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ABSTRACT
For a grid middleware to perform resource allocation, prediction mod-
els are needed, which can determine how long an application will take
for completion on a particular platform or configuration. In this pa-
per, we take the approach that by focusing on the characteristics of the
class of applications a middleware is suited for, we can develop simple
performance models that can be very accurate in practice.

The particular middleware we consider is FREERIDE-G (FRame-
work for Rapid Implementation of Datamining Engines in Grid), which
supports a high-level interface for developing data mining and scien-
tific data processing applications that involve data stored in remote
repositories. The FREERIDE-G system needs detailed performance
models for performing resource selection, i.e., choosing computing
nodes and replica of the dataset. This paper presents and evaluates
such a performance model. By exploiting the fact that the processing
structure of data mining and scientific data analysis applications devel-
oped on FREERIDE-G involves generalized reductions, we are able to
develop an accurate performance prediction model.

We have evaluated our model using implementations of three well-
known data mining algorithms and two scientific data analysis appli-
cations developed using FREERIDE-G. Results from these five appli-
cations show that we are able to accurately predict execution times for
applications as we vary the number of storage nodes, number of nodes
available for computation, the dataset size, the network bandwidth, and
the underlying hardware.

1. INTRODUCTION
A major goal of grid computing is enabling applications to identify

and allocate resources dynamically. This can provide end-users flexi-
bility and transparency in executing applications, and ability to solve
large problems. However, for a middleware to perform resource allo-
cation, prediction models are needed, which can determine how long
an application will take for completion on a particular platform or con-
figuration.

In general, such prediction models can be extremely hard to build. In
this paper, we take the approach that by focusing on the characteristics
of the class of applications a middleware is suited for, we can develop
simple performance models that can be very accurate in practice.

The work presented here has been done in the context of FREERIDE-
G (FRamework for Rapid Implementation of Datamining Engines in
Grid), which supports a high-level interface for developing data mining
and scientific data processing applications that involve data stored in
remote repositories [12]. The overall motivation for this middleware is
as follows. Scientific discoveries are increasingly being facilitated by
∗This work was supported by grants #CCF-0541058 and CNS
#0403342

analysis of very large datasets distributed in wide area environments.
Careful coordination of storage, computing, and networking resources
is required for efficient dataset analysis. Even if all data is available
at a single repository, it is not possible to perform all analysis at the
site hosting such a shared repository. Networking and storage limita-
tions make it impossible to down-load all data at a single site before
processing.

Thus, an application that processes data from a remote repository
needs to be broken into several stages, including a data retrieval task at
the data repository, a data movement task, and a data processing task
at a computing site. Because of the volume of data that is involved
and the amount of processing, it is desirable that both the data repos-
itory and computing site may be clusters. This can further compli-
cate the development of such data processing applications. An impor-
tant goal of the FREERIDE-G system is to enable efficient processing
of large scale data mining computations. It supports use of parallel
configurations for both hosting the data and processing it. Moreover,
in a distributed environment, resources may be discovered dynami-
cally, which implies that a parallel application should be able to exe-
cute on a variety of parallel systems. Thus, one of the features of the
FREERIDE-G system is to support execution on distributed memory
and shared memory systems, as well as on cluster of SMPs, starting
from a common high-level interface. FREERIDE-G is also designed
to make data movement and caching transparent to application devel-
opers.

An important challenge in processing remote data is to allocate com-
puting resources. Additionally, if a dataset is replicated, we also need
to choose a replica for data retrieval. Thus, the FREERIDE-G system
needs detailed performance models for carrying out such resource se-
lection. This paper presents and evaluates such a performance model.
By focusing on the processing structure of the data mining and sci-
entific data analysis applications developed on FREERIDE-G, we are
able to develop an accurate performance prediction model. Our model
uses profile information, i.e., information from the execution of the ap-
plication on one configuration and dataset size. Using this information,
we are able to predict performance on other configurations and dataset
sizes. Because FREERIDE-G supports applications that perform gen-
eralized reductions only, we are able to accurately model interproces-
sor communication and the sequential global reduction component.

We have evaluated our model using implementations of three well-
known data mining algorithms and two scientific data analysis appli-
cations. Results from these five applications show that we are able
to accurately predict execution times for applications as we vary the
number of storage nodes, number of nodes available for computation,
the dataset size, the network bandwidth, and the underlying hardware.
Thus, we show that by focusing on a specific class of applications,
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accurate performance models can be generated.
The rest of this paper is organized as follows. Background informa-

tion on the FREERIDE-G middleware is provided in Section 2. Our
performance prediction framework is described in Section 3. We give
an overview of the applications we have used in Section 4, and eval-
uate our framework in Section 5. Finally, we compare our work with
related research efforts in Section 6 and conclude in Section 7.

2. MIDDLEWARE OVERVIEW
This section gives an overview of the design and API of the mid-

dleware. More details are available in a recent paper on FREERIDE-
G [12] and publications on the predecessor system, FREERIDE [19].

2.1 System Design
The system is designed to automate retrieval of data from remote

repositories and coordinate parallel analysis of such data using com-
puting resources available in a grid environment. This system expects
data to be stored in chunks, whose size is manageable for the reposi-
tory nodes.

This middleware is modeled as a client-server system. Figure 1
shows the three major components, including the data server, the com-
pute node client, and a resource selection framework. The data server
runs on every on-line data repository node in order to automate data
delivery to the end-users processing node(s). More specifically, it has
3 roles:

• Data retrieval: data chunks are read in from repository disk.

• Data distribution: each data chunk is assigned a destination – a
specific processing node in the end-user’s system.

• Data communication: after destination assignment is made in
the previous step, each data chunk is sent to the appropriate pro-
cessing node.

A compute server runs on compute node, with the goal of receiving the
data from the on-line repository and performing application specific
analysis of it. This component has 4 roles:

• Data Communication: data chunks are delivered from a corre-
sponding data server node.

• Data Retrieval: if caching was performed on the initial itera-
tion, each subsequent pass retrieves data chunks from local disk,
instead of receiving it via network.

• Computation: Application specific data processing is performed
on each chunk.

• Data Caching: if multiple passes over the data chunks will be
required, the chunks are saved to a local disk.

The current implementation of the system is configurable to accom-
modate N data server nodes and M user processing nodes between
which the data has to be divided, as long as M ≥ N . The reason for
not considering cases where M < N is that our target applications
involve significant amount of computing, and cannot effectively pro-
cess data that is retrieved from a larger number of nodes. Active Data
Repository (ADR) [3, 4] was used to automate the data retrieval parts
of both components.

The resource selection framework is being designed with the fol-
lowing goals:

• Finding Computing Resources: This module will interface with
existing grid resource services, and will use detailed performance
modeling to allocate computing resources that can perform the
data processing task most efficiently.

• Choosing Replica: The data that needs to be retrieved and pro-
cessed may be replicated across multiple repositories. In such
cases, the resource selection framework will choose the repos-
itory which will allow data retrieval, data movement, and data
processing at the lowest cost.

• Finding Non-local Caching Resources: Many data mining and
data processing applications involve multiple passes on data. If
sufficient storage is not available at the site where computations
are performed, data may be cached at a non-local site, i.e., at
a location from which it can be accessed at a lower cost than
the original repository. The resource selection module is also
responsible for identifying such non-local caching sites.

In our current implementation, we have not considered non-local
caching of data. Thus, the performance prediction framework we are
presenting here will be restricted to choosing computing resources and
replica.

2.2 Middleware Interface
FREERIDE-G processing API is based on the observation that a

number of popular data mining and scientific data processing algo-
rithms share a relatively similar structure. Their common processing
structure is essentially that of generalized reductions. The popular
algorithms where this observation applies include apriori association
mining [1], k-means clustering [16], k-nearest neighbor classifier [14]
and artificial neural networks [14]. During each phase of these al-
gorithms, the computation involves reading the data instances in an
arbitrary order, processing each data instance, and updating elements
of a reduction object using associative and commutative operators.

In a distributed memory setting, such algorithms can be parallelized
by dividing the data items among the processors and replicating the
reduction object. Each node can process the data items it owns to per-
form a local reduction. After local reduction on all processors, reduc-
tion objects are communicated. Finally, global reduction is performed.
The middleware API for specifying parallel processing of a data min-
ing algorithm is simplified since we only need to support generalized
reductions. Users explicitly provide reduction object and the local and
global reduction functions as part of the API.

3. PERFORMANCE PREDICTION FRAME-
WORK

In this section, we describe the overall resource allocation problem
and then discuss our approach for performance prediction.

The resource selection component of the middleware performs the
following two tasks: 1) finding computing resources for processing
data, and 2) choosing among the multiple replicas, when applicable.
Thus, we have the following problem. We are given a dataset, which
is replicated at r sites. We have also identified c different computing
configurations where the processing can be performed. We assume a
standard grid service can identify such potential resources.

Our goal is to choose a replica and computing configuration pair
where the data processing can be performed with the minimum cost.
The choice of the configuration pair depends on both the character-
istics of the environment, as well as the particular application. For
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Figure 1: FREERIDE-G System Architecture

example, in one configuration pair, data may be divided across 8 stor-
age nodes, and another 8 nodes may be available for processing. In
another configuration pair, data may only be divided into 4 storage
nodes, but 16 nodes may be available for processing. For an appli-
cation where data retrieval cost is a very high, the first configuration
pair may be preferable, whereas for a compute-intensive application
which can scale well, the second configuration pair may be preferable.
Clearly, we can enumerate different possible configurations pairs, and
compare the associated costs. Thus, our problem reduces to that of
estimating the execution time for a particular configuration.

3.1 High-level Approach
Since remote data analysis applications developed on FREERIDE-G

can be split up into data retrieval, data communication and data pro-
cessing components, our framework models (and predicts) execution
time for each component separately. It can combine them all together
in order to come up with an approximate execution time for each the
resource mapping alternative.

Texec = Tdisk + Tnetwork + Tcompute

To fit this model, predictions have to be based on a profile, which is
collected by executing the application on one dataset and one execu-
tion configuration. Based on such execution, we can collect important
summary information, which can then be used to predict execution
times on other configurations and datasets. The summary information
comprises of:

• Number of storage nodes (n), compute nodes (c), and the avail-
able bandwidth between these (b), in the configuration used for
generating the profile.

• A breakdown of the execution time into data retrieval, network
communication, and processing components, denoted as td, tn,
and tc, respectively.

• The dataset size, s, which corresponds to the number of ele-
ments that are retrieved, communicated, and on which local re-
duction is performed.

• Maximum size of the reduction object on the dataset used for
the profile run.

• Maximum communication time for the reduction object on the
configuration used for profile run.

• The global reduction time on the configuration used for the pro-
file run.

When we need to predict across heterogeneous resources, i.e., we use a
profile from a cluster with one type of machine and need to predict per-
formance on cluster with another type of machine, we also need scal-
ing factors for CPU, disk, and network across these machines. These
scaling factors are computed by executing several representative appli-
cations, and are denoted as sc, sd, and sn, respectively.

3.2 Predicting Data Retrieval and Communica-
tion Times

Data retrieval time ( ˆTdisk) is predicted by scaling the correspond-
ing component (td) of the profile execution time breakdown. Since
retrieval time primarily depends on dataset size (s) and number of data
nodes (n), these pieces of information from the profile configuration
(s, n) and from the configuration for which execution time is being
predicted (ŝ, n̂) are used to come up with the scaling factors.

ˆTdisk =
ŝ

s
× n

n̂
× td

Data retrieval times normally scale very well with the size of the
cluster. The expression above assumes that the type of storage nodes
does not change between the configurations. If this is not true, i.e.,



nodes differ in the number of disks or disk speeds, another experi-
mentally determined scaling factor is used, as we will explain in Sec-
tion 3.4. We are also assuming that retrieval time is linear to the size.
We believe it is a reasonable assumption, as long as the size of the
dataset is not too small or large.

A similar procedure is used to predict the data communication time
( ˆTnetwork) from the corresponding component (tn) of the profile exe-
cution time breakdown. The only difference is that along with dataset
size and number of data nodes, the communication component of the
execution time also depends on network bandwidth (b) available be-
tween retrieval and compute nodes for communicating data. There-
fore, bandwidth information from profile configuration (b) and config-
uration being predicted (b̂) are used to come up with the scale factor.

ˆTnetwork =
ŝ

s
× n

n̂
× b

b̂
× tn

The expression above makes several assumptions. First, we are as-
suming that the throughput increases as the number of storage nodes
increases. If this is not the case, the term n

n̂
can be removed from

the expression above. Second, we are assuming that the bandwidth
between storage nodes and computes nodes in any configuration re-
mains constant. This assumption may not often hold in a grid envi-
ronment. However, in recent years, many efforts have focused on de-
termining the effective bandwidth available for a particular data move-
ment task [23, 28, 35, 36]. We can directly use this work to determine
b̂.

3.3 Predicting Data Processing Time
A similar strategy assuming linear parallel speedups can be used for

predicting the data processing time. Data processing time ( ˆTcompute)
in such situation depends on the number of compute nodes (c) and the
size of the dataset. Predicting it, therefore, involves scaling the cor-
responding component of the profile execution time breakdown (tc),
using numbers of compute nodes from profile configuration (c) and
from the configuration being predicted (ĉ), along the scaling of the
dataset size.

ˆTcompute =
ŝ

s
× c

ĉ
× tc

This strategy obviously does not account for inter-processor com-
munication usually involved in parallelizing the processing associated
with the applications on FREERIDE-G. Our prediction framework can
achieve higher accuracy by modeling interprocessor communication
and global reduction times. As described in Section 2, interprocessor
communication in FREERIDE-G is restricted to communicating re-
duction objects after completing local reduction on each node. Global
reduction is then performed combining reduction objects from multi-
ple nodes and extracting application specific knowledge from them.

3.3.1 Modeling Interprocessor Communication Time
Time required to communicate the reduction object (Tro) can be

modeled as a linear function of the reduction object size (r).

Tro = w × r + l

where, w and l are experimentally determined bandwidth and latency
for the target processing configuration. Because Tro is a serialized
component of the parallel processing time, we can now figure out the
fraction of tc that was can be parallelized:

T ′ = tc − Tro.

The scale factors presented in Section 3.3 can then be applied to T ′.
After, current overhead (T̂ro) is added to make up a new prediction of

ˆTcompute.

ˆTcompute =
ŝ

s
× c

ĉ
× T ′ + T̂ro

As one can see, ˆTcompute depends on T̂ro, which, in turn, depends
on the size of the reduction object being communicated. As the number
of computing processors in the target configuration could be different
than the profile configuration, the size of reduction object is unknown.
It turns out, however, that size of a reduction object for a particular
configuration, can be estimated from the size of the reduction object
on the profile configuration, which is provided to the framework.

Our experience with reduction computations shows that almost all
applications fall into one of the two classes. For applications in the
first class, the reduction object size grows linearly with the number of
processing nodes, as well as the dataset size. We refer to this class as
linear object size class. For applications in the second class, the reduc-
tion object size depends only on the application parameters, and does
not change with respect to dataset size or the number of processors.
We refer to this class as constant reduction object size.

Whether an application falls into the linear object size or constant
reduction object size class can be determined in one of many ways. A
user of the FREERIDE-G can provide this information to the predic-
tion framework. Alternatively, by looking at reduction object size from
two or more profile runs with different dataset size and/or processing
nodes, we can obtain this information.

The estimated reduction object size can be used to calculate T̂ro and,
therefore, ˆTcompute.

3.3.2 Modeling Global Reduction Time
Another component of the data processing time Tcompute is the time

spent in the global reduction phase of computation. Again, this time
is serialized, so in order to find the scalable component of the data
processing time, the framework subtracts this time from the data pro-
cessing time component of profile.

T ′′ = tc − Tro − Tg.

Similar to the communication time predictors

ˆTcompute =
ŝ

s
× c

ĉ
× T ′′ + T̂ro + T̂g

As in the case with Tro, Tg for the profile run is known, but for the
configuration being predicted for, it needs to be estimated.

Again, trends observed split applications into two classes. In the
first class, Tg scales up linearly with the number of processing nodes,
but is independent of the dataset size. In the second class, Tg remains
constant as the number of processing nodes is varied, but is linear on
the dataset size. This observation allows us to come up with 2 predic-
tors for the global reduction time, the linear-constant global reduction
time predictor and the constant-linear global reduction time predictor.
Again, the appropriate predictor for a given application can either be
selected by a user, or can be determined by analyzing multiple profile
runs.

3.4 Modeling Across Heterogeneous Clusters
So far, the approach described only considers situations where pre-

dictions are being made about application behavior on the same set of
computing resources (repository and compute clusters) that the base
profile information was collected on. However, in practice, clusters



can be very different in terms of CPU type and speed, disk speed and
configuration, and other factors.

Our approach for predicting performance across different types of
clusters is as follows. Suppose we have obtained a profile run for an
application on a cluster A. To predict performance on another cluster
B, we need a scaling factor between nodes in cluster B and cluster A.
We believe that a small set of FREERIDE-G applications can be used
to experimentally measure the scaling factor between heterogeneous
resources. Such a scaling factor can then be used to predict perfor-
mance for any FREERIDE-G application. Since there is a similarity
in the structure of applications that can be supported on FREERIDE-
G, we believe that this simple approach can allow reasonably accurate
predictions.

As our approach predicts execution times as a sum of Tdisk, Tnetwork,
and Tcompute, effects of using the new resource configurations are
modeled individually for each of these three components. For exam-
ple, given 2 clusters A and B, we want to predict execution time of an
application on cluster B. Suppose we have experimentally obtained
execution time breakdowns for three representative FREERIDE-G ap-
plications (refered to as 1, 2, and 3) on identical configurations on both
of these systems. By identical configuration, we mean the same num-
ber of compute and storage nodes, and the same dataset size. Now,
to compute relative speedup sd of the data retrieval component of the
execution time from A to B , we compute

sd = (
Tdisk1−B

Tdisk1−A

+
Tdisk2−B

Tdisk2−A

+
Tdisk3−B

Tdisk3−A

)/3

Relative speedups sn and sc for data communication and computing
stages can also be computed by substituting appropriate components
of the execution time into the above equation (Tnetwork for sn and
Tcompute for sc, respectively).

Given these speedups, we compute predicted performance on the
cluster B as follows. Initially, we predict the performance of the ap-
plication on an identical configuration on the cluster A, including com-
puting the data retrieval time TdiskA , the network time TnetworkA , and
the compute time TcomputeA . Then, we use the scaling factors to pre-
dict the overall performance on the new cluster:

ˆTexecB = sd × ˆTdiskA + sn × ˆTnetworkA + sc × ˆTcomputeA

4. APPLICATIONS
In this section we describe the applications that we have used to

carry out the experimental evaluation of our framework. We have
focused on three traditional datamining techniques: k-means cluster-
ing [15], EM clustering [7], k-nearest neighbor search [14], as well
as two scientific feature mining algorithms: vortex analysis [24] and
molecular defect detection [29].

4.1 k-means Clustering
The first data mining algorithm we describe is the k-means clus-

tering technique [15], which is one of the most popular and widely
studied data mining algorithm. This method considers data instances
represented by points in a high-dimensional space. Proximity within
this space is used as criterion for classifying the points into clusters.
Three steps in the sequential version of this algorithm are as follows:
1) Start with k given centers for clusters, 2) Scan the data instances.
For each data instance (point), find the center closest to it, assign this
point to a corresponding cluster, and then move the center of the clus-
ter closer to this point, and 3) Repeat this process until the assignment
of the points to cluster does not change.

This method can be parallelized as follows. The data instances are
partitioned among the nodes. Each node processes the data instances it
owns. Instead of moving the center of the cluster immediately after the
data instance is assigned to the cluster, the local sum of movements of
each center due to all points owned on that node is computed. A global
reduction is performed on these local sums to determine the centers of
clusters for the next iteration.

4.2 Expectation Maximization Clustering
The second data mining algorithm we have used is the Expectation

Maximization (EM) algorithm [7], which is also a very popular clus-
tering algorithm. EM is a distance-based based algorithm that assumes
the data set can be modeled as a linear combination of multivariate nor-
mal distributions. The goal of the EM algorithm is to use a sequence
of Expectation and Maximization steps to estimate the means C, the
covariances R, and the mixture weights W of a Gaussian probability
function.

Parallelization of this algorithm on FREERIDE-G [10] is accom-
plished through iteratively alternating local and global processing, cor-
responding to each one of E and M steps. During the E step, each
node computes the means and the mixture weights of the data instances
local to it, followed by this information being gathered at the master
node to compute the aggregate, which is then broadcasted. In the M
step, covariances of the data instances local to each node are com-
puted, followed by gathering covariance matrices from all processing
nodes at the master node, computing a common covariance, and re-
broadcasting this information. The algorithm works by successively
improving the solution found so far. The algorithm stops when the
quality of the current solution becomes stable, which is measured by a
monotonically increasing statistical quantity called loglikelihood.

4.3 k-Nearest Neighbor Search
k-nearest neighbor classifier is based on learning by analogy [14].

The training samples are described by an n-dimensional numeric space.
Given an unknown sample, the k-nearest neighbor classifier searches
the pattern space for k training samples that are closest, using the
euclidean distance as measure of proximity, to the unknown sample.
Again, this technique can be parallelized as follows. The training sam-
ples are distributed among the nodes. Given an unknown sample, each
node processes the training samples it owns to calculate the k-nearest
neighbors locally. After this local phase, a global reduction computes
the overall k-nearest neighbors from the k-nearest neighbor on each
node.

4.4 Vortex Detection Algorithm
Vortex detection is the first of the two scientific data processing

applications we have used. Particularly, we have parallelized a fea-
ture mining based algorithm developed by Machiraju et al.. A more
detailed overview of the algorithm is available in a recent publica-
tion [34]. The key to the approach is extracting and using volumetric
regions to represent features in a CFD simulation output. This ap-
proach identifies individual points (detection step) as belonging to a
feature (classification step). It then aggregates them into regions.

Parallelizing this application requires the following steps [13]. First,
a special approach to partitioning data between nodes (overlapping
data instances from neighboring partitions) is performed, in order to
avoid communication in the detection phase. Detection, classification
and aggregation are first performed locally on each node, followed by
global combination that joins parts of a vortex belonging to different
nodes. De-noising and sorting of vortices is performed after the inter-
node aggregation has been completed.



4.5 Molecular Defect Detection Algorithm
The second of the two scientific data processing applications we

have used performs molecular defect detection [29]. More specifically,
its goal is to uncover fundamental defect nucleation and growth pro-
cesses in Silicon (Si) lattices, either in the presence of thermal sources
or extra atoms (e.g., additional Si atoms or dopants such as Boron). A
detection and categorization framework has been developed to address
the above need.

This framework is parallelized in the following way [11]. Defect
detection phase, consisting of marking individual atoms as belonging
to defects and clustering them to form defect structures, is paralelized
in a manner very similar to vortex detection algorithm. Defects are
first detected and aggregated on the chunks of the Si grid local to
each processing node, followed by joining of defects spanning mul-
tiple nodes in the global combination stage. Detected defects are then
re-broadcasted by the master node, in order to improve load balancing
in the categorization phase.

Parallelization of the categorization phase, involving computing can-
didate classes for each detected defect and exact shape matching of the
defect to each of the candidate classes is more involved, since it poten-
tially involves a defect catalog update, if no class turns out to be a
match. First, all matching defects are categorized locally, and all non-
matching defects are given temporary class assignments, which are
added to local catalogs. Local catalogs are then merged in the global
combination step, and after a new copy of the defect catalog is cre-
ated, its copy is re-broadcasted to compute nodes in order to finalize
temporary class assignments.

5. EXPERIMENTAL RESULTS
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Figure 2: Prediction Errors for k-means Clustering: Base Profile:
1-1, 1.4 GB dataset

In this section we evaluate our execution time prediction techniques
for remote data mining applications developed using FREERIDE-G.
The techniques were used to predict parallel execution times of five
data-intensive applications that were described in the previous section,
and were previously implemented using our middleware [12]. Perfor-
mance prediction models were evaluated in terms of their error relative
to the actual execution time.

E =
|Texact − Tpredicted|

Texact

The goal of our experimental evaluation was to demonstrate that our
techniques are well-suited for modeling FREERIDE-G applications in
terms of scalability relative to dataset size, parallel scalability relative
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Figure 3: Prediction Errors for Vortex Detection, Base profile: 1-1
710 MB dataset
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Figure 4: Prediction Errors for Molecular Defect Detection, Base
profile: 1-1 130 MB dataset

to both the number of data and compute nodes, changes in data com-
munication bandwidth between data and compute nodes, and change in
underlying platform. Initially, we focus on prediction for a cluster with
the same kind of machines. Each prediction experiment here is based
on an application profile, which is a breakdown of execution times
for a given configuration of number of data storage/retrieval nodes,
number of data processing nodes, dataset size, and the network band-
width available for data communication. The cluster used for these ex-
periments comprised 700 MHz Pentium machines connected through
Myrinet LANai 7.0. Network bandwidth was varied synthetically for
some of the experiments. Note that this setup still allowed us to effec-
tively evaluate our models for communication and global reductions,
which is the main focus of our effort.

Our last set of experiments focused on evaluating the ability to accu-
rately model predictions on a cluster with different type of machines.
For these experiments, the cluster described above was used to obtain
base profile information. Predictions were then made for a cluster of
dual processor 2.4GHz Opteron 250 machines connected through Mel-
lanox Infiniband (1Gb).

For efficient and distributed processing of datasets available in a re-
mote data repository, we need high bandwidth networks and a certain
level of quality of service support. Recent trends are clearly pointing
in this direction. However, for our study, we did not have access to
a wide-area network that gave high bandwidth and allowed repeatable
experiments. Therefore, all our experiments were conducted within a
single cluster.
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Figure 5: Prediction Errors for EM Clustering, Base profile: 1-1,
1.4 GB dataset
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Figure 6: Prediction Errors for KNN search, Base profile: 1-1, 1.4
GB dataset

In all experiments presented here, the number of data nodes is al-
ways kept smaller then the number of compute nodes, for reasons men-
tioned earlier in Section 2. Number of data nodes is varied between 1
and 8, and the number of compute nodes is varied between 1 and 16.

As discussed in Sections 3.3.1 and 3.3.2, for any application, mul-
tiple techniques exist for modeling interprocessor communication and
global reduction times. In all of the experimental results included
in this paper, linear reduction object size communication time and
constant-linear global reduction time prediction approaches are used
for vortex detection, molecular defect detection and EM clustering ap-
plications. Similarly, constant reduction object size communication
time and linear-constant global reduction time predictor are used for
k-means clustering and KNN search applications.

5.1 Modeling Parallel Performance
The first set of experiments we present were designed to show that

the prediction framework presented here can be used to correctly model
parallel application execution times. We vary only the number of data
and compute nodes, and leave the other base profile configuration pa-
rameters, i.e. dataset size and network bandwidth, unchanged. Pre-
dictions are made for a number of configurations ranging from 1-1 to
8-16, and are all based on a 1-1 configuration profile.

For each configuration, i.e, the number of data nodes and the number
of compute nodes, three prediction approaches were compared. The
no communication approach combines predictors for data retrieval and
communication times described in Section 3.2 with the data processing

time predictor that does not account for reduction object communica-
tion or global reduction, as described at the beginning of Section 3.3.
The reduction communication approach combines predictors for data
retrieval and communication times described in Section 3.2 with the
data processing time predictor that models interprocessor communica-
tion of the reduction object, as described in Section 3.3.1. Finally, the
global reduction approach combines predictors for data retrieval and
communication times described in Section 3.2 with the data process-
ing time predictor that models interprocessor communication and the
global reduction operation, as described in Section 3.3.2.

Figure 2 shows accuracy levels for execution time prediction for
k-means clustering. The no communication model turned out to be
relatively accurate, with predictions from only 3 configurations (4-4,
8-8, and 8-16) resulting in error higher than 4%. The same configura-
tions proved to be the hardest for the reduction communication model,
with prediction errors for all other configurations being under 2%. The
global reduction model proved to be extremely accurate for this appli-
cation, resulting in near-zero errors. Thus, by factoring in communica-
tion and global reduction times for data processing, we can accurately
predict parallel execution times for this application.

Figure 3 shows the results for vortex detection application. The no
communication model proved to be quite accurate again, resulting in
less than 2% error in all but 4 configurations (2-8, 2-16, 8-8, 8-16). The
reduction communication model obviously was more accurate, result-
ing in a prediction error of over 0.5% only for 2 configurations (8-8,
8-16). Again, as we would expect, the global reduction model was ex-
tremely accurate. Figure 4 presents accuracy of predicting the molec-
ular defect detection execution time. The no communication model,
again, proved to be quite good, resulting in error higher than 4% in
only 2 configurations: 8-8 and 8-16. In case of the reduction commu-
nication model, 4-4, 8-8, and 8-16 were the only ones where the error
exceeded 1%. The global reduction model again proved to be very
accurate.

Figures 5 and 6 show the accuracy of execution time prediction for
EM clustering and KNN search, respectively. The results are very sim-
ilar to the previous three applications. Overall, this set of results from
our five applications show two important trends: 1) even without mod-
eling communication and global reduction, our models work quite well
if the scaling factors for number of data storage and computing nodes
are small, and 2) our simple models for predicting communication and
global reduction times work very well for all cases.

5.2 Modeling Scaling of Dataset Size
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Figure 7: Prediction Errors for EM clustering, 1.4 GB dataset,
Base profile: 1-1 with 350 MB
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Figure 8: Prediction Errors for Molecular Defect Detection with
1.8 GB dataset, Base profile: 1-1 with 130 MB

The second set of experiments included in this paper were designed
to show that the prediction framework presented here can also be used
to correctly model the effects of scaling dataset size on application
execution time. As in the first set of experiments, the base profile used
was the 1-1 configuration, i.e., with 1 data node and 1 compute node.
Predictions were made for a number of configurations ranging from
1-1 up to 8-16. The profile runs were with a smaller dataset, and the
actual executions were with a larger dataset.

As we noticed in the previous subsection, the global reduction tech-
nique always yields higher accuracy than the other two. Therefore,
in the rest of this section, we present accuracy results using only the
global reduction approach. Also, because our prediction approach
yields very similar results for all applications that we dealt with, and
because of space limitations, we only present results from a subset of
applications.

Figure 7 presents accuracy resulting from execution time prediction
for the EM clustering application. Dataset size is 350 MB for the base
profile configuration and 1.4 GB for the configuration for which exe-
cution time is to be predicted. Such change in dataset size leaves the
shape of the relative error plot unchanged, i.e. relative to the Figure 5,
where the dataset size was unchanged.

Although the actual error has increased somewhat, our models still
give very close approximations of execution times. Somewhat higher
errors (but still under 2%) are observed for configurations where the
numbers of data and compute nodes are equal, but these errors actu-
ally drop off for configurations where the number of compute nodes is
scaled up. The reason for this is that overestimation performed by our
compute time prediction model that shows up for configurations with
equal numbers of data and compute nodes is offset by our underesti-
mation in modeling compute node scale-up.

Figure 8 presents accuracy resulting from execution time prediction
for the molecular defect detection application, using the global reduc-
tion approach. Dataset size is 130 MB for the base profile configura-
tion and 1.8 GB for the configuration for which execution time is to be
predicted. Once again, although the relative shape of the plot remains
unaffected by differences in dataset size, highest prediction errors are
still observed for configurations where the numbers of data and com-
pute nodes are equal. Again, a drop off is observed for configurations
where the number of compute nodes is scaled up. Among configura-
tions with equal numbers of compute and data nodes, the ones with
2 and 4 compute nodes demonstrate considerably smaller errors than
one with 8 compute nodes. This is because this particular application

scales linearly when number of data nodes is 2 or 4, but only demon-
strates a sub-linear speedup once the number of data nodes is increased
beyond that.

5.3 Impact of Network Bandwidth
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Figure 9: Prediction Errors for Molecular Defect Detection with
250 Kbps, Base profile: 1-1 with 500 Kbps
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Figure 10: Prediction Errors for EM Clustering with 250 Kbps,
Base profile: 1-1, with 500 Kbps

The purpose of the third set of experiments is to show that our ap-
proach can successfully model the impact of changing data communi-
cation bandwidth. Like the first 2 sets, the base profile used was the 1-1
configuration and predictions were made for a range of configurations.
The predictions do not have the same data communication bandwidth,
as the corresponding base profile configurations, but the dataset size is
the same in both. Again, results of only the global reduction approach
are presented for the same subset of applications as in the previous
subsection.

Results of this set of experiments are summarized in Figure 9 for
the defect detection application and Figure 10 for the EM clustering
application. Again, the least accurate predictions correspond to con-
figurations where the numbers of data and compute nodes are equal.
The shape of the accuracy graph suggests that scaling the number of
data nodes doesn’t necessarily result in a perfectly linear speedup, as
modeled by our approach. However, as the number of compute nodes
is scaled up, the effects of inaccuracies in our model are offset by er-
rors in modeling compute node scale-up.

5.4 Predictions for a Different Type of Cluster
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Figure 11: Prediction Errors for EM clustering On a Different
Cluster, 700 MB dataset, Base profile: 8-8 with 350 MB
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Figure 12: Prediction Errors for Molecular Defect Detection On a
Different Cluster, 1.8 GB dataset, Base profile: 4-4 with 130 MB

The purpose of our final set of experiments is to show that our ap-
proach can successfully model application behavior on a cluster with
different types of machines than the one where the base profile was col-
lected on. We use a set of representative FREERIDE-G applications to
compute average component-wise scaling factors between 2 clusters.
Then, prediction is performed for applications which were not in this
set. The base profile was collected on 700 MHz Pentium machines,
and predictions were made for 2.4 GHz Opteron 250 machines.

In our first experiment, we evaluate prediction accuracy for the EM
clustering application. Dataset size is 350 MB for base profile config-
uration and 700 MB for the configuration for which execution time is
being predicted. Parallel configuration of the base profile is 8 data and
8 compute nodes. Kmeans clustering, kNN search and vortex detec-
tion applications’ execution times with the base profile were used to
compute component speedups between 2 clusters. It should be noted
that scaling factors for the computation component did vary consid-
erably across applications, ranging from 0.233 for kNN to 0.370 for
Vortex detection.

The results are presented in Figure 11. Overall, the results are quite
good, though inaccuracy levels are higher than in other experiments, as
we would expect. Prediction errors are particularly higher for config-
urations using 8 compute nodes, which is also our base configuration.
The reason for this is because of the difference in scaling factor across
application. The average ratio we computed is 0.296, whereas the ob-
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Figure 13: Prediction Errors for Vortex Detection on a Different
Cluster, 1.85 GB dataset, Base profile: 1-1 with 710 MB

served scaling factor for EM is 0.323. As the number of nodes is var-
ied, we are able to accurately model parallel speedups, which reduces
some of the prediction errors.

In Figure 12 we present accuracy resulting from execution time pre-
diction for the molecular defect detection application. Dataset size is
130 MB for base profile configuration and 1.8 GB for the configuration
for which execution time is being predicted. Parallel configuration of
the base profile is 4 data nodes and 4 compute nodes. Again, Kmeans
clustering, kNN search, and EM clustering applications’ experimental
results were used to compute component speedups between 2 clusters.
The results with 4 compute nodes, which is the same number of nodes
as in the base configuration, have the highest inaccuracy.

Figure 13 presents accuracy resulting from execution time predic-
tion for the vortex detection application. Dataset size is 710 MB for
base profile configuration and 1.85 GB for the configuration for which
execution time is being predicted. Parallel configuration of the base
profile is 1 data and 1 compute node. To compute component speedups
between 2 clusters, kmeans clustering, kNN search, and EM clustering
applications’ experimental results were used. Like other predictions
based on 1-1 configurations, largest inaccuracies are observed for pre-
dictions for which configurations have an equal number of compute
and data nodes, so modeling different resources does not impact pre-
diction accuracy. Since only one configuration has same number of
compute nodes as the base profile configuration, the fact that this con-
figuration results in the highest prediction error makes these results
consistent with the rest of results in this subsection.

Overall, these results show that our approach for making predictions
across platforms is reasonably accurate. FREERIDE-G applications
do differ considerably in scaling of computations across different plat-
forms, which results in some inaccuracy in predictions.

6. RELATED WORK
A significant amount of research has been performed in modeling

communicating and/or parallel applications and predicting their per-
formance to facilitate resource selection. Taura and Chien [33] have
developed a heuristic algorithm that maps data-intensive communicat-
ing compute tasks onto heterogeneous resources, i.e., processors and
links of various capacities. This approach tries to optimize through-
put of a data-processing pipeline, taking both parallelism and com-
munication volume and proximity into account. Snavely et al. [30]
are investigating performance characterization of full parallel applica-
tions on large HPC systems. For this purpose, they have developed



a framework that combines tools for gathering machine profiles and
application signatures, providing automated convolutions of the two.

Communication characteristics of scientific applications on cluster
architectures have been investigated by Vetter and Mueller [37]. Chien
et al. have created a collection of simulation tools, called MicroGrid
aimed at supporting systematic exploration of dynamic Grid software
behavior [31, 5]. These simulation tools enable Globus applications
to be run in arbitrary virtual grid environments, enabling opportuni-
ties for broad experimentation. Liu et al. have developed a general
Resource Selection Service responsible for both selecting appropriate
Grid resources based on a model presented to it as a part of the applica-
tion submission process and mapping the application to the resources
selected [21].

A project by Jang et al. [18] has presented a performance prediction
module (Prophesy), to select resources for Pegasus based on previous
performance history. Another project investigating execution time pre-
diction of grid applications is Performance Analysis and Characteriza-
tion Environment (PACE) [27]. PACE is structured around a hierarchy
of performance models that describe the computing system in terms of
its software, parallelization and hardware components.

The key distinction in our work is that focus on performance predic-
tion for applications that fit into the processing structure of a particular
middleware. This has allowed us to develop relatively simple models,
which turn out to be very accurate for a number of applications.

A large amount of work has also been done in predicting individual
components of a remote data analysis application, such as data transfer
time over the network [8, 22, 35, 36]. As we stated earlier, this work
can be incorporated as part of our framework, to allow us to predict
performance over shared networks.

Several groups have also been developing support for grid-based
data mining. One effort in this area is from Cannataro et al. [25,
26]. They present a structured Knowledge Grid tool-set for developing
distributed data mining applications through workflow composition.
Brezanny et al. [17, 2, 20] have also developed a GridMiner toolkit
for creating, registering and composing datamining services into com-
plex distributed and parallel workflows. Ghanem et al. [6, 9] have de-
veloped Discovery Net, an application layer for providing grid-based
services allowing creation, deployment and management of complex
data mining workflows. The goal of DataMiningGrid, carried out by
Stankovski et al. [32], is to serve as a framework for distributed knowl-
edge discovery on the grid.

There are significant differences between these efforts and our work.
These systems do not offer a high-level interface for easing paralleliza-
tion and abstracting remote data extraction and transfer. They also do
not use detailed performance models for resource allocation.

7. CONCLUSIONS
This paper has addressed the problem of developing prediction mod-

els to be used for resource (and replica) selection in a grid middleware.
By exploiting the fact that the processing structure of data mining
and scientific data analysis applications developed on FREERIDE-G
middleware involves generalized reductions, we are able to develop
an accurate performance prediction model. We have evaluated our
model using implementations of three well-known data mining algo-
rithms and two scientific data analysis applications developed using
FREERIDE-G. Results from these five applications show that we are
able to accurately predict execution times for applications as we vary
the number of storage nodes, number of nodes available for computa-
tion, the dataset size, the network bandwidth, and type of resource we
are using.
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