sampling rate to Pm=0.1. At this rate, the number of re-
sults decreases by 90% making its cost over 75% lower
than in the non-masking case.

The reason for the lower cost is obvious; it is a direct
consequence of sampling. The reason that MRR is pre-
served, however, is due to the fact that more query result
sets contain more instances of the desired result when
using masking as suggested in Figure 2. The sampling rate
can decrease with an increase in the number of occur-
rences of the desired result in the average result set.

For example, assume a result set contains Nd and Nu
desired and undesired results, respectively. If a fraction,
(Nd – 1)/Nd, of them is randomly sampling away, then:

1. By expectation, the result set still contains one

instance of the desired result,
2. The size of the result set is reduced by a factor

1–(Nd – 1)/Nd.
Moreover, combining conditions 1 and 2 means that

the worst-case rank of the desired result, which is Nu+1,
improves because Nu decreases. This has a positive effect
on the contribution this result set has on MRR. This bene-
fit is particularly pronounced with longer queries as empty
result sets contribute nothing to MRR.

For example, in our case, with masking, the average
number of query results is approximately 140. We can
approximate Nd as the product of average precision and

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

100pct 75pct 50pct 25pct 10pct nomask

Sampling Rate

mrr

nres

pctcont

Figure 9. Performance as a function of
sampling rate.

size of the result set. Because precision is 19% on aver-

age (not shown), Nd=(0.19)(140)≈27 and Nu=113 in an
average result set. With a sampling rate of Pm=0.25, there

should still be NdP
m
≈7 instances of the desired result in

the sampled result set even though 75% of the results have
been removed. The minimum contribution of this result
set to MRR increases from 1/114 (Nu=113 plus one unique
desired result) to 1/29 (Nu=28 with sampling plus one
unique desired result). In theory, Pm could as low as 1–

(Nd –1)/Nd≈0.04 and still contain an instance of the de-

sired result. However, due to expected variances in result
set sizes, such a Pm is not advisable.

9. Related Work

Much of today's work in P2P information retrieval (IR)

research focuses on identifying highly reliable peers and
giving them specialized roles in statistics maintenance,
indexing, and routing [3][17][24][28]. The performances
of such systems are impressive; however, the application
domain is different than the one we consider. We make
no assumptions about the relative capabilities of the peers.
Specifically, other solutions are architectural in nature,
designating some peers are designated for specialized
roles. Our work, in contrast, makes no distinction among
the functionality of the peers. One benefit of our model is
that our work is more applicable to ad-hoc environments.
Secondly, many of these works perform retrieval on text
documents. We assume much sparser descriptors.

Our work also bears many similarities to that of meta-
search engines [5]. The problems related to such systems
include source selection, merging of results from inde-
pendent sources, and query dispatching (the process of
translating a query for each server's particular interface).
Solutions include source sampling to determine content
and the use of ontologies for result ranking [2]. Meta-
search engines, however, operate in a highly stable and
centralized environment that is not typical of P2P file-
sharing systems.

Some P2P systems use past results to bias peer behav-
ior in the network. Positive feedback from a peer in-
creases the priority of its future results [15]. These sys-
tems require that peers maintain statistics on neighbors,
which may not be scalable in a large system and impracti-
cal, given system unreliability.

Some systems employ distributed hash tables, or more
recently, trees, to reduce search cost in distributed envi-
ronments [16][27]. Because these search methods are
based on exact key matching, multi-term queries are diffi-
cult to implement (e.g., semi-join-like techniques over
multiple inverted lists have been proposed [10]). Masking
facilitates the use of the proposed search structures be-
cause it can reduce a query to a single term, making key
indices immediately applicable. In a similar way, masking
can also relieve the “word-mismatch” problem in informa-
tion retrieval – when two people independently use differ-
ent word sets to describe the same data [26].

One alternative to masking is to use of query expansion
to improve query performance in P2P file-sharing systems
[6]. This work attempts to build a distributed semantic
network of terms, revealing generalizations and syno-
nyms, which can be used to increase the recall of a query.
Besides the difficulty of maintaining the semantic net-
work, a problem of this technique is that it may lead to a

“drift” in the original semantics of the query. As we know
of no experimental validation of this technique, it difficult
to accurately gauge its performance.

Finally, masking is similar to the practice of reconcil-
ing “failed” database queries – queries that return empty
results [8]. Reconciling failed queries requires changing
of eliminating selection conditions, changing its seman-
tics. Masking, in contrast, aims to retrieve the originally
desired result.

10. Conclusions and Future Work

Masking works by increasing the recall of queries. By

keeping only the most relevant terms in the masked query,
accuracy is improved by over 40%.

Masking cost is manageable by tuning the masking de-
gree or randomly sampling the result sets returned by
servers. Ideally, 100Nd/(Nd-1)% of the results can be
sampled away. By sampling, we were able to reduce cost
by over 35% compared with the non-masking case, while
preserving an improvement in accuracy of 20%.

The masking techniques presented here are but a first
step of a general process and are subject to many optimi-
zations. One area of optimization we are working on is
server-side masking. As servers contain a different view
of the system, it is possible that they can give better hints
on improving masking performance in terms of cost and
benefit. Second, the use of server-side masking could
avoid the conservative technique of maximizing recall by
masking out all but one term at the client. Third, server-
side masking could make time-zone based masking degree
(see Section 8.1) simpler to implement. Another area we
are considering is the collection of statistics in terms of
network load and replication degrees [9] to determine a
good dynamic ranking threshold value and sampling rate.

References

[1] D. Grossman and O. Frieder. Information Retrieval: Algo-

rithms and Heuristics. Springer, 2nd ed., 2004.
[2] P. G. Ipeirotis and L. Gravano. Distributed search over the
hidden web: Hierarchical database sampling and selection. In
Proc. VLDB, pages 394—405, 2002.
[3] B. T. Loo, J. M. Hellerstein, R. Huebsch, S. Shenker, and I.
Stoica. Enhancing p2p file-sharing with an internet-scale query
processor. In Proc. VLDB, Toronto, 2004.
[4] T. Neumann, M. Bender, S. Michel, G. Weikum. A Repro-
ducible Benchmark for P2P Retrieval. In Proc. ACM Wkshp.

Exp. DB. 2006.
[5] W. Meng, C. Yu, and K.-L. Liu. Building efficient and ef-
fective metasearch engines. ACM Comp. Surveys, 34(1):48—84,
Mar. 2002.
[6] K. Nakauchi, Y. Ishikawa, H. Morikawa, and T. Aoyama.
Peer-to-peer keyword search using keyword relationship. In
Proc. Wkshp. Global and Peer-to-Peer Comp. Large Scale Dist.

Sys (GP2PC), 2003.

[7] M. Nilsson. Id3v2 web site. www.id3.org. 2006.
[8] I. Muslea and T. J. Lee. Online Query Relaxation via Bayes-
ian Causal Structures Discovery. In Proc. AAAI, 2005.
[9] N. Ntarmos, P. Triantafillou, G. Weikum. Counting at Large:
Efficient Cardinality Estimation in Internet Scale Data Net-
works. In Proc. IEEE ICDE, 2006.
[10] P. Reynolds and A. Vahdat. Efficient peer-to-peer keyword
searching. In Proc. ACM Middleware, 2003.
[11] C. Rohrs. Keyword matching [in gnutella]. Technical re-
port, LimeWire, Dec. 2000.
www.limewire.org/techdocs/KeywordMatching.htm.
[12] C. Rohrs. Search result grouping [in gnutella]. Technical
report, LimeWire, Aug. 2001.
www.limewire.org/project/www/result_grouping.htm.
[13] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A measure-
ment study of peer-to-peer file sharing systems. In Proc. Multi-

med Comp. and Netw. (MMCN), 2002.
[14] M. T. Schlosser, T. E. Condie, and S. D. Kamvar. Simulat-
ing a file-sharing p2p network. In Proc. Wkshp. Semantics in

Peer-to-Peer and Grid Comp., 2003.
[15] K. Sripanidkulchai, B. Maggs, and H. Zhang. Efficient
content location using interest-based locality in peer-to-peer
systems. In Proc. IEEE INFOCOM, 2003.
[16] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H.
Balakrishnan. Chord: A scalable peer-to-peer lookup service for
internet applications. In Proc. ACM SIGCOMM, 2001.
[17] C. Tang, Z. Xu, and S. Dwarkadas. Peer-to-peer informa-
tion retrieval using self-organizing semantic overlay networks.
In Proc. ACM SIGCOMM, Aug. 2003.
[18] W.G. Yee and O.Frieder. On search in peer-to-peer file
sharing systems. In Proc. ACM SAC, 2005.
[19] S. Ciraci, I. Korpeoglu, O. Ulusoy. Characterizing
Gnutella Network Properties for Peer-to-Peer Network Simula-
tion. In Proc. ISCIS, 2005.
[20] IIT P2P Information Retrieval Research Group Web Site.
www.ir.iit.edu/~waigen/proj/pirs.
[21] Slyck.com P2P File-sharing Statistics.
http://slyck.com/stats.php.
[22] H. Nottelmann, K. Aberer, J. Callan, and W. Nejdl, CIKM

2005 P2PIR Workshop Report, 2005.
[23] W. G. Yee, L. T. Nguyen, O. Frieder. Conjunction Dys-
function: The Weakness of Conjunctive Queries in Peer-to-Peer
File-Sharing Systems. In Proc IEEE P2P Conf, 2006.
[24] J. Lu and J. Callan. User modeling for full-text federated
search in peer-to-peer networks. In Proc. ACM SIGIR, 2006.
[25] S. Sharma, L. T. Nguyen, D. Jia. IR-Wire: A Research
Tool for P2P Information Retrieval. In Proc. ACM Wkshp.

Open Source Inf. Retr., 2006.
[26] J. Xu and W. B. Croft. Improving the effectiveness of in-
formation retrieval with local context analysis. ACM Trans.

Info. Sys. 18(1), Jan., 2000.
[27] H.V. Jagadish, B. C. Ooi, K.-L. Tan, Q. H. Vu, R. Zhang.
Speeding up search in peer-to-peer networks with a multi-way
tree structure. In Proc. ACM SIGMOD, 2006.
[28] W.-T. Balke, W. Nejdl, W. Siberski, U. Thaden. Progres-
sive Distributed Top k Retrieval in Peer-to-Peer Networks. In
Proc. ICDE, 2005.
[29] H. Chen and D. R. Karger. Less is more: probabilistic
models for retrieving fewer relevant documents. In Proc. SIGIR,
2006.

