Prediction Services for Distributed Computing

Warren Smith
Texas Advanced Computing Center
The University of Texas at Austin
wsmith@tacc.utexas.edu

Abstract

Users of distributed systems such as the TeraGrid and
Open Science Grid can execute their applications on many
different systems. We wish to help such users, or the grid
schedulers they use, select where to run applications by
providing predictions of when tasks will complete if sent
to different systems. We make predictions of file transfer
times, batch scheduler queue wait times, and application
execution times using historical information and instance-
based learning techniques. Our prediction errors for data
from the TACC lonestar system are 37 percent of mean
file transfer time, 115 percent for mean queue wait time,
and 72 percent of mean execution time. QOur approach
achieves significantly lower prediction error on other work-
loads. We have wrapped these prediction techniques with
web services, making predictions available to users of dis-
tributed systems as well as tools such as resource brokers
and metaschedulers.

1. Introduction

In recent years, large distributed systems have been de-
ployed to support scientific research. Examples are the
TeraGrid [21], the Open Science Grid [17] (OSG), and the
Enabling Grids for E-scienceE [7] (EGEE) grid. The exis-
tence of such grids allows users to execute their applications
on a variety of different computer systems. The obvious
question users have each time they wish to run an appli-
cation is which computer system should they use? Many
factors go into making this decision: The computer systems
that the user has access to, the user’s remaining allocations
on these systems, the cost of using different systems, and
so on. One important piece of information that users would
like, which we provide in this work, is predictions of when
an application would complete if sent to a specific parallel
computing system.

1-4244-0910-1/07/$20.00 (©2007 IEEE.

The main components of this overall prediction are pre-
dictions of file transfer times, batch scheduler queue wait
times, and execution times. We keep historical databases of
this information and use instance-based learning techniques
to form predictions from this data. To form a prediction,
the instance-based learning techniques examine the appro-
priate database to find relevant past experiences and then
form a prediction based on what happened in those past ex-
periences.

We have wrapped these prediction techniques with web
services so that users and tools can easily access them.
Users can access predictions via command line tools or the
predictions can be integrated into user portals and science
gateways. Tools such as resource brokers and metasched-
ulers can also use these prediction web services to select
where to execute user jobs in an automated fashion.

The next section presents our instance-based learning ap-
proach to prediction. Subsequent sections describe how
we apply this technique to predicting the execution times,
queue wait times, and file transfer times and analyze the
performance of our approach. Section 6 describes our pre-
diction services and the final section presents conclusions
and future work.

2. Prediction Technique

We form predictions using instance-based learning (IBL)
techniques [2]. An overview of instance-based learning is
shown in Figure 1. The first step in forming a prediction is
that a query is presented to the experience base and rel-
evant experiences are returned. An experience describes
something that happened in the past and consists of input
and output features. Input features describe the conditions
under which an experience was observed and the output fea-
tures describe what happened under those conditions. Each
feature typically consists of a name and a value where the
value is of a simple type such as integer, floating point num-
ber, or string. A query is an experience with only input fea-
tures where we are trying to predict the output features.

Experiences are stored in an experience base: A special-

ized database that stores experiences for efficient insertion
and search. This database is not a relational database as it is

similar

experiences
A
query
N
prediction for
experience query
TR
09 —k N 1 0
0s P
o
0s
distance >
function o

Experience Base Regression

Figure 1. An overview of instance-based learning.

optimized to return experiences that are relevant or similar scales the distance to be between 0 and 1.

to a query.

The similarity of two experiences (or a query and an ex-
perience) is quantified by a distance function. There are
a variety of distance functions that can be used [23] and
we have chosen to use the Heterogeneous Euclidean Over-
lap Metric. This distance function can be used on features

In our approach, we chose to return the N nearest neigh-
bors to a query as the relevant experiences. An alternative
would be to return all experiences within some distance of
the query, but we found that using nearest neighbors gener-
ally resulted in slightly more accurate predictions. There-
fore, when performing predictions, we must select a value

that are linear (numbers) or nominal (strings). We require for N.

support for nominal values because important features such
as the names of hosts, executables, users, and queues are
nominal. The distance between two experiences x and y is

expressed as

D(z,

where f is a feature, dy is the per-feature distance, and wy
is a feature weight. The feature weight allows us to indi-
cate that it is more important that some features are similar

the actual value should be in X% of the time.

We are currently using a kernel regression to form these
estimates and confidence intervals, although there are a
number of different ways it can be constructed. The equa-
tion to form an estimate E for output feature f of a query

the distance is their difference scaled by the range of values
for that feature in the experience base. This approximately

The final step to form a prediction is that an estimated
value and confidence is constructed for each output fea-
ture using relevant experiences. For this work, the output
features that we are predicting are linear so we provide an
estimated value and a confidence interval. The X% confi-
y) = Z wydg(x,y)? dence interval provides a +- value around an estimate that

f

than other features, but we must select these feature weights point q is
appropriately. The per-feature distance is B(g) > . K(D(g,e))es
(@) = =5
K(D
1 if xy or yy is unknown, > K(D(g;e))

df(x,y) = { overlap ;(x,y) if f is nominal,
diff ¢ (z,y) if f is linear

with the following definitions:

overlap ;(,y) =

I J :yf . |I Y I
dlﬂ L — £ f
]. ()t] 1€1 W]‘Se

The per-feature distance between two nominal values is will have more similar results.

0 if they are the same and 1 otherwise. For linear values,

where K is the kernel function, D is the distance function
described previously, e is one of the N nearest experiences
to ¢ in the experience base, and e; is the value of feature f
of experience e. This kernel regression performs a distance-
weighted average of the values of the output feature in rel-
evant experiences to create a prediction and confidence in-
maz g —min s terval. A distance-weighted average is performed under the
assumption that experiences that are more similar to a query

The kernel function used to weight the values of features

should approach a constant value as the distance approaches
0 and should approach 0 as the distance function approaches
infinity. There are a wide variety of kernel functions that
can be used. We experimented with several different func-
tions but did not find one that consistently resulted in better
predictions. We therefore use a simple Gaussian function
as our kernel. We also include a kernel weight parameter k
so that we can compact or stretch the kernel to give lower
or higher weights to experiences that are farther away. This
results in a kernel function of

K(d) = e ()’

In addition to searching the experience base to form pre-
dictions, we also insert experiences into the experience
base when more information is available. For example,
as jobs start or complete during the day or as file transfers
complete. This is relatively straightforward, but we must
specify the maximum size of the experience base and the
policy to use when the experience base exceeds this max-
imum size. We have chosen a simple FIFO replacement
policy under the assumption that the oldest experiences are
the least relevant.

In the previous discussion, we described the parameters
that need to be selected: the number of nearest neighbors,
the feature weights, the kernel width, and the maximum ex-
perience base size. Choices for these parameters can have
a significant affect on prediction accuracy. Our approach
to determine the optimum values for these parameters is to
perform a genetic algorithm search over training data
to try different configurations and minimize the predic-
tion error. We then use the results of these searches when
making future predictions.

Genetic algorithms [11] are a stochastic optimization
technique that is particularly effective when the search
space contains many local maxima, such as in our prob-
lem. It’s stochastic component allows it to often avoid be-
ing trapped in a local maxima and therefore have a better
chance to find a global maxima. In this way, it is similar
to other stochastic optimization techniques, such as simu-
lated annealing [14]. We have tried hill climbing and sim-
ulated annealing approaches to optimize our prediction pa-
rameters, but have had much better results using a genetic
algorithm.

3. Predicting Execution Times

We use the instance-based learning techniques previ-
ously described to predict execution times. To perform
these predictions, we need to define what information is in
each experience, identify training and test workloads, and
perform a search for the best prediction parameters. We de-
scribe the execution of each job using information that is

available to workload managers that control the execution
of jobs on parallel computers. The benefit of this approach
is that it relies on information that is readily available from
usage or accounting logs. The cost of this approach is that
it does not include any application-specific information that
could improve prediction accuracy. Table 1 shows the exe-
cution features of jobs submitted to the TACC lonestar sys-
tem.

We evaluate our prediction technique using data from
the TACC lonestar system. We create two workloads from
the accounting logs: A training workload consisting of data
from January and February of 2006 and an evaluation work-
load from March, 2006. Each workload consists of inserts
of experiences into the experience base and requests for pre-
dictions. An insert is created each time a job completes
execution and a prediction request is created each time a
job is submitted to the workload manager. The training
workload contains 16,892 insertions of experiences and the
same number of prediction requests. The evaluation work-
load contains 10,361 insertions of experiences and again,
the same number of prediction requests.

We optimized the predictor using the training workload
and evaluated the performance of the resulting predictor by
loading the training data into the experience base and pre-
dicting the jobs in the evaluation workload. The perfor-
mance of our execution time prediction technique is shown
in Table 2. This data shows that the prediction error on the
evaluation data is nearly 72% of the mean execution time
and is similar to the prediction error for the training data.
The similarity of prediction error between the training and
evaluation data indicates that the training data was a good
representation of the evaluation data. Even though the pre-
diction error is relatively high, it is much less than the nearly
246% error of the user-provided estimates. It may be pos-
sible to reduce the prediction error by using a larger set of
training data, but it may also be the case that the execution
times of jobs on lonestar are simply less predictable than
those on other systems, which we will describe next.

Another way to measure the performance of our predic-
tor is the amount of time it takes to form a prediction. We
evaluate this using our execution time workload. We exam-
ine the amount of time it takes to predict our training work-
load of 16,892 prediction requests while we are searching
for the best prediction parameters. On a 3 GHz Intel Xeon
system, we find that the average prediction time varies be-
tween 3 and 8 milliseconds from experiment to experiment.
We performed these experiments on a loaded computer sys-
tem which we believe introduced the variability. In future
work, we will more precisely quantify the amount of time it
takes to form a prediction.

Table 1. The features in an execution experience for the lonestar system at TACC. This system is

managed by the LSF workload manager.

Input Features

Feature Type Description
User Name String | The user that submitted the job.
Project Name String | The project to charge to.
Queue Name String | The queue the job was submitted to.
Number of CPUs Integer | The number of CPUs requested.
Maximum Run Time | Integer | The user-specified maximum run time.
Time Long The prediction or insertion time.

Output Features
Feature Type Description
Run Time Integer | The amount of wall time used.

Table 2. Execution time prediction error on the TACC lonestar system.

Our Predictions User Estimates
Error % of Mean Error % of Mean Mean Run
Workload | (minutes) | Run Time | (minutes) | Run Time | Time (minutes)
Evaluation 122.44 71.59 420.23 245.70 171.04
Training 156.38 76.92 385.16 241.79 159.29

3.1. Related Work

There have been a number of previous efforts to predict
the execution time of serial and parallel applications us-
ing statistical analysis, benchmarking, and modeling. Early
work on predicting the execution times of serial applica-
tions was performed in [4] used both statistical analysis and
modeling an application with a state machine. Kapadia [13]
uses instance-based learning techniques to predict run times
of serial application for a relatively small set of applications
where information about the input data and configuration
for each execution is known. Iverson [12] predicts the ex-
ecution time of serial applications using nearest neighbors
and kernel regressions. Predictions for the execution time
of serial applications running on shared computer systems
were investigated in [5] based on time series predictions of
host load.

Several researchers, including the author of this work,
have used a categorization approach to make predictions of
parallel applications [6, 10, 19] where experiences are put
into categories and all experiences in a category are used
to form a prediction for a query that falls in that category.
These categorization approaches turn out to be special cases
of instance-based learning with a specific distance function.

An alternative approach to predicting execution times
is to develop application and system models and then use
these models to make predictions [18, 9]. Since this type

of approach uses much more detailed information about ap-
plications and computer systems, it has the potential to be
much more accurate. However, it is unlikely that perfor-
mance models could be developed for all applications run-
ning on a general purpose distributed system such as the
TeraGrid or Open Science Grid. Since our goal is to pro-
vide predictions for this type of distributed system, we did
not choose the modeling approach.

In [19] it was shown that our previous categorization pre-
diction technique has lower prediction error than the ap-
proaches of Downey and Gibbons, primarily due to our ge-
netic algorithm searches to find the best prediction param-
eters. Table 4 shows a comparison of our previous cat-
egorization technique and our IBL technique. The four
workloads that we use for comparison are described in Ta-
ble 3. The results show that our IBL technique has lower
error than our older categorization technique for 3 of the
4 workloads and has 10 percent lower prediction error on
average. Furthermore, the prediction error for these work-
loads ranges from 32 to 58 percent of the mean run times,
a significantly lower error than we obtained for the lonestar
workload.

4. Predicting Queue Wait Times

We predict queue wait times using the same instance-
based learning approach as when predicting execution

Table 3. Characteristics of comparison workloads.

Workload Number of Number
Name System CPUs Location Time of Jobs
ANL IBM SP2 120 ANL 3 months of 1996 7,994
CTC IBM SP2 512 CTC 11 months of 1996 | 79,302
SDSC95 | Intel Paragon 400 SDSC 12 months of 1995 | 22,885
SDSC96 | Intel Paragon 400 SDSC 12 months of 1996 | 22,337

Table 4. A comparison of our IBL execution time prediction technique to our previous categorization

technique.
Error (minutes) Mean Run
Workload IBL Categorization | User Estimate | Time (minutes)
ANL (1996, 3 mo.) | 41.27 38.48 104.35 97.08
CTC (1996) 105.71 106.73 222.71 182.49
SDSC (1995) 50.40 59.65 N/A 108.16
SDSC (1996) 53.25 74.56 N/A 166.85

times. The differences are in the features that make up each
experience and the workloads. To predict queue wait times,
we need to characterize the state of a workload manager and
this is not straightforward. We begin by using the features
specified in Table 5 that we selected based on our past ex-
periences. These features fall in to several groups: informa-
tion about the job, information about the running jobs, and
information about the waiting jobs. A final input feature is
the time the experience was observed (or the prediction is
made) to capture any locality in time. The output feature
is the wait time. The features are easily understood, ex-
cept perhaps the three that have to do with work. We define
work to be the number of CPUs multiplied by the amount
of time the user estimates they will use. We have features
that capture the amount of work for the job, the amount of
work that running jobs have left to do, and the amount of
work that waiting jobs will do. There are many other ways
to characterize a wait time experience and we will explore
them in future work.

We once again evaluate our prediction technique using
data from the TACC lonestar system. We create a training
workload from January and February of 2006 and an eval-
uation workload from March, 2006. An insert is created
each time a job begins to execute and a predict is created
each time a job is submitted. The training workload has
17,543 prediction requests and 15,469 insertions of expe-
riences while the evaluation workload has 9,966 prediction
requests and 8,817 insertions. We optimized our predic-
tor using the same techniques we used to optimize our run
time predictor. The performance of our wait time prediction
technique is shown in Table 6. This data shows that the pre-
diction error is 115 percent, relatively high, and somewhat

higher than the 96 percent error on the training data. This
difference in error may indicate that more training data is
required to improve prediction accuracy and consistency.

4.1. Related Work

We previously used a categorization approach to pre-
dict queue wait times [20]. Other work predicts wait times
using the same categorization technique as we used [15]
and the same instance-based learning approach we present
here [16]. A different approach is to provide an upper bound
on wait times with some degree of confidence [3]. Compar-
ison to this work is a little difficult because different infor-
mation is being provided by each approach which makes it
difficult to identify which approach has better performance.

An alternate approach that we have explored in the past
is to perform simulations of the scheduling algorithm using
run time predictions [20]. The advantage of this approach
is that it can be more accurate than the one presented here.
The disadvantages are that it requires detailed knowledge of
the scheduling algorithm, which can be difficult to obtain,
and that it is much more accurate when jobs submitted in
the future have minimal affect on the start times of jobs that
have already been submitted. This isn’t always the case with
fair share algorithms or user- or queue-based priorities.

5. Predicting File Transfers

Finally, we predict file transfer times using instance-
based learning. In particular, we predict the amount of time
it takes GridFTP [1] to transfer files. We select the fea-
tures for file transfer experiences based on data from the

Table 5. The features in a wait time experience for the lonestar system at TACC.

Input Features
Feature Type Description
Job Queue Name String | The queue the job was submitted to.
Job # CPUs Integer | The number of CPUs requested by the job.
Job Max. Run Time | Integer | The user-specified maximum run time.
Job Work Integer | The amount of work the job will perform.
Running # Jobs Integer | The number of jobs currently running.
Running Work Integer | The remaining work of currently running jobs.
Waiting # Jobs Integer | The number of waiting jobs.
Waiting Work Integer | The amount of work to be done by jobs waiting to run.
Time Long The prediction or insertion time.
QOutput Features
Feature Type Description
Wait Time Integer | The amount of time the job waits to start.
Table 6. Wait time prediction error.
Error Percent of Mean | Mean Wait Time

Workload | (minutes) Wait Time (minutes)

Evaluation 365.83 115.27 317.38

Training 363.35 96.37 377.02

Grid FTP performance logs. After some experimentation,
we currently use the features shown in Table 7. One thing
to note is that we include a feature that is the domain of the
source and destination hosts under the assumption that hosts
in the same domain will have similar network performance
to a remote system. In future work, we will further explore
the best features to use including investigating if there are
derived features that would be helpful (such as whether it is
a work day and the time of day).

We evaluate our prediction technique using data from the
TACC lonestar system. Our training workload is from Octo-
ber 22 to December 20 of 2006 and the evaluation workload
is from December 21, 2006 to January 21, 2007. The train-
ing workload contains 7035 requests for predictions and the
same number of insertions of experiences while the evalu-
ation workload contains 3470 requests for predictions and
the same number of insertions. For these workloads, an in-
sert is created each time a transfer completes and a predic-
tion request is created each time a transfer begins.

We optimized this predictor using the same techniques
as we used to optimize our previous predictors. The perfor-
mance of our execution time prediction technique is shown
in Table 8. This data shows that our prediction error is 37
percent for the evaluation workload and this is lower than
the 51 percent error of the training workload indicating that
the training was effective.

5.1. Related Work

Predicting network performance is a relatively well stud-
ied field. One project that readers may be familiar with is
the Network Weather Service [24]. This work differs in
the prediction techniques used and that our approach re-
quires no active probes of the network. Other work exam-
ined several different approaches to predict GridFTP perfor-
mance [22] and reported significantly lower error than we
attained for our lonestar workload. We examine this next to
attempt to determine if their lower prediction error is a re-
sult of superior prediction techniques or different data sets.

The authors of [22] provided their data sets so that we
could perform a comparison. The data set in this paper con-
sisted of GridFTP transfers between the Information Sci-
ences Institute (ISI) at The University of Southern Califor-
nia, the Lawrence Berkeley National Laboratory (LBL), and
Argonne National Laboratory (ANL). The transfers were
performed by the authors between ISI and ANL and be-
tween LBL and ANL with sizes ranging in size from 1
megabyte to 1 gigabyte. To improve prediction perfor-
mance, the authors organized their data into 8 workloads.
A transfer is assigned to a workload based on source and
destination as well as size of the transfer. For each work-
load, the first 15 transfers were used as the training set and
the rest of the transfers were the evaluation set.

Table 7. The features in a file transfer time experience for the lonestar system at TACC.

Input Features

Feature Type Description
DestinationHost String | The destination host of the file.
DestinationDomain | String | The destination domain of the file.
SourceHost String | The source host of the file.
SourceDomain String | The source domain of the file.
Size Integer | The size of the file.
Streams Integer | The number of parallel streams to use for the transfer.
Stripes Integer | The number of stripes (servers) to use for the transfer.
Type String | Whether the transfer is a store or a retrieve.
Time Long The prediction or insertion time.

QOutput Features
Feature Type Description
Duration Integer | The amount of time the transfer took.

Table 8. File transfer time prediction error.

Mean Error Percent of Mean Duration
Workload (seconds) Mean Duration (seconds)
Evaluation 8.50 36.57 32.29
Training 14.35 50.83 33.27

We choose to combine all of their data into a single train-
ing workload and a single evaluation workload since our ap-
proach benefits from having a larger training set. Our train-
ing workload contains the same 120 transfers as they used
to train and the evaluation workload contains 762 transfers.
The features in an experience for this workload are shown
in Table 9 and we optimized our predictor using the same
techniques as we used to optimize our previous predictors.
The resulting performance is shown in Table 10.

The data shows that our mean prediction error is 16 per-
cent of the mean bandwidth for the training workload and
13 percent of the mean bandwidth for the evaluation work-
load. This is significantly lower error than we attained for
the GridFTP workload from lonestar. Since the same pre-
diction technique was used, we attribute this difference to
the data set. This data set is more structured with only 8
different transfer sizes and transfers from ANL to only 2
other sites. Our lonestar GridFTP data contains 390 dif-
ferent transfer sizes and transfers between lonestar and 76
other systems. There could also have been less contention
on the networks used while taking this data, resulting in
more consistent performance.

Table 10 also shows the percent error of the predictions,
as was presented in [22]. We calculate percent error using

|bandwidth,, — bandwidth,,| .

100
bandwidth,,

where bandwidth,, is the measured bandwidth and
bandwidth,, is the predicted bandwidth. Our approach re-
sulted in a 18.38 percent error for the training data and a
14.61 percent error for the evaluation data. While [22] does
not provide an overall percent error for each predictor, we
calculate it from their downloadable raw performance data.
Their predictor with the lowest error overall is ARS5d that
has a 15.79 percent error. Our approach has slightly lower
prediction error so we can conclude that our approach is vi-
able and that, once again, prediction performance is very
dependent on the workload.

6. Prediction Services

We created several services to provide predictions and
the architecture of these services is shown in Figure 2.
These services are implemented with web services and have
a Web Service Description Language (WSDL) interface
definition and can be communicated with using the SOAP
protocol. We currently host our services in a Globus ver-
sion 4 [8] container and use the Globus tools to generate
Java bindings for our WSDL service definitions.

The core service is the Learning Service that is very gen-
eral and is simply a web service interface layered atop our
instance-based learning prediction techniques. This service
contains one or more predictors where each predictor has

Table 9. The features in a file transfer time experience for the data from [22].

Input Features

Feature Type

Description

Source String | The source site of the file.

Destination | String | The destination site of the file.

Size Integer | The size of the file.

Time Long The prediction or insertion time.
Output Features

Feature Type Description

Bandwidth | Float

The bandwidth during the transfer took.

Table 10. File transfer time prediction error for data from [22].

Mean Error | Percent of Mean | Mean Bandwidth | Percent
Workload (KB/sec) Bandwidth (KB/sec) Error
Evaluation 822.03 13.33 6,166.22 14.61
Training 946.53 15.67 6,038.65 18.38

it’s own experience schema, experience base, and predic-
tion configuration. In this application, it has three predic-
tors, one each for execution times, queue wait times, and
GridFTP times. The interface to this service is relatively
simple and allows a client to get a list of predictors, get
information about each predictor, request a prediction, and
insert an experience.

To keep the Learning Service general, we created a
Scheduler Prediction Service and a GridFTP Prediction Ser-
vice to perform functions specifically related to the types of
predictions described in this paper. The GridFTP Predic-
tion Service is relatively simple and simply passes predic-
tion requests and new experiences through to the Learning
Service.

It is also a relatively simple matter for the Scheduler Pre-
diction Service to provide an execution time prediction. The
client can either provide a description of a job or a job iden-
tifier. If a job identifier is provided, the service looks up the
job description from the set of already submitted jobs. The
job description is then passed to the Learning Service for a
prediction to be formed. To insert an execution time expe-
rience, the Scheduler Prediction Service tracks the status of
jobs using job state information sent to it by the Information
Gatherer. When it notices that a job has finished, it inserts
an experience for this job into the Learning Service.

To handle a wait time prediction request, the Scheduler
Prediction Service receives a message from a client that
contains information about a job to predict the wait time of.
This information could describe a job that might be submit-
ted or be the job identifier of a job that was already submit-
ted. The Scheduler Prediction Service then combines job in-

formation with a description of the jobs that are running and
waiting on the system (provided by the Information Gath-
erer) to form a query to pass to the Learning Service. The
Scheduler Prediction Service also stores information about
the conditions when every job is submitted to the system.
When each job begins to execute, this information is used to
form a wait time experience that is inserted into the Learn-
ing Service so that more information is available for wait
time predictions.

The final service in our architecture is the Information
Gatherer that gathers information from the local workload
manager and GridFTP server. There are a number of ways
that this service can get the information it needs. In the cur-
rent design, it periodically executes a command provided by
the workload manager to get the state of jobs in the system.
This state is then passed on to the Scheduler Prediction Ser-
vice to be used when providing start time predictions and
when creating execution time and wait time experiences.
The Information Gatherer simply watches the GridFTP per-
formance log files to obtain file transfer experiences to send
to the GridFTP Prediction Service.

6.1. Client Interfaces

The prediction service has a WSDL interface definition
so it is straightforward to generate client side APIs in a num-
ber of programming languages. We are primarily working
with Java and so are currently only generating Java APIs.

We have created prototype command line clients that use
the generated Java client API. Two possible approaches are
to have command line programs that are named generally or
that are named to resemble the commands provided by the

Server

Scheduler Prediction
Service

request prediction
Sert experience ™

Prediction -
Client request predictions 4

Learning
Service

GridFTP Prediction
Service

request prediction
insert experience” |

.

jobs in system

transfer
experiences

Information Gatherer

4

job information

Workload
Manager

Cluster

A
transfer
experience

GridFTP

Figure 2. Architecture of our prototype prediction services.

local workload manager. Our target audience for the com-
mand line programs is users of a distributed system with
many different clusters. Since there are a number of differ-
ent workload managers available for clusters, we chose to
name our command line programs in a general way. These
programs are:

e pred_runtime is used to request a run time predic-
tion. A system and job identifier can be supplied for
an already submitted job or a description of a yet to be
submitted job can be provided on the command line or
in a file.

e pred waittime is used to request a wait time pre-
diction. Either a system and job identifier can be sup-
plied or a description of a job.

e pred_transtime is used to request a transfer time
prediction. The default and only protocol supported
currently is GridFTP. Either a list of local files can be
provided along with a destination host or a description
of the files to be transfered can be provided along with
the source and destination hosts.

7. Conclusions and Future Work

This paper presents our instance-based learning tech-
niques to predict job execution times, batch scheduling
queue wait times, and file transfer times. Our results show
that the prediction errors for data obtained from the TACC

lonestar system are 37% of mean transfer time for file trans-
fer time, 115% of mean queue wait time, and 72% of mean
execution time. We also found that our approach has lower
prediction error on other workloads and has lower predic-
tion error than previous approaches. In future work, we plan
to examine what features should be used for wait time ex-
periences and GridFTP experiences, as there are a number
of derived features to explore. Finally, we wish to examine
the performance of our prediction techniques on data gath-
ered from other clusters in the distributed systems TACC
participates in.

We also provide a description of the prototype prediction
services that we have created. In the future, we will be gain-
ing more experience managing these deployed services. We
expect to refine our service interfaces and command line in-
terfaces as well as provide one or more portlets so that our
predictions are easy to incorporate into user portals and sci-
ence gateways. If an information service become widely
deployed, we will investigate gathering the data we need
from that service rather than having our own information
gathering daemon. We will also be investigating whether
and how our services should automatically optimize their
prediction parameters.

References

[1] William Allcock, John Bresnahan, Rajkumar Ket-
timuthu, Michael Link, Catalin Dumitrescu, loan
Raicu, and Ian Foster. The Globus Striped GridFTP

(2]

(3]

(4]

(5]

(6]

(7]

(8]

[9]

(10]

(11]

[12]

[13]

Framework and Server. In Proceedings of the SC05
Conference, November 2005.

Christopher Atkeson, Andrew Moore, and Stefan
Schaal. Locally Weighted Learning. Artificial Intel-
ligence Review, 11:11-73, 1997.

John Brevik, Daniel Nurmi, and Rich Wolski. Predict-
ing Bounds on Queuing Delay for Batch-scheduled
Parallel Machines. In Proceedings of ACM Principles
and Practices of Parallel Programming, March 2006.

Murthy Devarakonda and Ravishankar Iyer.
Predictability of Process Resource Usage: A
Measurement-Based Study on UNIX. [EEE Trans-
actions on Software Engineering, 15(12):1579-1586,
December 1989.

Peter Dinda. Online Prediction of the Running Time
of Tasks. In Proceedings of the 10th IEEE Interna-
tional Symposium on High Performance Distributed
Computing, 2001.

Allen Downey. Predicting Queue Times on Space-
Sharing Parallel Computers. In International Parallel
Processing Symposium, 1997.

Enabling Grids for E-sciencE.
egee.org.

http://public.eu-

Tan Foster. Globus Toolkit Version 4: Software for
Service-Oriented Systems. 3779:2—13, 2005.

Jonathan Geisler, Valerie Taylor, Xingfu Wu, and Rick
Stevens. Using kernel coupling to improve the perfor-
mance of multithreaded applications. In Proceedings
of the 16th International Conference on Parallel and
Distributed Computing Systems, 2003.

Richard Gibbons. A Historical Application Profiler
for Use by Parallel Scheculers. Lecture Notes on Com-
puter Science, 1297:58-75, 1997.

David E. Goldberg. Genetic Algorithms in Search, Op-
timization, and Machine Learning. Addison-Wesley,
1989.

M. Iverson, F. Ozguner, and L. Potter. Statistical Pre-
diction of Task Execution Times Through Analytic
Benchmarking for Scheduling in a Heterogeneous En-
vironment. In Proceedings of the IPPS/SPDP’99 Het-
erogeneous Computing Workshop, 1999.

N. Kapadia, J. Fortes, and C. Brodley. Predic-
tive Application Performance Modeling in a Com-
putational Grid Environment. In Proceedings of the
8th High Performance Distributed Computing Confer-
ence, 1999.

[14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]
[22]

(23]

[24]

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Op-
timization by simulated annealing. Science, Number
4598, 13 May 1983, 220, 4598:671-680, 1983.

Hui Li, David Groep, Jeff Templon, and Lex Wolters.
Predicting Job Start Times on Clusters. In Proceed-
ings of the IEEE International Symposium on Cluster
Computing and the Grid, pages 301-308, April 2004.

Hui Li, David Groep, and Lex Wolters. Efficient Re-
sponse Time Predictions by Exploiting Application
and Resource State Similarities. In Proceedings of the
6th IEEE/ACM International Workshop on Grid Com-
puting, pages 234-241, November 2005.

The Open Science Grid.

http://www.opensciencegrid.org.

Jennifer Schopf and Francine Berman. Performance
Prediction in Production Environments. In /4th Inter-
national Parallel Processing Symposium and the 9th
Symposium on Parallel and Distributed Processing,
1998.

Warren Smith, lan Foster, and Valerie Taylor. Predict-
ing Application Run Times Using Historical Informa-
tion. Lecture Notes on Computer Science, 1459:122—
142, 1998.

Warren Smith, Valerie Taylor, and Ian Foster. Using
Run-Time Predictions to Estimate Queue Wait Times
and Improve Scheduler Performance. In Proceedings
of the IPPS/SPDP’99 Workshop on Job Scheduling
Strategies for Parallel Processing, 1999.

The TeraGrid. http://www.teragrid.org.

Sudharshan Vazhkudai, Jennifer M. Schopf, and Ian
Foster. Predicting the Performance of Wide Area Data
Transfers. In Proceedings of the 2002 International

Parallel and Distributed Processing Symposium, May
2002.

D. R. Wilson and T. R. Martinez. Improved Heteroge-
neous Distance Functions. Journal of Artificial Intel-
ligence Research, 6:1-34, 1997.

Richard Wolski. Dynamically Forecasting Network
Performance Using the Network Weather Service.
Journal of Cluster Computing, 1:119-132, January
1998.

