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Abstract
Due to the complexity associated with developing parallel applica-
tions, scientists and engineers rely on high-level software libraries
such as PETSc, ScaLAPACK and PESSL to ease this task. Such
libraries assist developers by providing abstractions for mathemati-
cal operations, data representation and management of parallel lay-
outs of the data, while internally using communication libraries such
as MPI and PVM. With high-level libraries managing data layout
and communication internally, it can be expected that they organize
application data suitably for performing the library operations opti-
mally. However, this places additional overhead on the underlying
communication library by making the data layout noncontiguous in
memory and communication volumes (data transferred by a process
to each of the other processes) nonuniform. In this paper, we ana-
lyze the overheads associated with these two aspects (noncontiguous
data layouts and nonuniform communication volumes) in the context
of the PETSc software toolkit over the MPI communication library.
We describe the issues with the current approaches used by MPICH2
(an implementation of MPI), propose different approaches to handle
these issues and evaluate these approaches with micro-benchmarks
as well as an application over the PETSc software library. Our ex-
perimental results demonstrate close to an order of magnitude im-
provement in the performance of a 3-D Laplacian multi-grid solver
application when evaluated on a 128 processor cluster.

1 Introduction
Developing large-scale parallel applications and simulations
has been a cumbersome and inherently daunting task, owing
to the complexity of current generation parallel systems. Ac-
cordingly, scientists and engineers rely on high-level software
libraries such as PETSc [1, 2], ScaLAPACK [3] and PESSL to
ease implementation and minimize the development cycle re-
quired to parallelize their application. These high-level soft-
ware libraries internally use parallel communication libraries
such as the Message Passing Interface (MPI) [6] or the Par-
allel Virtual Machine (PVM) [20] to move appropriate data
between processes as needed.
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Most scientific applications formulate the physical equa-
tions corresponding to problems in discrete numerical forms.
Similarly, they represent the domain on which they intend to
solve the equation into a grid of data points. Such formulation
involves representing the problem domain (1-D, 2-D or 3-D)
as a structured grid, unstructured grid or adaptive mesh, and
evaluating the discretized equations using the associated data.
High-level software libraries assist such a representation by
providing abstractions for mathematical operations, data rep-
resentation and management of parallel layouts of the data as
required by the application.

With the high-level libraries managing the data layout in-
ternally, it is only intuitive for them to choose to organize the
data in representations suitable for performing the library op-
erations optimally. However, this places additional overhead
on the underlying communication library in two aspects:

Noncontiguous data layout: Since the overall data layout
is optimized for the library operations, the partial data that
needs to be communicated to other processes tends to be laid
out noncontiguously in memory. For example, representing a
2-D grid as a contiguous vector might be optimal for compu-
tation. However, if a process needs to communicate a column
of the grid to its neighbor, this partial data is now noncontigu-
ously laid out in memory with a uniform stride.

Nonuniform communication volumes: In grid layouts
(e.g., structured grids) several applications communicate only
(or mostly) with their immediate neighbors. Depending on
the mapping of data to processes in each dimension (e.g., a
process could potentially manage a nonsquare region in a 2-
D grid) and different discretization models (e.g., star or box-
type stencils, as will be described in Section 2), the amount
of data communicated to different neighbors can be different.
In short, depending on the way the high-level library manages
data, a process can communicate vastly different volumes of
data with each of the other processes in the system.

In this paper, we analyze the overheads associated with
these two aspects (noncontiguity in data layout and nonunifor-
mity in communication volumes), in the context of the PETSc
software toolkit over MPI. We describe the issues with cur-
rent approaches used by MPICH2 [17] (an implementation of
MPI) and its derivatives (e.g., MVAPICH2 [10] from Ohio
State University) and propose different approaches for han-
dling these issues. Specifically, for the first aspect (nonuni-
form data processing), we propose a new dual-headed lookup-
based design for handling inefficiencies with noncontiguous
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data processing. For the second aspect (nonuniform commu-
nication volumes), we describe multiple designs for different
operations that support nonuniform communication volumes
(e.g., MPI Allgatherv, MPI Alltoallw).

Apart from proposing and describing the different designs,
we also experimentally evaluate each of them to illustrate the
inefficiencies associated with existing approaches and the ben-
efits obtainable with our approaches. Next, we evaluate our in-
tegrated framework (comprising of all our new designs) with
the PETSc toolkit to understand the impact of these designs on
high-level software libraries. Finally, we evaluate our frame-
work with a 3-D Laplacian multi-grid solver application using
the PETSc library over MPI. Our experimental results demon-
strate that most current approaches do not follow any sophis-
ticated mechanisms to enhance the nonuniform data process-
ing and communication and use identical mechanisms as uni-
form data processing; this leads to significant loss in the per-
formance and scalability of applications. On the other hand,
sophisticated schemes specifically tuned for nonuniform data
communication can avoid such inefficiencies and achieve high
performance. For example, with our framework, we could
achieve close to an order of magnitude improvement in the
performance of a 3-D Laplacian multi-grid solver application
on a cluster of 128 processors.

2 The PETSc Toolkit
The Portable Extensible Toolkit for Scientific Computation
(PETSc) was developed in the Mathematics and Computer
Science Division at the Argonne National Laboratory. PETSc
is a set of software tools for users writing large-scale applica-
tion code involving solutions to Partial Differential Equations
(PDEs). Application domains currently using PETSc include
Nanosimulations, Biological sciences, Fusion, Geosciences,
Environmental/Subsurface flow, Computational Fluid Dynam-
ics, Wave propagation and others.

Figure 1 describes the abstract components of PETSc. Like
other high-level software libraries, PETSc provides a suite of
data structures and routines to create vectors, matrices, and
distributed arrays (sequential and parallel). It also provides
routines for linear and nonlinear numerical solvers to be used
in applications written in C, C++, Fortran and Python. Time-
stepping methods and graphics are incorporated as well.

PETSc utilizes MPI for inter-process communication while
providing implicit message passing for the application, i.e., it
transparently handles the moving of data between processes
without requiring the application to directly call any data trans-
fer routines. This includes handling parallel data layouts (par-
allel vectors and matrices), communicating ghost point data
(data points that are needed for computation, but reside on a
different process memory) and others.

2.1 Handling Parallel Data Layouts
As mentioned earlier, PETSc provides mathematical abstrac-
tions like matrices, vectors, and utilities like distributed arrays
to represent a grid in a parallel manner, thus distributing data
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Figure 1: PETSc Architecture
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Figure 2: Ghost Points: Bordering portions of process’ local data that
is used for computation

objects across processors (Figure 2). However, to evaluate a
local function, each process requires its local portion of the
data as well as its bordering portions or ghost positions, that
are owned by the neighboring processes. This data layout pat-
tern presents three interesting challenges in communication:
(i) noncontiguous data layout, (ii) nonuniform communication
volumes to different processes and (iii) nonuniform set of pro-
cesses that are communicated with.

Noncontiguous data layout: Application data is repre-
sented in a PETSc vector object which is a contiguous array
on each processor. When this data corresponds to a multidi-
mensional structured grid, the array values are contiguous on
the first dimension but strided on the other dimensions. Fur-
ther, each grid point might have multiple field values (for e.g.,
pressure, temperature, x-velocity and y-velocity) which get
stored interlaced in the PETSc vector. This representation al-
lows PETSc to perform the required mathematical operations
in an efficient manner. Now, when the data corresponding to
the ghost points needs to be communicated to a neighboring
process, PETSc uses MPI to perform this data transfer effi-
ciently. However, from MPI’s perspective, the data that needs
to be communicated is now laid out in a noncontiguous man-
ner. As we will see in Section 3, handling this efficiently is a
non-trivial issue that needs to be addressed.

Nonuniform communication volumes: Depending on the
discretization model used, the number of neighbors that need
to be contacted by a process and the volume of data that needs
to be transferred to each neighbor differs. For example, Fig-
ure 3 illustrates two such discretization models, namely box-
type stencil and star-type stencil. As shown in the figure, in
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Figure 3: Data Layout Models: Box-type Stencil and Star-type Stencil

a star-type stencil, each process has to communicate with two
neighbors in each dimension, i.e., 4 processes in a 2-D grid.
The volume of communication in each dimension is the same,
but could differ across dimensions (e.g., if a process manages
a nonsquare portion of the grid). A box-type stencil is more
complicated with respect to the communication pattern. In this
model, each process has to communicate with four neighbors
in each dimension, two along the sides and two along the cor-
ners. The interesting aspect in this communication pattern is
that the volume of data communicated to the neighbors that
share a side is typically much larger than the volume of data
communicated to the neighbors that share only a corner. Fur-
ther, as the dimensionality of the grid increases, the number of
different volumes that need to be communicated could poten-
tially increase quadratically.

Nonuniform set of processes to communicate with: As
mentioned earlier, applications solving PDEs typically per-
form communication only with their neighbors. This is han-
dled with PETSc using MPI collective operations (e.g., MPI
Alltoallw) where each process communicates a non-zero
amount of data to its neighbors and zero data to the rest of the
processes. This can be considered to be a special case of the
previous aspect (nonuniform communication volumes), but is
relevant to note separately due to its potential to minimize the
impact of skew if designed appropriately. It is to be noted that
all processes perform communication with a set of processes
during the collective operation, but each process does not com-
municate with every other process. Thus, if a set of processes
are delayed, if appropriately designed, the collective commu-
nication operation should not delay a process which does not
belong to the set of delayed processes.

3 Understanding upper-layer require-
ments on MPI

In this section we describe implications of the requirements
from upper-layers (such as high-level software libraries) on
MPI. Specifically, we analyze MPICH2 (a high-performance
open-source MPI implementation from Argonne National
Laboratory) and its derivate MPI implementations (e.g., MVA-
PICH2 over the InfiniBand network from the Ohio State Uni-
versity), and identify design issues that affect its capability to
handle the requirements from upper layers.

3.1 Issues with Noncontiguous Data
MPI provides a mechanism to describe noncontiguous mem-
ory regions, using MPI derived datatypes. Once a derived
datatype has been created describing the noncontiguous re-
gion, it can be passed as a parameter to MPI communication
functions and the MPI library will handle sending the noncon-
tiguous data. In this way, the use of datatypes in an application
simplifies coding. The alternative to using MPI datatypes is for
the programmer to explicitly pack the noncontiguous data into
a contiguous buffer then send that buffer, and on the receiv-
ing side, the programmer would have to receive the data into a
contiguous intermediate buffer and unpack it.

Let us consider an 8x8 2-D matrix where each element con-
sists of three double-precision floating-point values (Figure 4).
The date in the first column of the matrix would be laid out
noncontiguously in memory as shown in Figure 5. Figure 6
depicts a datatype that could be used to describe this column.
Datatypes are defined recursively, where a new datatype is
built up from other datatypes. In this case a single matrix el-
ement is described by a contiguous datatype of three doubles.
The column of these elements is described by a vector, with a
stride of eight, of the element datatype.

Although the MPI implementation can use network oper-
ations which can directly send from or receive into noncon-
tiguous buffers, e.g., writev in the sockets API, these gen-
erally perform well only for datatypes which are dense, i.e.,
which have medium to large segments of contiguous data. For
sparse noncontiguous datatypes, which consist of many short
contiguous segments, it is often more efficient to pack the data
into an intermediate buffer before sending (Figure 7). Fur-
ther, most MPI implementations perform packing of the data
and the actual communication from the packed buffer in a
pipelined manner to improve performance. Accordingly, an
intermediate buffer of a certain size (depending on the pipelin-
ing granularity) is allocated and data packed into it.

The arrow in Figure 6 shows how much of the derived
datatype has been processed and copied into the intermedi-
ate buffer by the MPI implementation and represents the cur-
rent context of the datatype. This context is internally stored
by the MPI implementation, so that when the next portion of
the datatype is packed (due to the pipelining of packing and
communication), the datatype processing can quickly reload
the context and continue from there instead of re-searching
through the datatype for the appropriate context.

While the context-based datatype processing is efficient in
the simple case where there is no additional processing be-
tween pipeline events, in real implementations this is rarely the
case. For example, before each data packing event, MPICH2
examines the derived datatype to see whether it is sparse or
dense in order to decide whether or not to pack the data into
an intermediate buffer, i.e., it performs a look-ahead in the de-
rived datatype. Thus, the context of the derived datatype is
incremented by the look-ahead amount. In case the datatype
turns out to be sparse, data packing needs to be performed from
the previous context – this is a problem since our current con-
text is already incremented by the look-ahead amount! Cur-
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Figure 4: An 8x8 2-D matrix. Each element con-
sists of three doubles.

0 8 16 192 384

Figure 5: Noncontiguous memory layout of the first column of the matrix.

vector (count=8, stride=8)

double double double
contiguous (count=3)

double double double
contiguous (count=3)

double double double
contiguous (count=3)

Figure 6: MPI datatype describing the first column of the matrix.

copy buffer

Figure 7: Packing part of the first column of the matrix.

rently, this problem is dealt by re-searching the entire derived
datatype for the appropriate context. This search time, how-
ever, increases quadratically with the size of the derived data
type. In Section 4.1 we present an optimization to the data
processing code in MPICH2 to eliminate this overhead.

3.2 Issues with Nonuniform Communication
Volumes

A common model in scientific applications is to repeatedly
perform a computation phase followed by a communication
phase in which all processes communicate at the same time.
To support such models, MPI defines collective communica-
tion operations in which all processes send and receive por-
tions of data. For instance in the MPI Allgather() op-
eration, each process specifies the data to be sent to all other
processes, as well as the buffer into which it will receive the
data from each of the other processes. In this operation the
amount of data that each process sends is required to be the
same, i.e., the volume of data communicated by each process
should be uniform. MPI also provides a variant of this opera-
tion called MPI Allgatherv() which allows each process
to send a different amount of data, i.e., the volume of data
communicated by each process could be nonuniform.

MPICH2 collective communication operations have been
optimized for uniform communication patterns. However,
when there is a large difference between the amount of data
that is sent by each process, these operations perform sub-
optimally. Consider the case where the processes call MPI
Allgatherv() and one process has a large amount of data
to send, while the others have small amounts of data to send.
Because the total amount of data to be sent is large, MPICH2
uses the ring algorithm which is optimal for large messages
(in the uniform communication volumes case). In the ring al-
gorithm, the processes are arranged in a logical ring and each
process receives data from its predecessor and sends data to
its successor. If each process were to send the same amount
of data, the communication would be well balanced, and each
process’ capacity would be fully utilized through continuous
sending and receiving. On the other hand, in our example,

Large Message

Small Message

Figure 8: Allgatherv Ring Algorithm for Large Messages – One large
message in the communication volume set can sequentialize the entire
communication operation

because of the large imbalance of message sizes, most of the
time only one process will be sending and one process will
be receiving a large message; the other processes will be idly
waiting for the next message. Thus, the communication time
would be dominated by the large message being passed around
the ring. Figure 8 illustrates this problem.

In some collective communication patterns used by scien-
tific applications, each process may have different data to send
to different processes. MPI provides the MPI Alltoall()
operation to support such a pattern for uniform communica-
tion volumes (i.e., each process sends the same volume of data
to each of the other processes). MPI Alltoallw() opera-
tion is the nonuniform communication volume counterpart for
MPI Alltoall(). As a special case, MPI Alltoallw()
also provides support for a communication pattern where each
process sends and receives data from some processes, but not
necessarily from every other process – this is achieved by spec-
ifying zero communication volume for the other processes in
the collective operation. For instance, this operation can be
used to perform a nearest-neighbor communication pattern,
where processes are arranged logically in a grid and each pro-
cess exchanges data only with the processes adjacent to it in
the grid. Note that in this operation, every process is exchang-
ing data with some processes, hence it is participating in the
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operations; the process just does not communicate with every
other process in the system.

Because the MPICH2 collective communication operations
are optimized for uniform communication volumes, the MPI
Alltoallw() operation assumes (from a performance stand
point) that the same amount of data is sent and received be-
tween every two processes. So, cases where the communica-
tion volumes are nonuniform might not be handled in the most
efficient way. Specifically, MPI Alltoallw() implementa-
tion requires each process to send and receive a message to ev-
ery other process in a round-robin manner. This approach has
two major disadvantages. First, if a process has no data to ex-
change with another process, sending and receiving zero bytes
of data (as is with the current implementation of MPICH2
and its derivatives) adds an additional synchronization step be-
tween the two processes. For example, in the case of nearest-
neighbor communication, each process will only have data to
exchange with a few other processes, regardless of the number
of processes in the application. Second, let us consider a sce-
nario where process 1 has to send a large message to process
2 and a small message to process 3. Now, in the round-robin
if process 2 comes before process 3, the data to be sent to pro-
cess 2 is processed before that of process 3. In cases where the
processing overhead is large (e.g., if the data is noncontigu-
ous), process 3 could be significantly delayed. On the other
hand, if the smaller messages are sent out first, this can be
avoided. In Section 4.2 we present optimizations to MPICH2
collective communication operations for nonuniform commu-
nication volumes.

4 Redesigning MPI Communication
In this section, we describe different approaches to handle the
issues pointed out in Section 3. In Section 5, we evaluate our
schemes independently as well as with PETSc-based applica-
tions to understand the benefits achievable.

4.1 Processing Noncontiguous Data
As described in Section 3.1, approaches used by current MPI
implementations to handle noncontiguous data rely on contin-
uous parsing of the derived datatype. If a look-ahead needs to
be performed within the datatype to understand if the portions
of the datatype are sparse or dense, such continuity is lost. This
results in the algorithm having to search the derived datatype at
each step to find the position till where it had previously parsed
and continue from there. Thus, the searching time needed to
find the previous position increases quadratically with the size
of the derived datatype.

In this section, we present a new approach to handle such is-
sues with derived datatype processing, namely a dual-context
look-ahead approach (figure 9). The primary idea of this ap-
proach is to utilize two contexts to parse the datatype instead
of one. These two contexts can be thought of as snapshots of
the layout of the derived datatype.

The first context is primarily utilized for look-ahead in or-
der to understand the structure of the upcoming portions of

Context 2 Context 1

Communicate

Look−ahead Processing

Non−contiguous Application Buffers

Intermediate Buffer

Figure 9: Dual-context Look-ahead Design

the derived datatype. This context rolls forward within the
datatype allowing the MPI library to analyze the structure of
the datatype and make a decision on the algorithm to be uti-
lized (for sparse and dense derived datatypes). A second im-
portant functionality of this context is to maintain a list of data
elements that have been parsed by the look-ahead mechanism,
i.e., this context maintains pointers to the data and the lengths
of each element it has parsed through.

The second context is utilized for the actual processing of
the datatype, including packing the data if needed and com-
municating the appropriate data in a pipelined fashion. This
context, instead of directly parsing through the actual datatype,
first parses through the list of data elements that were created
by the first context. Once it has parsed through these elements,
it continues parsing the actual datatype from the point where
the look-ahead had completed.

There are two primary advantages of this approach. First,
this approach is not intrusive into the datatype structures, since
only the first context modifies them; the second context only
works on the copy created by the first context. This allows the
remaining components in the MPI library that rely on datatype
processing to be not affected by these alterations. Second, this
approach keeps track of the initial context of the datatype and
hence completely eliminates the need to re-search the datatype
for the appropriate context.

The only disadvantage of this approach is that it has to main-
tain a copy of the pointers and lengths of the data that the first
context parses through. However, it is to be noted that the
current implementation only parses through a small number
of data elements (e.g., 15); thus this overhead is negligible in
even moderately large datatypes.

4.2 Handling Nonuniform Communication
Volumes

As described in Section 3.2, current collective operations
are highly ill-equipped to deal with applications which use
nonuniform communication volumes, i.e., not all processes
send or receive the same amount of data. When the differ-
ence in the communication volumes is large, several times this
results in sequentialization of the communication. In some
cases, this can also result in increased skew making the appli-
cation more sensitive to load imbalance and system noise.

In this section, we propose different designs for two such
collective communication operations that deal with nonuni-
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form communication volumes, namely MPI Allgatherv
(Section 4.2.1) and MPI Alltoallw (Section 4.2.2).

4.2.1 Enhancing MPI Allgatherv
When the total size of the data that needs to be communicated
is large, MPI Allgatherv currently uses a ring algorithm
(which is optimal for uniform communication). At every step,
each node forwards the data it received in the previous step to
the next node. If one node is sending a large amount of data
and the remaining nodes are sending small amounts of data,
this would essentially sequentialize the transfer of the large
message, thus taking O(N) time for communication, where N
is the number of nodes participating in the operation.

On the other hand, if we can quickly identify the commu-
nication volumes of all the processes, we can design more
sophisticated algorithms for nonuniform communication vol-
umes. Thus, we break down this problem into two sub-
problems: (i) designing an efficient approach to quickly iden-
tify large nonuniformities in the communication volume set
and (ii) designing a more efficient algorithm based on the
knowledge of the nonuniform communication volumes.

Identifying Nonuniformities in the Communication Vol-
ume Set: We formulate this subproblem as an outlier detection
problem, i.e., we need to identify if a small subset of the com-
munication volume set falls significantly outside the range of
the rest of the communication volume set. We do this by com-
puting the outlier ratio, using equation 1, and comparing this
to a threshold value.

k select(COMM VOL SET, N)
k select(COMM VOL SET, N × OUTLIER FRACT)

(1)

In this equation, COMM VOL SET is the set of communi-
cation volumes used by each of the processes in the system
(note that this information is already available at each pro-
cess in an MPI Allgatherv operation), N is the number
of processes participating in the communication operation and
OUTLIER FRACT is the fraction of processes that have to be
outside the range of volumes encompassing the bulk of the
messages in order to called outliers.

In this equation, k select() allows us to determine the
kth smallest element of a set of elements. We utilize the al-
gorithm by Floyd and Rivest to evaluate k select() in lin-
ear time. Thus, the entire mathematical formulation described
above can be obtained in linear time. It is to be noted that
the existing approach parses through the entire communica-
tion volume set to identify the total communication volume,
which already is linear time. With our current approach, we
are increasing the coefficient of the linear time taken, but not
its computational complexity.

Designing Efficient Algorithms based on the Communica-
tion Volume Characteristics: Based on the knowledge of the
communication volumes that is obtained as described above,
in cases where some of the communication volumes are sig-
nificantly larger than the rest, we use two algorithms.

Phase 0 Phase 1 Phase 2

Figure 10: Recursive doubling algorithm for eight processes

Phase 0 Phase 1 Phase 2

Figure 11: Dissemination algorithm for five processes

The first algorithm is a recursive doubling approach which
is used when power-of-two number of processes are partici-
pating in the communication. The second algorithm is a vari-
ant of the dissemination algorithm [8], and is used for non-
power-of-two number of processes. The recursive doubling
algorithm proceeds in log N phases, where in each phase each
process exchanges data with another process. With each phase
the amount of data exchanged increases, as each pair of pro-
cesses exchange not only their own data, but the data which
they have received in the previous phases. Figure 10 shows
the basic communication pattern for the recursive doubling al-
gorithm for eight processes.

The dissemination algorithm proceeds in �log N� phases. In
phase p, each process with rank i sends its data to the process
with rank i + 2p mod N , and receives data from the process
with rank 1 − 2p mod N , where N is the number of partic-
ipating processes. As with the recursive doubling algorithm,
the amount of data sent and received in each phase increases
from the previous phase. Figure 11 shows the basic communi-
cation pattern for the dissemination algorithm.

The main benefit with both these algorithms is that the
movement of the large outlier messages to all the processes is
carried out simultaneously by multiple process. For example,
if we just consider the movement of one large message, the
data follows a binomial tree pattern, instead of the sequential
pattern in the previous ring algorithm.

4.2.2 Enhancing MPI Alltoallw
Current algorithms for implementing MPI Alltoallw,
again, do not carefully consider the overheads associated with
nonuniform communication volumes. Specifically, if some
processes either communicate significantly larger volumes of
data that requires preprocessing (e.g., noncontiguous data that
requires to be packed) as compared to the others or do not
communicate at all, current algorithms perform suboptimally.

In our approach, for each process, we divide the data to be
communicated to every other process into bins based on the
volume of data to be communicated. If the data that is be-
ing communicated requires preprocessing, we process the bins
containing small messages first, and then move to the bins con-
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taining larger messages. In this approach, since the processing
of the data is sequentialized by the host processor, remote pro-
cesses that communicate only small amounts of data do not
have to wait for the larger data messages to be processed. In
the existing approach, however, no such prioritization is per-
formed potentially causing the wait times for processes that
only communicate small amounts to be higher than required.

Processes to which there is no communication are placed in
a separate bin, which is completely exempted. This reduces
unnecessary skew in the collective operation. In our imple-
mentation, we used three bins – zero size messages, small mes-
sages (lesser than a threshold) and large messages.

5 Experimental Evaluation
In this section, we evaluate the approaches described in Sec-
tion 4 and compare them with the existing approaches. We
perform microbenchmark-level evaluations of the proposed
schemes in Sections 5.2 and 5.3. Evaluation with PETSc
benchmarks is performed in Section 5.4 and with the 3-D
Laplacian multi-grid solver application in Section 5.5.

5.1 Experimental Testbed
The testbed used in this paper consisted of two clusters:
Cluster 1: 32-node cluster of dual Intel EM64T 3.6GHz pro-
cessors, 2MB L2 cache, 2GB DDR2 400MHz SDRAM and
Intel E7520 (Lindenhurst) chipset. We used RedHat AS4 with
the kernel.org kernel 2.6.16.
Cluster 2: 32-node cluster of dual AMD Opteron 2.8GHz
processors, 1MB L2 cache, 4GB DDR 400MHz SDRAM and
NVidia 2200/2050 chipset. We used RedHat AS4 with the ker-
nel.org kernel 2.6.16.
Network: All 64 nodes in the machines were connected to-
gether with Mellanox MT25208 InfiniBand DDR adapters
through a 144-port IB switch.
Software: We used the the OpenFabrics Gen2 stack as the un-
derlying IB driver and verbs interface. Above this interface,
we used the MVAPICH2 implementation of MPI (which is a
derivative of the MPICH2 stack from Argonne National Lab-
oratory) over InfiniBand. Specifically, we used MVAPICH2-
0.9.5 as the base case and compared it against our optimiza-
tions to it (labeled as MVAPICH2-New).

5.2 Evaluating Noncontiguous Data Processing
Overheads

In this section, we evaluate our optimizations to the noncon-
tiguous datatype processing using a benchmark which sends a
matrix from one process to another while transposing it. In the
benchmark the sender sends the data in column-major order
while the sender receives the data in row-major order, effec-
tively transposing the matrix. Because of the noncontiguous
layout of the data being sent, the performance of this bench-
mark is highly dependent on the performance of the MPI im-
plementation’s noncontiguous datatype processing.

In Figure 12, we see that as the size of the matrix being
transposed increases, the time to perform the transpose in-
crease much faster for the original implementation (labeled
MVAPICH2-0.9.5), than for the optimized implementation
(labeled MVAPICH2-New). For the 1024x1024 sized matrix,
the optimizations give over 85% improvement over the origi-
nal implementation. This improvement is expected to further
increase for larger matrices.

Figure 13 shows the breakdown of the time spent (normal-
ized to 100%) in the transpose benchmark for the current ap-
proach and the optimized approach. The figure shows the
time spent performing communication, packing the data, and
searching for the current location in the datatype. As expected,
because the original implementation loses its context within
the derived datatype each time it sends a portion of the non-
contiguous data, the search time increases dramatically with
the size of the matrix. In the optimized implementation we
have eliminated the search time altogether by using the dual-
context approach, and so the communication dominates the
time to perform the benchmark.

5.3 Evaluating Nonuniform Volume Collective
Communication

We next evaluate the performance of our optimizations for
nonuniform communication patterns using MPI benchmarks.

In the first benchmark, we measure the average latency of
MPI Allgatherv when Process 0 sends a large amount of
data while the other processes send only one double (Fig-
ure 14). The graph on the left shows the latency of MPI
Allgatherv for 64 processes as we vary the amount of data
that Process 0 sends while the graph on the right shows the
latency when Process 0 sends 32 KB of data as we vary the
number of processes. For both cases, the latency of the origi-
nal implementation increases faster than our optimized imple-
mentation. We see up to a 20% improvement for 64 processes.

Our next benchmark evaluates the performance of MPI
Alltoallw for nonuniform communication. In this bench-
mark, processes are arranged in a logical ring and each process
has a 10x10 matrix of doubles to exchange with its successor
and predecessor, but nothing to exchange with other processes.
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Figure 12: Performance of matrix transpose benchmark
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Figure 13: Datatype processing breakup: (a) Current approach and (b) Proposed dual-context look-ahead approach
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Figure 14: MPI Allgatherv Performance: (a) With varying problem size and (b) With varying system size

Figure 15 shows the results of this benchmark as the number of
processes is varied. We see that the original implementation is
much more easily impacted by any minor imbalance between
processes as compared to our optimized implementation. Note
that we did not add any artificial skew to the benchmark, but
given that we used a combination of two different clusters in
our evaluation (32 Intel nodes and 32 Opteron nodes), some
skew is bound to be present between the processes. For the
128 processor case we see over 88% improvement. The eval-
uation till 32 processes was done completely on the Opteron
cluster – the benefit in this case is about 50%.

5.4 PETSc Vector Scatter Benchmark
We also evaluated the benefit of our optimization at the PETSc
library-level using a vector scatter benchmark to stress the
communication portion of PETSc.

In this benchmark, we create two 1-D grids of elements
with one degree of freedom (i.e., each element is comprised
of one double precision physical element). These 1-D grids
are initially passed over to PETSc to lay them out in a parallel
manner across multiple processes. Once laid out, each process
scatters the elements in its portion of the first vector to unique
portions of the second vector. This benchmark emulates the
communication portion of applications that require to operate
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Figure 15: MPI Alltoallw performance

on multiple 1-D grid structures where the elements of each of
the grid structures is distributed across the system.

Because of the poor performance of the original implemen-
tation, the PETSc library by default does not use the derived
datatypes or collective operations. Rather, it uses a hand-tuned
algorithm which explicitly performs the packing of data and
individual sends and receives to scatter the vector. Together
with this hand-tuned option, PETSc also has a mechanism to
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use derived datatypes and collective operations for MPI imple-
mentations which optimize these routines.

We compared the performance of PETSc for the three im-
plementations: (i) the default hand-tuned implementation (la-
beled as hand-tuned), (ii) using the implementation that uses
derived datatypes and collective operations for the original
MPI (MVAPICH2-0.9.5) and (iii) using derived datatypes and
collective operations with our optimized MPI (MVAPICH2-
New). Figure 16 shows the results of this benchmark as we
varied the number of processes. The 1-D grid size is scaled
according to the number of processes, so the number of ele-
ments managed by each process is constant across the graph.
The graph on the left shows the latency of the three imple-
mentations, while the graph on the right shows the percentage
improvement of the optimized implementation to the original
implementation and the hand-tuned implementation. We see
that our optimized implementation shows a large improvement
over the original implementation as the number of processors
increases: over 95% for 128 processors.

The hand-tuned implementation performs slightly better
than our optimized implementation (almost 4% at 128 pro-
cesses). This indicates that there are more optimizations that
we can apply to MPI. Also, note that though the hand-tuned
implementation does perform better, it requires implementing
the packing and communication pattern explicitly, which in
general complicates the library communication implementa-
tion. By using MPI capabilities (derived datatypes and col-
lective operations), these implementations can be simplified,
which may be a desirable trade-off considering the small per-
formance gain from using a hand-tuned algorithm.

5.5 3-D Laplacian Multi-grid Solver
In this section, we evaluate the performance of a 3-D Laplacian
multi-grid solver application that is modeled by the following
partial differential equation:

� = i.
∂u

∂x
+ j.

∂u

∂y
+ k.

∂u

∂z
(2)

BoundaryConditions : 0 ≤ x, y, z ≤ 1

A grid of size 100x100x100 is used with one degree of free-
dom. The data grid varies the values of the variants (x, y, z)
uniformly across the grid in each dimension. The application
itself utilizes PETSc to solve this equation using a multi-grid
solver. In our experiments, we evaluated the application by
using three levels in the multi-grid to solve the equation.

As shown in Figure 17, the execution time of the appli-
cation using our optimized implementation continues to de-
crease even up to 128 processes. However, with the origi-
nal implementation, the execution time increases after 32 pro-
cesses. This indicates that the application using the optimized
implementation scales better than when using the original im-
plementation. Our optimized implementation gives almost
90% improvement in the execution time for 128 processes.
When using the hand-tuned implementation, the application
performs better than our implementation by just over 10% for

4 processors. As the number of processors increases, however,
this gap decreases, and is less than 3% for 128 processes.

6 Related Work
There has been a lot of previous work on optimizing the perfor-
mance of noncontiguous data transfers, including packing and
unpacking techniques [4, 18, 7] and approaches to utilize intel-
ligent network adapters [23, 24, 19]. However, none of these
approaches consider the search time to be a significant bottle-
neck. But, as we described in this paper, the search time within
a datatype increases quadratically with the datatype size and
becomes a significant bottleneck for large datatypes. In [18],
the authors proposed an efficient mechanism to reduce this
search time in simple cases; however, with advanced schemes,
especially those involving look-ahead, this scheme loses its
benefit. There has also been a significant amount of work
in optimizing various collective operations including broad-
cast [9, 13, 12, 14], reduce [16, 15], allgather [11, 14, 21], all-
toall [22], etc. Most of this work has been for uniform volume
communication. There has also been some limited work to op-
timize the performance of collective operations that perform
nonuniform volume communication [5]. However, the actual
approaches proposed in this literature are to optimize perfor-
mance based on network topology rather than the variation in
the communication volumes between processes. In summary,
this paper addresses an important problem and presents vari-
ous novel designs to tackle them in an efficient manner.

7 Concluding Remarks
In this paper, we analyzed two kinds of overheads (noncon-
tiguous data layouts and nonuniform volumes of communi-
cation to different processes) that are typically created as a
byproduct of multi-layered structures containing at least the
applications, high-level software libraries and the communi-
cation libraries. We used the PETSc software library and the
MPI communication library as examples of a case study and
noticed that current approaches in MPI implementations are
tuned to support contiguous and uniform data communication
and are ill-equipped to handle noncontiguous and nonuniform
communication, especially when used together. We designed
sophisticated approaches specifically optimized for nonuni-
form communication of noncontiguous data and demonstrated
significant benefits in some cases. Specifically, our experi-
mental results demonstrate close to an order of magnitude im-
provement in the performance of the 3-D Laplacian multi-grid
solver application on a 128 processor cluster.

In future, we would like to analyze overheads in other high-
level libraries and software such as FLASH.
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