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Abstract

Let P be a family of dipaths. The load of an arc is the
number of dipaths containing this arc. Let π(G, P) be the
maximum of the load of all the arcs and let w(G, P) be the
minimum number of wavelengths (colors) needed to color
the family of dipathsP in such a way that two dipaths with
the same wavelength are arc-disjoint.
Let G be a DAG (Directed Acyclic Graph). An internal

cycle is an oriented cycle such that all the vertices have at
least one predecessor and one successor in G (said other-
wise every cycle contain neither a source nor a sink of G).
Here we prove that if G is a DAG without internal cycle,
then for any family of dipaths P , w(G, P) = π(G, P).
On the opposite we give examples of DAGs with internal
cycles such that the ratio between w(G, P) and π(G, P)
cannot be bounded.
We also consider an apparently new class of DAGs,

which is of interest in itself, those for which there is at
most one dipath from a vertex to another. We call these
digraphs UPP-DAGs. For these UPP-DAGs we show that
the load is equal to the maximum size of a clique of the
conflict graph. We show that if an UPP-DAG has only one
internal cycle, then for any family of dipaths w(G, P) =⌈

4

3
π(G, P)

⌉
and we exhibit an UPP-DAG and a family of

dipaths reaching the bound. We conjecture that the ratio
between w(G, P) and π(G, P) cannot be bounded.

1. Introduction

The problem we consider is motivated by routing, wave-
length assignment and grooming in optical networks. But it
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can be of interest for other applications in parallel comput-
ing, where the graph will represent for example the prece-
dence graph of a program or for scheduling complex op-
erations on pipelined operators. A generic problem in the
design of optical networks, [11, 13]), consists of satisfying
a family of requests (or a traffic matrix) under various con-
straints like capacity constraints. The optimization problem
associated consists in designing, for a given family of re-
quests, a network optimizing some criteria, such as mini-
mizing the number of wavelengths or the number of ADMs
(Add Drop Multiplexers).

A request is satisfied by assigning to it a dipath in the net-
work. A family of requests is satisfied, if we can route them
in such a way that the capacity constraints of the network
are satisfied. This is known as the routing problem. For a
given routing let us define the load of an arc as the number
of routes (dipaths) containing it and the load of the routing
as the maximum load of the arcs. Typically one wants either
to insure that the load of an arc does not exceed the capacity
of this arc or to minimize the load of a routing satisfying a
given family of requests.

Many backbone networks are now WDM optical ones.
Indeed wavelength division multiplexing (WDM) enables
to use the bandwidth of an optical fiber by dividing it in mul-
tiple non overlapping frequencies or wavelength channels.
Satisfying a request in a WDM optical network consists in
assigning to it a route (dipath), but also a wavelength, which
shall stay unchanged if no conversion is allowed. There-
fore the constraint is now that two requests, having the same
wavelength, have to be routed by two arc disjoint dipaths or,
equivalently, two requests whose associated dipaths share
an arc, have to be assigned different wavelengths. Hence
the scarce resource is the number of available wavelengths.
For a given traffic matrix, either one wants to insure that the
family of requests can be satisfied with the available num-



ber of wavelengths or one wants to minimize the number of

wavelengths used. This problem is known in the literature

as the RWA (Routing and Wavelength Assignment) prob-

lem.

Note that requests are satisfied on a virtual (logical) net-

work which is itself embedded in the physical network (in

fact there might be many layers). It is the case for exam-

ple when considering SONET/WDM rings or in MPLS over

WDM networks; in the latter case the RWA problem has to

be considered for the lightpaths [6, 7]. Anyway, at the con-

ceptual level of modeling of this article, the problems are

the same and we will use the word request to indicate a

connection at the upper level.

Minimizing the load or/and the number of wavelengths

is a difficult problem and in general an NP-hard problem.

These problems have been extensively studied in the liter-

ature for various topologies or special families of requests

like multicast or all-to-all (see for example the survey [1] or

[10, 12]). Many particular cases where the minimum num-

ber of wavelengths is equal to the minimum routing load

have been given. For example, in [2] it is shown that for

any digraph and for a multicast instance (all the requests

have the same origin), there is equality and both problems

can be solved in polynomial time. For some topologies the

load might be easily computed, but the minimum number

of wavelengths is NP-hard to compute as it is related to col-

oring problems. This is the case for symmetric trees (see

the survey [5]). However, for symmetric trees it has been

proved that there is equality for the all to all instance ([9])

and approximation algorithms have been given ([5, 8]).

As the RWA problem is very difficult to solve, it is of-

ten split into two separate problems. First one solves the

routing problem by determining dipaths which minimize

the load or are easy to compute like shortest paths. Then,

the routing being given, the wavelength assignment prob-

lem is solved. In that case the input of the problem is not a

family of requests but a family of dipaths P . We will de-

note by π(G, P) the maximum of the load of all the arcs

of the digraph G for the family P . Determining the min-

imum number w(G, P) of wavelengths (colors) needed to
color a family of dipathsP in such a way that two dipaths

with the same wavelength are arc-disjoint is still NP-hard

in that case. Indeed it corresponds to finding the chromatic

number of the conflict graph whose vertices represent the

dipaths and where two vertices are joined if the correspond-

ing dipaths intersect.

There are examples of topologies where there are at most

2 dipaths using an arc (π(G, P) = 2), but where we need
as many wavelengths as we want (see Figure 1 for the ex-

ample for 4 wavelengths) and so for these digraphs there is

no ratio between w(G, P) and π(G, P). In the example
we consider k dipaths from si to ti. The dipaths starts in si,

then go alternatively right and down till they arrive at the

bottom where they go right and up till they arrive at the des-

tination ti. Any two dipaths intersect so the conflict graph

is complete and we need k colors. However the load of an

arc is at most 2.

Note that, if the original digraph has the property that for

any request (x, y) there is a unique dipath from x to y, then

it is equivalent to consider a family of requests or a family

of dipaths.

Here we consider the class of Directed Acyclic Graphs,

DAGs, which plays a central role in Parallel and Distributed

Computing. Part of our motivation came when we tried to

extend the results obtained in [4] for paths motivated by

grooming problems for the paths ([3, 7]). In fact, we first

proved that for rooted trees (directed trees where there is a

unique dipath from the root to any vertex), for any family

of requests, the minimum number of wavelengths is equal

to the load.

The example given above in Figure 1 being a DAG there

is no hope to bound ratio between w(G, P) and π(G, P).
In this paper we fully characterize when w(G, P) =
π(G, P) for a DAG. In fact the necessary and sufficient
condition is that G does not contain what we call an inter-

nal cycle, i.e. an oriented cycle, such that all the vertices

have at least one predecessor and one successor in G (said

otherwise all cycles contain neither a source nor a sink).

We also consider an apparently new class of DAGs,

which is of interest in itself, those for which there is at

most one dipath from a vertex to another. We call this prop-

erty the UPP (Unique diPath Property) and call these di-

graphs UPP-DAGs. For these UPP-DAGs we show that the

load is equal to the maximum size of a clique of the con-

flict graph. We show that if an UPP-DAG has only one

internal cycle, then for any family of dipaths w(G, P) =⌈
4

3
π(G, P)

⌉
and we exhibit an UPP-DAG and a family of

dipaths reaching the bound. We conjecture that the ratio

between w(G, P) and π(G, P) cannot be bounded.
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Figure 1. A pathological example
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Figure 2. An oriented cycle (a) and an internal
cycle (b)

2. Definitions

We model the network by a digraphG. The outdegree of

a vertex x is the number of arcs with initial vertex x (that is

the number of vertices y such that (x, y) is an arc ofG). The
indegree of a vertex x is the number of arcs with terminal

vertex x (that is the number of vertices y such that (y, x)
is an arc of G). A source is a vertex with indegree 0 and a

sink a vertex with outdegree 0. A dipath is a sequence of

vertices x1, x2, . . . , xk such that (xi, xi+1) is an arc of G.

If xk = x1 the dipath is called a directed cycle.

A DAG (Directed Acyclic Graph) is a digraph with no

directed cycle.

An (oriented) cycle in a DAG consists therefore of an

even sequence of dipaths P1, P2, . . . , P2k alternating in di-

rection (see Figure 2a). The vertices inside the dipaths have

indegree and outdegree 1; those where there is a change of

orientation have either indegree 2 and outdegree 0 or inde-

gree 0 and outdegree 2.

An internal cycle of a DAGG is an oriented cycle such

that all its vertices have in G an indegree > 0 and an out-
degree > 0; said otherwise no vertex is a source or a sink.
Hence the vertices where there is a change of orientation in

the cycle have a predecessor (resp. a successor) inG if they

are of indegree 0 (resp. outdegree 0) in the cycle (see Figure

2b).

We will say that a DAG has the UP Property (Unique

Path Property) if between two vertices there is at most one

dipath. A digraph satisfying this property will be called an

UPP-DAG.

If G is an UPP-DAG, then any internal cycle contains at

least 2k ≥ 4 vertices where there is a change of orientation.
Otherwise it will consist of a dipath from x to y and a re-

verse dipath from y to x and so there will be two dipaths

from x to y.

Given a digraph G and a family of dipathsP , the load

of an arc e is the number of dipaths of the family contain-
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Figure 3. Example for a DAG with an internal
cycle

ing e:

load(G, P, e) = |{P : P ∈ P; e ∈ P}|

The load of G for P will be the maximum over all the

arcs of G and we will denote it by π(G, P). We will say
that two dipaths are in conflict (or intersect) if they share

an arc. We will denote by w(G, P) the minimum number
of colors needed to color the dipaths of P in such a way

that two dipaths in conflict (sharing an arc) have different

colors. Note that π(G, P) ≤ w(G, P).
The vertices of the conflict graph associated with

(G, P) are the dipaths of P , two vertices being joined if

their associated dipaths are in conflict.

Then w is the chromatic number of the conflict graph.

Note that π is only upper bounded by the clique number of

the conflict graph; indeed the π dipaths containing an arc

e of maximum load are pairwise in conflict. We will show

later on, that if G is an UPP-DAG then π is exactly the

clique number of the conflict graph.

As we have seen in the introduction, there exist DAGs for

which there exists a set of dipathsP such that π(G, P) =
2 and w(G, P) is as big as we want. These DAGs have
many internal cycles. In Figure 3 , we give an example of

a DAG with one internal cycle and a set of 5 dipaths P



such that π(G, P) = 2 and w(G, P) = 3. The dipaths are
a1, b1, c1 ; b1, c1, d1 ; c1, d1, e1; b1, d1, e1 via the second

dipath from b1 to d1; a1, b1, d1 also via this second dipath.

The load is 2 and the conflict graph is a cycle of length 5 and

so we need 3 colors to color its vertices. Other examples of

family of dipathsP with π(G, P) = 2 and w(G, P) = 3
in an UPP-DAG are given in section 4 (Figures 5 and 9).

3. Main result

In this section we characterize the DAGs for which for

any familyP of dipaths, w(G, P) = π(G, P).

Theorem 1 Let G be a DAG without internal cycle. Then,

for any family of dipaths P , w(G, P) = π(G, P).

Proof: It is by induction on the number of arcs (the theo-

rem being trivially true if there is no arc or one arc). The

idea consists in coloring the arcs of the graph obtained by

deleting one arc and shrinking the dipaths containing this

arc in such a way that the shrinked dipaths have all different

colors and then to extend this coloring to the original graph.

Suppose that the theorem is true for all DAGs with m

arcs and let H be a DAG withm + 1 arcs andQ be a fam-

ily of dipaths of H . Let (x0, y0) be an arc of H such that

d−H(x0) = 0 (x0 is a source in H). Let G be the digraph

obtained from H by deleting the arc (x0, y0) and let P be

the family of dipaths of G obtained from Q as follows. If

Q belongs to Q and does not contain (x0, y0), we put Q in

P; otherwise ifQ contains (x0, y0) we put inP the dipath

Q − (x0, y0) obtained by deleting the arc (x0, y0). In par-
ticular, if Q was reduced to the arc (x0, y0) then we do not
consider it.

We have π(G, P) ≤ π(H, Q). More precisely,

π(H, Q) = max(π(G, P); π0), where π0 denotes the load

of the arc (x0, y0) inH . π0 = load(H, Q, (x0, y0)).
LetQ0 be the family of dipaths ofQ containing (x0, y0)

and let P0 be the family of non empty dipaths associated

with Q0 (obtained by deleting the arc (x0, y0)). Note that
π0 = |Q0| and therefore π0 ≥ |P0| (there are in fact π0 −
|P0| dipaths inQ0 reduced to the arc (x0, y0)).
By induction hypothesis we can color the family P of

dipaths in G with π(G, P) colors. If all the dipaths of
P0 have different colors, we can extend the coloring to

the family Q as follows. If a dipath Q is in Q0 and if

P = Q−(x0, y0) is non empty (i.e. P inP0), then colorQ

with the color of P . Finally color the remaining dipaths of

Q0, namely the arc (x0, y0) with the remaining π0 − |P0|
colors. The rest of the proof consists in showing that, by

appropriate recoloring, we can always find a coloring of the

dipaths ofP such all the dipaths ofP0 have different col-

ors. Suppose this is not the case and consider a coloring of

P which maximizes the number of colors used by the di-

paths ofP0. As the colors are not all different, there exists

at least one color α used by two different dipaths P0 and P1

of P0. Among the π(H, Q) colors choose a color β not

used for P0; such a color exists as we have used at most

|P0|− 1 ≤ π0 − 1 colors for the dipaths ofP0.

We will show that we can obtain a valid coloring of the

dipaths ofP , such that P0 keeps its color α, P1 gets color β

and the other dipaths ofP keep their color if it is different

from α and β and get one of the color α and β otherwise

(some dipaths initially colored α (resp. β) can be recolored

β (resp. α)). So, we obtain a valid coloring in which the di-

paths of P0 use one color more than in the initial coloring

and we get a contradiction with the hypothesis of maximal-

ity.

For that purpose, let us change the color α of P1 to β.

If the coloring obtained is valid we are done. Otherwise

that means that P1 intersects some dipaths with color β;

note that these dipaths are not in P0 as color β was not

used. Recolor with color α the family P2 consisting of

all the dipaths of color β intersecting P1. If we obtain a

valid coloring we are done ; otherwise that means that some

dipaths of P colored initially α intersect some dipaths of

P2. LetP3 be the family of all these dipaths. Then recolor

them β and so on. If at step p, we have recolored a family

Pp from color γ (where γ is α or β) to γ′ (where γ′ is the

other color), we recolor at step p+1 the familyPp+1 of all

the dipaths of color γ′ intersecting some dipaths ofPp.

We continue the process till we arrive to one of the fol-

lowing situations :

Case A : we have obtained a valid coloring and then our

claim is proved

Case B : we have to recolor a dipath already recolored

at a preceding step (said otherwise the family Pp and Pq

intersect for some indices p and q).

Case C: we have to recolor P0.

Let us show that case B cannot happen. Indeed suppose

at step p we have recolored a dipath Pp of color γ with

color γ′; then suppose at a further step q we want to recolor

Pp. That implies that at step q − 1 Pp, which is at this

step of color γ′, intersected a dipath Pq−1 which has been

recolored from color γ to γ′. But this implies that in the

initial coloring both Pp and Pq−1 were of the same color γ,

contradicting the validity of the initial coloring.

Suppose now case C happens, then we will exhibit an

internal cycle, therefore contradicting the hypothesis that

there is no internal cycle and proving the theorem.

Suppose at step p we have to recolor P0; this is due to

the fact that at step p − 1 some dipath Pp−1 has been re-

colored from color β to color α which was due to the ex-

istence of a dipath Pp−2 recolored at step p − 2 from α

to β and so on. Thus, there exists a sequence of dipaths

P1, P2, . . . , Pp−1, Pp = P0, alternating in color and such

that Pi and Pi+1 intersect in some interval Ii = (xi, yi).
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Consider the closed walk

P1[y0, x1], P2[x1, x2], . . . , Pi[xi−1, xi], . . .

. . . Pp−1[xp−2, xp−1], P0[xp−1, y0]

Some of the paths are directed; some are in the reverse

orientation. If Pi[xi−1, xi] is directed, then it does not con-
tain Ii = (xi, yi); otherwise if Pi[xi−1, xi] is in the re-
verse orientation, then it contains Ii = (xi, yi). Therefore,
if Pi[xi−1, xi] is directed and Pi+1[xi, xi+1] is in the re-
verse orientation the interval Ii = (xi, yi) does not belong
to the walk. In contrary, if Pi[xi−1, xi] is in the reverse
orientation and Pi+1[xi, xi+1] is directed then both con-
tain Ii = (xi, yi) and in that case we delete the interval
from the paths of the walk in order to obtain a simple cy-

cle (without multiple edges). Let this cycle be of the form

C = (y0, z1, z2, . . . , zk, y0), where z2h+1 corresponds to

an xi, where Pi[xi−1, xi] is directed and Pi+1[xi, xi+1] is
in the reverse orientation and where z2h+2 corresponds to

an yi, where Pi[xi−1, xi] is in the reverse orientation and
Pi+1[xi, xi+1] is directed. C consists of a sequence of di-

rected and in the reverse orientation paths, where all the ver-

tices different from a zj have in and outdegree 1. Vertices

z2h+1 have in the cycle indegree 2 and outdegree 0; but in

G they have outdegree at least 1, as they are initial vertices

of an interval Ii = (xi, yi). Similarly vertices z2h+2 have

in the cycle indegree 0 and outdegree 2; but in G they have

indegree at least 1, as they are terminal vertices of an inter-

val Ii = (xi, yi). So C is an internal cycle and the theorem

is proved.(see Figure 4 for an example).

Theorem 2 If a DAG G contains an internal cycle there

exists a set P of dipaths such that π(G, P) = 2 and

w(G, P) = 3.

Proof: Consider an internal cycle consisting of 2k dipaths

k between bi and ci and k between bi and ci−1 (the indices

are taken modulo k). So the bi, i = 1, 2, . . . , k, have in-

degree 0 in the cycle and the ci, i = 1, 2, . . . , k, have out-

degree 0 in the cycle. As the cycle is internal, there exist

k vertices ai, i = 1, 2, . . . , k joined to the bi and k ver-

tices di, i = 1, 2, . . . , k to which are joined the ci. The

setP of dipaths are a1, b1, c1 ; b1, c1, d1 ; ai, bi, ci−1, di−1

and ai, bi, ci, di for i = 1, 2, . . . , k and a1, b1, ck, dk. They

form a cycle of odd length 2k + 1 in the conflict graph and
so w = 3 (see Figure 5).

Main Theorem LetG be a DAG. Then, for any family of

dipaths P , w(G, P) = π(G, P) if and only if G does not

contain an internal cycle.
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4. UPP-DAGs

First let us give some nice properties of the conflict graph

associated to a family of dipaths of an UPP-DAG. We will

first show that if G is an UPP-DAG then π is exactly the

clique number of the conflict graph.

Property 3 IfG is an UPP-DAG then the dipaths in conflict

have the following Helly property : if a set of dipaths are

pairwise in conflict, then their intersection is a dipath.

Proof: If two dipaths intersect, then their intersection is a

dipath. Indeed suppose the intersection contains two differ-

ent dipaths (x1, y1) and (x2, y2) in this order. Then between
y1 and x2 there are two dipaths, one via P1 and the other via

P2 (see Figure 6 a).

So suppose P1 and P2 intersect in only one interval

(x1, y1), and P3 intersects P1 in an arc disjoint interval

(u1, v1). W.l.o.g. we may assume that v1 is before x1. Let

P3 intersects P2 in the interval (u2, v2).
Case 1 : v2 is before u1. v2 cannot be after y1 on P2

otherwise there will be a directed cycle. So v2 is before x1

on P2 and we have two dipaths from v2 to x1, one via P2

and the other one via P3 till u1 and then via P1 (see Figure

6 b ).

Case 2 : u2 is after v1 on P3 If u2 is before x1 on P2

we have two dipaths from v1 to x1 one via P1 and the other
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going from v1 to u2 via P3 and to x1 via P2. If u2 is after

y1, we have two dipaths from v1 to u2 one via P3 and the

other via P1 till y1 and P2 (see Figure 6 c and d).

Lemma 4 (Crossing lemma) Let G be an UPP-DAG and

let P1 and P2 be two disjoint dipaths. ConsiderQ1 and Q2

two disjoint dipaths intersecting P1 and P2. IfQ1 intersects

P1 before Q2, then Q2 intersects P2 before Q1.

Proof: Suppose that Q2 intersects P2 after Q1. Two cases

can happen according Q2 intersects first P1 (Figure 7 a) or

P2 (Figure 7 b). In both cases we get a contradiction; indeed

in case a) we have two dipaths between y1 and x′

2 and in

case b) two dipaths between y1 and y′

1.
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Figure 8 shows the only possibility for the 4 dipaths, the

conflict graph associated being a C4.

Corollary 5 LetG be an UPP-DAG. Then its conflict graph

cannot contain a K2,3.

Proof: Let P1 P2 and P3 be two disjoint dipaths. Consider

Q1 and Q2 two disjoint dipaths, such that Qi intersects Pj .

W.l.o.g.; suppose that Q1 intersects P1 before Q2; then Q2

intersects P2 before Q1 and Q2 intersects P3 before Q1 a

contradiction with the lemma applied toQ1,Q2 and P2 and

P3.

We can similarly prove that ifG is an UPP-DAG then its

conflict graph cannot contain a K5 minus two independent

edges.

In the preceding section we have seen that if G is an

UPP-DAG without internal cycle then for any family of ad-

missible requests w = π; indeed the UPP property implies

that each request can be routed via a unique dipath.

Now we will study UPP-DAGs with internal cycles. We

still do not know if the number of wavelengths is bounded

with respect to the load. We strongly conjecture that the

ratio is unbounded. However we will show that for UPP-

DAGs with only one internal cycle there is a tight bound.

Theorem 6 Let G be an UPP-DAG with only one internal

cycle. Then for any family of dipathsP ,

w(G, P) ≤

⌈
4

3
π(G, P)

⌉

Proof: Call C the unique internal cycle ofG. Let (a, b) be
an arc ofC with maximal load (upon the arcs ofC). Define:

• Aa to be the set of vertices v of G such that there is a

dipath from v to a
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Figure 8. Crossing lemma possibility

• Sb to be the set of vertices v of G such that there is a

dipath from b to v.

Remark that Aa ∩ Sb = ∅.
The idea of the proof is first to build an UPP-DAG G̃

without internal cycle, then to apply the result of section 3

to obtain an admissible coloring, which will be updated by

introducing new colors in order to obtain a valid coloring

forG.

Let G̃ be an UPP-DAG built fromG by replacing the arc

(a, b) with two arcs (a,s) and (t,b). The family of dipathsP

is replaced by P̃ where all the dipaths are the same except

for those which have their initial vertex x in Aa and their

terminal vertex y in Sb. Such a dipath [xy] is replaced in P̃

by two dipaths one [xs] from x to s and the other [ty] from

t to y . Remark that G̃ has no internal cycle, that the load of

(a, s) and (t, b) is equal to the load of (a, b) and that the load
of any other arc is unchanged. Hence we can apply theorem

1 to G̃ and obtain a coloring with w(G̃, P̃) = π(G̃, P̃).
If π(a, b) < π(G, P) we can consider a new set

of dipaths obtained by adding π(G, P) − π(a, b) copies
of [a, b] to the set of dipaths P . Remark that if we

have a coloring of (G, P ′) with ω′(G, P ′) colors then
ω(G, P) < ω′(G, P ′). Hence in the remaining we as-
sume that π(a, b) = π(G, P). Call this load π and let

{[x0y0], ..., [xπ−1yπ−1]}] be the family of the dipaths con-
taining (a, b). It is replaced in P̃ by the two families:

{[x0s], ..., [xπ−1s]} and {[ty0], ..., [tyπ−1]}. These dipaths
can be colored using π colors since G̃ has no internal cycle.



Now we will build a valid coloring of (G, P).

Call P̃(Aa, s) the subset of dipaths starting from a ver-
tex of Aa to s and P̃(t, Sb) the subset of dipaths starting
from t to a vertex of Sb and let D = P̃(Aa, s) ∪ P̃(t, Sb).

The proof relies on the following facts:

- Fact 1: If P is a dipath of P̃ not in D (so a dipath of

G too), then it intersects at most one dipath of D . Indeed

suppose P intersect a dipath [xis] in [uivi] and then another
dipath [xjs] in [ujvj ].Then we get two dipaths from vi to s,

one via [xis] and the other via P and then [vjs] contradict-
ing the UPP property. The cases where P intersect two di-

paths of P̃(t, Sb) or one in P̃(Aa, s) and one in P̃(t, Sb)
can be proven in a similar way.

- Fact 2: Suppose there exist two dipaths P and Q of

P̃ not in D such that P intersects a dipath of D and Q

intersects another dipath of D , then P and Q cannot in-

tersect. There are different cases according to the kind of

dipaths they intersect, but in all cases we get a contradiction

by finding either a directed cycle or two dipaths between

some pair of vertices or an internal cycle in G̃ . As exam-

ple of one possible case, suppose P intersectsQ in [uv] and
then a dipath [tyi] in [uivi] and Q intersects after P a dipath

[tyj ] in [ujvj ]; then we have an internal cycle consisting of
the dipath between v and ui on P , followed by the reverse

dipath from ui to t on [tyi], then the dipath from t to uj on

[tyj ], and the reverse dipath from uj to v on Q.

We can subdivide the set of colors as follows:

We defineC1 as the set of colors α, such that there exists

an index k, such that the dipaths [xks] and [tyk] have both
the color α. In that case we will color the dipath [xkyk]with
color α.

We define C2 as the set of pairs of colors α and β, such

that there exist indices i and j such that [xis] and [tyj ] have
both the color α and [xjs] and [tyi] have both the color β.

More generally we define Cp as the set of p-tuples of

colors αj , j = 1, 2, . . . , p, such that there exist p indices ij ,

j = 1, 2, . . . , p, such that the [xij
s] have color αj and [tyij

]
have color αj+1 (indices taken modulo p).

Therefore π = |C1| + 2|C2| + . . . + p|Cp| + . . ..

Now we will prove that using an extra color for each p-

tuple of Cp, for p > 2, we can obtain a valid coloring for
G.

So consider, for p > 2, a p-tuple of colors in Cp, αj ,

j = 1, 2, . . . , p, and the p indices ij , j = 1, 2, . . . , p, such

that [xij
s] have color αj and [tyij

] have color αj+1 (in-

dices taken modulo p). We color in G the dipath [xi1yi1 ]
with a new color γ and, for j ≥ 2, the dipaths [xij

yij
] with

color αj . Doing so all these dipaths have different colors.

It might happen that one dipath Pj with color αj intersects

now [tyij
] (previously colored with αj+1); in that case this

dipath is unique by fact 1 and we recolor it with the ex-

tra color γ. All these dipaths recolored γ cannot intersect

[xi1yi1 ] by Fact 1 and cannot intersect pairwise by Fact 2.

So all the dipaths colored γ are pairwise disjoint.

At this stage of the proof we have used one extra color

for each p-tuple of colors in Cp, with p > 2 and therefore
we have altogetherw = |C1|+3|C2|+. . .+(p+1)|Cp|+. . .

colors giving a bound of 3π
2
colors.

To get the value 4π
3
we have to pay more attention to the

colors of C2.

Suppose we can find a pair of elements of C2, αj , βj ,

j = 1, 2 and indices i2j−1, i2j , j = 1, 2 such that the di-
paths [xi2j−1

s] and [tyi2j
] have both color αj and [xi2j

s]
and [tyi2j−1

] have both color βj . Then we color the 4 corre-

sponding dipaths in G as follows: [xi1yi1 ] with a new color
γ; [xi2yi2 ] with color β1; [xi3yi3 ] with color α2; [xi4yi4 ]
with color β2.

All these dipaths have therefore distinct colors. It might

happen that another (unique) dipath P with color β1 (resp.

α2, resp. β2) intersects [tyi2 ] (resp. [tyi3 ], resp [tyi4 ]. Re-
color these dipaths with color γ. By Facts 1 and 2 all the

dipaths colored γ are pairwise disjoint. So we need only 5

(and not 6 as previously) colors to deal with the 4 dipaths.

We do this recoloring as soon as we can find distinct pairs

of elements in C2. So if |C2| = 2h + r, with r = 0 or 1 we
need to recolor the dipaths with colors in C2, 5h+2r colors

a number always ≤ 8

3
|C2| if h ≥ 1.

So, if |C2| ≥ 2 or |C2| = 0, we are able to color G with

w = |C1|+
8

3
|C2|+4|C3|+ . . .+(p+1)|Cp|+ . . . colors,

a number always less than or equal to
⌈

4

3
π(G, P)

⌉
.

It remains to deal with |C2| = 1; if, all Cp are empty for

p ≥ 2, we color G with w = |C1| + 3 ≤ 4

3
(|C1| + 2) =

4

3
π colors. Otherwise consider for some p > 2, a p-tuple
of colors in Cp, αj , j = 1, 2, . . . , p, and the p indices ij ,

j = 1, 2, . . . , p, such that the [xij
s] have color αj and [tyij

]
have color αj+1 (indices taken modulo p). We color in G

the dipath [xi1yi1 ] with a new color γ and, for j ≥ 2, the
dipaths [xij

yij
] with color αj . Let α and β be the colors

of the unique element of C2 and let the indices ip+1 and

ip+2 be such that [xip+1
s] and [tyip+2

] have both the color
α and [xip+2

s] and [tyip+1
] have both the color β. rRcolor

[xip+1
yip+1

]with colorα and [xip+2
yip+2

]with colorα1. So

we use only an extra color for the dipaths associated to the

colors in the C2 and Cp. Altogether we have w = |C1| +
2+4|C3|+. . .+(p+1)|Cp|+. . . a number always less than

or equal to
⌈

4

3
π
⌉
as π = |C1|+1+3|C3|+. . .+p|Cp|+. . ..

The argument of the proof can be repeated in the

case of more than one cycle. This leads to a bound of⌈
4

3

C
π(G, P)

⌉
if C is the number of internal cycles of the

UPP-graphs.

To show that the bound of the theorem is tight we have to

exhibit a family of dipaths reaching the bound. The example

given in Theorem 2 shows that the bound is tight for π = 2.



Indeed, for k = 2, we have a graphG and a set of 5 dipaths

such that the conflict graph is a C5 and therefore w = 3
Replacing each of these dipaths with h identical dipaths we

obtain a family of 5h dipaths with π = 2h and w =
⌈

5h
2

⌉
giving a ratio of 5

4
which does not reach the bound.

Theorem 7 There exists an UPP- DAGG with one internal

cycle and a family P of dipaths such that

w(G, P) =

⌈
4

3
π(G, P)

⌉
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Figure 9. Example for an UPP-DAG

Proof: The following example is due to Frédéric Havet

(private communication). It consists of 8 dipaths generat-

ing the conflict graph consisting of a cycle of length 8 plus

chords between the antipodal vertices. Here again π = 2
and w = 3; but if we replace each of these dipaths with h

identical dipaths we obtain a family P of 8h dipaths with

π = 2h and w =
⌈

8h
3

⌉
; indeed in the conflict graph an in-

dependent set has at most 3 vertices and so we need at least
8h
3
colors. Therefore this family satisfies the theorem.

5. Concluding remarks

In this article we have determined when a DAG G satis-

fies w(G, P) = π(G, P) for any family of dipaths P .

We have introduced an apparently new family of DAGS

the UPP-DAGS. We believe that they have already been

used in parallel computing but could not find any refer-

ence. Characterization and study of the properties of these

digraphs is of interest in itself. We conjecture that there is

no bouded ratio between the number of wavelengths and

the load in presence of an unlimited number of cycles. It

will be also interesting to find other digraphs which sat-

isfy w(G, P) = π(G, P) for any family P or for some

specific families. Finally the techniques developed here

can help to solve the problem which initially motivated this

study that is to find for a given w the maximum number of

requests (or dipaths in UPP-DAGS) chosen among a given

family of requests that can be satisfied (for example in the

all to all case, ie one dipath for any possible pair of vertices).

Our theorem shows that we have only to compute the load.

The case of rooted trees appears already as a difficult one.
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