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Abstract

During the last two decades, a considerable amount of
academic research has been conducted in the field of dis-
tributed computing. Typically, distributed applications re-
quire frequent network communication, which becomes a
dominate factor in the overall runtime overhead. The re-
cent proliferation of programmable peripheral devices for
computer systems may be utilized in order to improve the
performance of such applications. Offloading application-
specific network functions to peripheral devices can im-
prove performance and reduce host CPU utilization. Due
to the peculiarities of each particular device and the dif-
ficulty of programming an outboard CPU, the need for an
abstracted offloading framework is apparent. This paper
proposes a novel offloading framework, called HYDRA that
enables utilization of such devices. The framework enables
an application developer to design the offloading aspects of
the application by specifying an “offloading layout”, which
is enforced by the runtime during application deployment.
The performance of a variety of distributed algorithms can
be significantly improved by utilizing such a framework. We
demonstrate this claim by evaluating several offloaded ap-
plications: a distributed total message ordering algorithm
and a packet generator.

1. Introduction

The development of distributed computing applications
is very challenging. When messages may be lost, corrupted
or delayed, robust algorithms must be used in order to build
a coherent system. Distributed algorithms rely on inter-
changing messages among compute nodes. The processing
of the network protocols consumes a significant amount of
a server’s CPU resources, which directly affects the perfor-
mance of such algorithms.

Many previous and ongoing approaches aim to improve
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network processing by offloading parts of the protocol to
the networking devices, as distinct from modifying or of-
floading the application. Current efforts have centered on
specialized TCP Offload Engine (TOE) devices [6] that im-
plement parts of the TCP/IP networking stack. TOE devices
perform well for specific types of applications, but do not
provide the expected performance gains for many kinds of
networking and distributed applications [16].

The proliferation of programmable peripheral devices
for computer systems opens new possibilities for research
into alternate sources of performance improvement [25].
The capabilities offered by the high-performance micropro-
cessors available in disk controllers, network interface cards
and graphic accelerators, are extremely underutilized today.
This paper proposes HYDRA, a generic offloading frame-
work that enables a developer to utilize programmable pe-
ripherals to improve application performance.

Today, there is no generic programming model and run-
time support that enables a developer to design the offload-
ing aspects of an application. This work involves the design
and implementation of a framework to address these chal-
lenges. We introduce the concept of an “offloading layout”
as an additional phase in the process of an application de-
velopment. After designing the application’s logic, the pro-
grammer will design the offloading layout using a generic
set of abstractions. The layout describes the interaction
between the application and the offloaded code at various
phases, such as deployment, execution and termination.

The rest of this paper is organized as follows. Sec-
tion 2 describes the related work concerning offloading,
Section 3 describes the HYDRA programming model. Sec-
tion 4 presents HYDRA’s software architecture. Section 5
discuss several distributed algorithms that may benefit from
the proposed framework and offloading capabilities. Sec-
tion 6 provides some case studies of using HYDRA, and
Section 7 concludes the paper.



2. Related Work

Offloaded applications have been designed for particular
needs in the past using specific devices. Some of this work
has led to the availability of near-commodity products. We
discuss the previous work in three subsections according to
the device type.

2.1. Storage Offload

Object Storage Devices (OSD) came from a research
project called Active Disks from CMU [19], which in-
fluenced a recent OSD standardization by the ANSI T10
group. OSD is a protocol that defines higher-level meth-
ods for the creation, writing, reading and managing of data
objects on a disk. Implementing OSD requires a high de-
gree of processing capability at the disk controllers or the
devices themselves and can offer the potential for exten-
sion by custom programmability at the device. One ex-
ample of a storage-specific extension is the Diamond sys-
tem [12]. Unlike traditional architectures for exhaustive
search in databases, where all of the data must be shipped
from the disk to the host computer, the Diamond architec-
ture employs “early discard.” Early discard is the idea of
rejecting irrelevant data as early in the pipeline as possible.
By exploiting active storage devices, one can eliminate a
large fraction of the data before it is sent over the intercon-
nect to the host. Diamond applications can install filters at
the active disk for eliminating data.

2.2. Network Offload

One of the more fruitful areas for exploiting pro-
grammable devices is in the area of networking. As
wire speeds increase and demand extensive host process-
ing power, moving some of the work to the network card
becomes an attractive alternative.

Spine [8] is a safe execution environment that is appro-
priate for programmable Network Interface Cards (NICs).
Spine enables the installation of user handlers, written in
Modula-3, at the NIC. Although Spine enables the exten-
sion of host applications to use NIC resources it has a few
major limitations. In particular, it requires an event-driven
programming model and does not include a handler deploy-
ment process nor a framework for design of offloading as-
pects in the host application.

Arsenic [17] is a Gigabit Ethernet NIC program that
exports an extended interface to the host operating sys-
tem. Unlike conventional adaptors, it implements some of
the protection and multiplexing functions traditionally per-
formed by the operating system. This enables applications
to directly access the NIC, thus bypassing the OS.

The Ethernet Message Passing (EMP) [20] system is a
zero-copy and OS-bypass messaging layer for Gigabit Eth-
ernet. EMP protocol processing is done at the NIC and a
host application (usually through an MPI library) can di-
rectly manipulate the NIC. Arsenic and EMP provide very
low message latency and high throughput but are very task-
specific and lack the support for generic offloading or host
application integration.

TCP Offload Engines (TOE) [6] are adapters that move
some of the TCP/IP network stack processing out of the
main host and into a network card. While TOE technol-
ogy has been available for years and continues to gain pop-
ularity, it has been less than successful from a deployment
standpoint. TOE only targets the TCP protocol, thus, user
extensions are out of its scope. Practical concerns such
as the inability to modify TOE behavior for evolving TCP
protocol changes or to implement non-trivial firewalls also
limit the utility of non-programmable TOEs. Other ap-
proaches to reducing network processing overheads are pos-
sible as well. iWARP [18] is an approach that takes advan-
tage of remote direct memory access and processor offload
to increase throughput and reduce host overhead. iWARP
network cards conceptually include TOEs and other func-
tionality needed to implement the higher-layer protocols.

Previous research has also considered using pro-
grammable components to accelerate network processing in
specific situations [9, 15]. Our goal in this work is to enable
more general access to programmable components for arbi-
trary networking, computing or I/O tasks.

2.3. Computation Offload

Specific devices to assist a host processor with some
of its computational burdens have existed for many years
and seem to be experiencing a recent resurgence. Field-
Programmable Gate Arrays (FPGAs) in particular are avail-
able as add-in PCI cards and integrated into supercomputer
systems. Each FPGA vendor provides varying level of sup-
port for the development of host applications and device
programs ranging from a single high-level language and
auto-generating compilers down to explicit device gate de-
sign. What is lacking in FPGA development is any generic
interface or commonality that would enable applications to
run on platforms other than where they were developed.
Also the communication models for FPGAs are typically
primitive compared to the networking and storage examples
described above. Our HYDRA approach is potentially very
well suited to FPGA devices.

3. HYDRA Programming Model

Our proposed programming model enables one to de-
velop an “Offload-Aware (OA)” application by using a set



of special components called Offcodes. An offcode defines
the minimal unit for offloading and exports a set of well-
defined interfaces. Offcodes are interconnected via “com-
munication channels” that determine various communica-
tion properties between them.

We follow the “layout programming” design methodol-
ogy first presented in FarGo [10, 11] and then in FarGo-
DA [24]. Although not dealing with offloading, FarGo and
FarGo-DA propose a programming model that enables a de-
veloper to program relocation and disconnection semantics
between components in a separate phase during the appli-
cation development cycle.

Similarly, OA-applications are designed by two orthog-
onal aspects. One aspect defines the basic logic of the ap-
plication. Components which are potential candidates for
offloading are identified and tagged as Offcodes. In the sec-
ond aspect, the offloading constraints of the application are
defined. In this phase, mapping between components and
peripheral devices, both in software and hardware, is set,
including the offloading priorities and channel characteris-
tics among offcodes, and between offcodes and the host.

3.1. Offcode

An offcode defines the minimal unit for offloading. Of-
fcodes can be provided as source code, which is then com-
piled for the target device, or as pre-compiled binaries. An
offcode is further described by an Offcode Description File
(ODF) that describes the offloading layout constraints and
the target device hardware and software requirements.

An offcode can present multiple interfaces, each of
which contains a set of methods that perform some be-
havior. Each interface is uniquely identified by a glob-
ally unique identifier (GUID). An OA-application commu-
nicates with an offcode using an abstraction called a Chan-
nel (described in Section 3.2). All offcodes implement a
common interface that is used by the runtime to instantiate
the offcode and to obtain a specific offcode’s interface.

3.1.1 Offcode Creation

Offcodes are created by an OA application by calling the
CreateOffcode method provided by the HYDRA runtime en-
vironment. The runtime generates and uses an offloading
layout graph to offload the OA-application’s offcodes. Sec-
tion 3.4 details the mechanism used for the mapping of of-
fcodes to their respective devices. Once the offcode is con-
structed at the target device, it is initialized and executed
by the HYDRA runtime. Offcode initialization is performed
in two phases. First, the Initialize method is called and the
offcode acquires its local resources. Once all the related of-
fcodes specified by the layout graph have been initialized,
the StartOffcode method is called.

Figure 1 presents an offcode deployment process that is
executed by the runtime. The OA-Application running on
the host creates a single offcode α that requires a second
offcode β. Since the offcode is automatically created, the
runtime constructs an offloading-layout graph (Section 3.3)
and performs the actual offloading process.

Device A Device B

Logical Time

α

(n)

Gang

(2)

Host

(3)

Legend

α

β

βα

OOB−Channel

Offcode

Link
(1) CreateOffcode

OA−Application

(4) Initialize() (5) Initialize()

(6) StartOffcode() (7) StartOffcode()

Figure 1. Offcode Deployment

Once an offcode has been explicitly created, a set
of attributes can be applied to it. HYDRA provides an
API to get and set offcode attributes. There are sev-
eral attributes already defined, including OBSOLETE TIME,
WATCHDOG TIME and OFFLOAD PRIORITY. The latter can
be used to affect the offloading sequence, as will be further
elaborated in Section 3.3.

3.1.2 Offcode Invocation

HYDRA provides two ways to invoke an offcode: trans-
parently and manually. A transparent invocation requires a
proxy component that shields the client from the complexity
involved in invoking the target offcode directly. The proxy
has a similar interface as the target offcode and allows the
client program to invoke an offcode as if the offcode were a
local component. When a user creates an offcode, a proxy
object is loaded into user-space. All interface methods re-
turn a Call object that contains the relevant method infor-
mation including the serialized input parameters. Once a
Call object is obtained, it can be sent to a target device (or
several devices) by using a connected channel. The manual
invocation scheme consists of manually creating the Call
object, and using a custom encoder to marshal arguments
and invoke the channels’ methods.



3.2. Channels

Offcodes are connected to each other and to the host ap-
plication by communication channels. Channels are bidi-
rectional pathways that can be connected between two end-
points, or connectionless when only attached to one end-
point. The runtime assigns a default connectionless chan-
nel, called the Out-Of-Band Channel (OOB-channel) for
every OA-application and offcode. The OOB-channel is
identified by a single endpoint used to communicate with
the offcode without the need to construct a connected chan-
nel, such as for initialization and control traffic that is not
performance critical. The OOB-channel is the default com-
munication mechanism between peer offcodes and between
offcodes and OA-applications. The OOB-channel is also
used to notify the offcode regarding management events and
availability of other channels.

3.2.1 Channel Creation

For high performance communication, a specialized chan-
nel that is tailored to the needs of the application and the of-
fcode would be created as well as the default OOB-channel.
Creating a specialized channel is performed in two steps.
First, the application or offcode determines the channel
characteristics and creates its own endpoint. Next, the cre-
ator attaches an offcode to the channel. This action im-
plicitly constructs the second endpoint at the target device,
and notifies the offcode about the newly available channel.
Once the channel is connected, the channel’s API can be
used for communication. The channel API contains typical
operations to read, write and poll. The channel API also
supports registration of a dispatch handler that is invoked
each time the channel has a new request.

Channel creation involves configuring the channel type,
synchronization requirements and buffer management pol-
icy. A channel can be of type Unicast, that can only in-
terconnect two offcodes, or Multicast, that can interconnect
more than two offcodes. A channel can be either unreli-
able or reliable, where the latter type is careful not to drop
messages even though buffer descriptors are not available.
A multicast channel can utilize hardware features, if avail-
able, to broadcast a single request to multiple recipients.

3.3. Offload Layout Programming

The offloading layout is usually statically defined or set
during deployment (See Section 3.4) to minimize the over-
head of offloading operations. As opposes to FarGo’s pri-
mary motivation of enabling the dynamic relocation of dis-
tributed components (See 3), we envision the offcodes as
specialized components performing one task on a specific
device, thus purposefully do not implement offcode migra-
tion, for instance.

Channel constraints are used to direct the placement of
offcodes on target devices when multiple offcodes are re-
quired to support an application. HYDRA currently supports
the following constraint types:

• Link Constraint: The Link constraint is the default ba-
sic channel constraint between two offcodes. It does
not require that they run on the same or different target
devices, just that both be present in the system.

• Pull Constraint: The Pull constraint ensures that both
offcodes will be offloaded to the same target device.

• Gang Constraint: The Gang constraint is used to en-
sure that both offcodes will be offloaded to their target
devices, respectively.

An OA-Application can also influence layout by setting
the offload priority for each offcode that it directly requires.
Once a reference priority is defined, it is inherited by sub-
sequent offcodes required by the top-level offcode until a
Link reference is encountered.

3.4. Offcode Description File

An offcode description file (ODF) summarizes the avail-
able offcode interface functions and required hardware ca-
pabilities. An ODF contains three parts: first, the structure
of the offcode’s package and required files on the host. The
second part defines the target device’s hardware. The last
part declares software interfaces used in its implementation
that should be defined in the target device’s execution envi-
ronment. Currently, all required interfaces must be defined
by a GUID (much like offcodes themselves). The basic run-
time interfaces defined by HYDRA are available to all off-
codes without an explicit interface requirement. Figure 2
presents a snippet from a typical ODF, containing the three
sections just described, including the use of a Pull constraint
to specify a peer offcode.

4. HYDRA Software Architecture

In the previous section we introduced the program-
ming model, focusing on the separation between applica-
tion logic programming and offload-layout programming.
In this section we present the design of the runtime system.
The system implements the model and provides facilities
for programming, testing, deploying, and managing OA-
applications and offcodes. Both the host OS and the target
device firmware must support the interfaces defined by the
programming API and implement the runtime functionality.

Runtime library requirements for a particular target de-
vice may be provided by the device manufacturer, system
integrator, or by application developers themselves. The



<offcode bindname="Hydra.net.utils.NetAPI">
<GUID>6060842</GUID>

<!-- offcode package info -->
<package>
<device> <!-- offload device -->
<id>0x0001</id>
<file>/lib/offcodes/NetLib.oc</file>
<!-- a netlib stub for this device -->
<file>/lib/stubs/NetLibStub.oc</file>
</device>
<host> <!-- host proxy -->

<os>Linux FC4</os>
<ver>2.6.10</ver>
<file>/lib/proxy/NetLibProxy.so</file>

</host>
</package>

<!-- software environment section -->
<sw-env>
<import>

<reference type=Pull pri=0>
<bindname>Hydra.net.utils.Checksum</bindname>
<GUID>6060843</GUID>
<file>"/lib/offcodes/checksum.oc"</file>

</import>
</sw-env>

<!-- hardware environment section -->
<hw-env>
<hydra-device id=0x0001>

<name>Netgear GA-620T</name>
<vendorID>0x1385</vendorID>
<deviceID>0x620A</deviceID>
<bus>pci</bus> <!-- (optional) -->
<address>0x0011</address>

</hydra-device>
</hw-env>
</offcode>

Figure 2. Sample offcode description file

second half of the runtime system exists on the host as op-
erating system extensions. Our host implementation for
Linux is modular, in that it maintains strict separation be-
tween device-specific code and generic code. It is imple-
mented as a set of loadable kernel modules, requiring no
kernel source code modifications.

4.1. HYDRA Runtime

The HYDRA runtime is comprised of several components
as shown in Figure 3. It is accessed through an offloading
access layer that consists of a user-level library linked to
each OA-Application, and a kernel-level set of services.

The kernel layer consists of several functional blocks.
The System Call Management and Offloading API blocks
implement the various APIs defined in the programming
model. The Channel Management unit manages the chan-
nels by interacting with the Channel Executive. This mod-
ule handles channel creation by using a particular Chan-
nel Provider. These providers are target-specific and pro-
vided as an extended driver for each programmable de-
vice. A channel provider creates various specialized chan-
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Figure 3. System Architecture

nel types to the device and provides a cost metric regarding
the “price” for communicating with the device through a
specific channel, in terms of latency and throughput. The
executive uses this capability information to decide on the
best provider for a specific offcode. The Resource Manage-
ment unit keeps track of all active offcodes and related re-
sources. Resources are managed hierarchically to allow for
robust clean-up of child resources in the case of a failing
parent object. The Memory Management module exports
memory services such as user memory pinning that is used
by zero-copy channels. The Layout Management unit per-
forms layout related functionalities such as analyzing the
offloading layout graph.

4.2. Offcode Dynamic Loading

Supporting dynamic offcode loading is an important
building block in the HYDRA framework. We have consid-
ered different approaches for implementing dynamic load-
ing. The simple solution would be to hand over the offcode
to the target device and require that each device implement a
simple offcode loader. However this naive solution is quite
expensive in terms of device resources. Another approach
would be to fully perform the linking process at the host,
and only transfer the offcode when it is ready to be de-
ployed (at a specific memory region). The device’s loader
will merely need to initialize the offcode and execute it.

HYDRA runtime is built to support both approaches.
HYDRA support for dynamic offloading is provided by a
set of device-specific loaders that implement a generic in-
terface for offcode loading. The interface is intended to be
implemented by the device driver of each target peripheral.
Each loader can decide whether to transfer the offcode as is,
or to perform some processing at the host first, depending



on features of the target.
The loader for our programmable network card is imple-

mented both in the device and in the host. A device-specific
host-based loader is implemented in the NIC’s driver; it uses
the OOB channel time to communicate with the target de-
vice loader. Four message transfers are used to load a single
offcode. Once the host-based loader calculates the offcode’s
size, it asks the device’s loader to allocate memory for it.
The runtime loader does so and returns the device’s mem-
ory address. The host dynamically generates a linker file
adjusted by the returned address and links the offcode ob-
ject. It then transfers the linked offcode to the target device
where it is placed and executed.

5. Application Scenarios

Distributed algorithms are often designed to function
correctly despite unpredictable and unreliable infrastruc-
tures. Following is a partial list presenting some potential
building blocks that are used by many distributed applica-
tions that can benefit from the offloading capability offered
by HYDRA.

Network Oriented Components. Distributed applica-
tions operate by interchanging messages among nodes. The
message exchange networking protocols are potential can-
didates for offloading. For example, the reliable broadcast
service that ensures that all hosts in a group of nodes deliver
the same set of messages to the application layer can be eas-
ily offloaded to the networking device. This service can be
used as a building block to construct value-added multicast
services, such as agreement and total ordering, or it can be
utilized to support the applications that involve groups of
cooperating hosts.

Total Order. Many distributed algorithms need guaran-
tees on message order. Section 6.2 provides a detailed dis-
cussion of our case-study of offloading such a protocol to
the networking device. Another example of an ordering pro-
tocol that can be easily offloaded is the token-ring protocol
used in the Totem [1] system.

Virtual Synchrony. The virtual synchrony model [4] of-
fers stronger guarantees required by applications such as
replicated database systems. The implementation overhead
involved can be drastically reduced by offloading the criti-
cal components to the networking card.

Cluster Synchronization. Real-time guarantees can be
implemented on programmable peripheral devices [23] and
used as a building block for a variety of distributed appli-
cations. For instance, the work of Verissimo et al. [21]
presents a set of distributed algorithms that assume the exis-
tence of a Timely Computing Base. Having such a compo-
nent simplifies the design complexity of these algorithms.
This timely component is an ideal candidate for offload-
ing, as it exports a simple interface that is ideal for a pro-

grammable clock, network card, or encryption engine.
Self-Stabilizing Algorithms. These algorithms are de-

signed to return a system to normal functioning, irrespec-
tive of the severity and nature of transient failures, as long
as there is a sufficiently long time interval for convergence.
Offloading some of the functionality can significantly re-
duce convergence time. E.g. due to the higher reliability
of the NIC, the self-stabilizing algorithm may significantly
decrease the time required to trust the coherence of the re-
ceived messages by verifying them with the NIC.

Distributed File Systems. Networked storage can use
offloading to enhance application performance by moving
common functions to an assist device. While RDMA-
capable networks can successfully bypass the operating sys-
tem for bulk transfers, other protocol activities such as
cache validation can generate message and interrupt over-
head to a host.

Providing a toolbox of reusable offcodes that implement
a variety of distributed algorithms may simplify the devel-
opment and deployment of distributed systems. We argue
for the need of such a toolbox, with proven correctness and
performance guarantees. Future work should provide such
components. The next section presents several of our case
study components used in evaluating HYDRA.

6. HYDRA Evaluation

In the previous sections we described the HYDRA sys-
tem, including its programming model and its internal de-
sign. In this section we demonstrate the use of HYDRA

through several sample applications.

6.1. Traffic Generator

Generating steady network traffic at high rates is difficult
given the variety of sources of delays and unpredictability
in a modern computer system, including devices’ interrupts,
cache and TLB misses, and power management changes.
We implemented an offload-aware traffic generator that pro-
duces a packet stream with fixed inter-packet delays. We
evaluate the performance of this application and compare
the results with an equivalent user-level application.

The traffic generator is comprised of two components:
a GUI that is used by the user to setup the system, and a
StreamGenerator component that generates the stream of
packets given user settings on protocol type, length, ports,
inter-packet delay, burst size, etc. The StreamGenerator
component is designed as an offcode. The GUI is the off-
code’s controller and creates a specialized, zero-copy, chan-
nel for communication. The APIs for interaction between
the GUI and the StreamGenerator offcode ore omitted here
for brevity, as are details of the offcode description file.



We implemented the application once using HYDRA and
once without the use of an offloaded component. We eval-
uate the designs using two hosts, Intel Pentium 4 2.4 GHz
with 512 MB and a Tigon2 programmable network card,
interconnected by a 100 Mb/s switch. We attempt to fully
utilize the link capacity by generating packets at fixed inter-
packet delays and for different frame sizes.

User-Space Traffic Generator

The benchmark results for the user-space application are
given in Table 1. Although the achieved throughput is quite
good, the dispersion of the inter-arrival times is enormous,
so large as to make the average almost meaningless. Fig-
ure 4 shows the Cumulative Distribution Function (CDF)
for three packet sizes to better display the distribution of ar-
rival times and illustrate the wide dispersion in these mea-
surements.

Size Tput Avg. Arrival ± Std CPU ± Std
Bytes Mb/s µs %

64 6.0 140 ± 8 000 100 ± 3
80 13.4 141 ± 9 000 99 ± 7
96 21.8 159 ± 11 000 99 ± 8

192 56.8 164 ± 6 000 98 ± 11
384 96.7 175 ± 4 000 81 ± 11
768 97.8 205 ± 4 000 37 ± 28

1514 98.6 244 ± 5 000 33 ± 5

Table 1. User Space Traffic Results
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It is also evident from the table that delivering the gener-
ated data to the application is difficult due to the very high
CPU load, especially with small packet sizes. The proces-
sor capacity problem, driven by the costs associated with

interrupts, directly impacts the throughput seen by the ap-
plications. As an example, the calculated inter-arrival times
for 1500 byte ethernet frames is approximately 120 µs for
100 Mb/s, 12 µs for 1 Gb/s and 1.2 µs for 10 Gb/s ethernet.
We have observed that the interrupt overhead for an empty
interrupt handler is between 5–10µs, consuming all but only
17% of the total available CPU cycles.

Size Tput Avg. Arrival ± Std CPU
Bytes Mb/s µs %

64 23.9 34 ± 6 2
64� 51.5 16 ± 8 2

768 98.4 65 ± 13 2
1514 98.8 126 ± 50 2

Table 2. Offload-Aware Traffic Results
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Offload-Aware Traffic Generator

The results from the offload-aware traffic generator are
summarized in Table 2 and shown as a CDF in Figure 5.
For both tests, in order to accurately measure the through-
put and the inter-arrival times, we have used a second NIC
with a simple traffic analyzer offcode. The data shows that
the inter-arrival times are uniform with small standard devi-
ation. The sharp vertical edges in the CDF indicate that
the majority of the packets arrived within the same ex-
pected inter-arrival time. Notice that for 64-byte packets,
the achieved throughput is only a quarter of the link’s band-
width. In order to achieve the full link capacity, a generator
must produce a 64-byte packet approximately every 5 µs.
Because we have not tried to optimize the HYDRA runtime
for this or any specific application, the generator can only
send packets at a rate limited by the device’s OS constraints,
which in this case is limited by the number of MAC de-
scriptors at the NIC and the processing overhead involved



in managing them. In order to further improve the through-
put for such small packets, we have created an optimized
version of the device’s OS that can reuse a single MAC de-
scriptor for sending the same packet multiple times. The
table shows that for the optimized version (indicated by the
64� table entry) the throughput has been significantly im-
proved. This sort of optimization may be undertaken as
needed by particular applications that use HYDRA.

6.2. Total Ordering

Total Order (TO) algorithms have been extensively stud-
ied in the literature [7]. A TO algorithm is a fundamen-
tal building block in the construction of distributed fault-
tolerant applications. They are typically used to provide a
communication primitive that allows processes to agree on
the set of messages they deliver and also on their delivery
order. Total ordering is particularly useful for implementing
fault-tolerant services, database replication and locking ser-
vices [2]. A TO algorithm that assumes an unreliable failure
detector is equivalent to the consensus problem [5]. It has
been shown that consensus cannot be solved in this type of
systems in fewer than two communication steps [13]. Many
TO algorithms for asynchronous systems use consensus as
a building block, but the implementation can be expensive
both in terms of communication steps and number of mes-
sages exchanged between hosts. This overhead is further
exacerbated if in addition to the TO algorithm, the host also
executes a resource-demanding application such as a typical
High Performance Computing (HPC) application.

Offloading a TO algorithm, either in full or for partic-
ular components, can greatly improve the performance of
distributed applications for several reasons. First, a TO al-
gorithm packaged as an offcode can be easily reused by a
variety of applications. Second, the reduced load on the
host machine will improve the performance of such appli-
cations; and third, an offloaded TO may take advantage of
specific hardware capabilities in order to improve its over-
all performance. For example, as shown in the traffic gen-
erator example above (Section 6.1), the small dispersion of
the inter-arrival times of ethernet packets may be used to
implement better accurate failure detectors and to maintain
finer-grained timeouts for message retransmissions.

6.2.1 Offload-Aware TO Architecture

We have implemented a simple offload-aware total order
application. To simplify the proof of concept implemen-
tation, we assume that there are no physical link disconnec-
tions, switch failures, or process or node crashes. We do not
assume a reliable message transmission—messages can be
lost due to buffer overflow at the NIC, host or switch. The
sample application is comprised of several components that
appear on the left side of Figure 6.
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TO
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β

GUI Service
TO
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Offload−Aware Total−Order Offloading Layout

Host

NIC

IOrderer

ReliableBroadcast

LamportOrderer

IBroadcaster

Link

invocation
Method−

Zero−Copy R/W Channel

Std. ref

Pull

OA−App

Figure 6. Total-Order Offload Architecture

1. GUI: The Graphical User Interface controls the TO
application. It enables the user to define the rate at
which messages are transmitted and their size. The
GUI presents the message order once it is determined.

2. TO Service: The TO Service is an application library
used by the GUI, that in turn uses the offcode to pro-
vide two basic total-order APIs: TO Broadcast and
TO Receive. The first API broadcasts a message and
the second receives the next message for which the TO
has been established.

3. LamportOrderer: This offcode (denoted by the letter
α) presents the IOrderer interface that implements a
TO algorithm. Specifically, we have implemented the
Lamport’s Timestamp ordering algorithm [14]. This
offcode interacts with the TO Service in a well defined
interface, discussed below.

4. ReliableBroadcast: This offcode (denoted by β), pro-
vides the reliable broadcast service that is needed by
the LamportOrderer offcode. In our implementation,
multicast is used in order to efficiently send messages
to peer hosts. Albeit our simplifying assumptions,
message omissions may still occur due to buffer over-
flow. To address this issue, this component implements
a simple negative acknowledgment scheme.

The left side of Figure 6 also indicates the HYDRA com-
munication channels that are used. A reliable unicast chan-
nel with a zero-copy policy for read and write is used in
order to eliminate the OS networking stack overhead. Ba-
sically, the TO Service manages the application’s memory
descriptors (See Section 3.2) and effectively determines the
control-flow policies of the application (descriptors for re-
ceived messages are also posted by this component). In or-
der to send a message, the TO Service creates a Call object
and invokes the channel. The NIC-resident HYDRA run-
time DMAs the message and notifies the LamportOrderer
offcode that a new message should be transmitted. The “or-



derer” offcode timestamps the message and multicasts it us-
ing the Broadcaster interface, which is implemented by the
ReliableBroadcast offcode.

Received packets are first handled by the ReliableBroad-
cast offcode. The offcode is operated in two phases: At
the first phase, the offcode transfers the received packet to a
pre-posted descriptor at the host using DMA. Note that the
message cannot be delivered to the application yet, since the
message order has not been determined. Because the NIC
has a small amount of memory, it is better to release the
NIC’s memory as soon as possible. The message identifier
and timestamp are the only data that is saved on the NIC
by the LamportOrderer offcode. The second phase begins
once the message order has been determined by the TO al-
gorithm. The LamportOrderer offcode creates a Call with
the messages’ order and invokes the channel connected to
the TO Service. Once the order is known at the TO Service
component, the ordered messages can safely be delivered to
the application.

The right side of Figure 6 presents the offloading layout
that is designed by the developer. The GUI holds a standard
reference to the TO Service component. This component
holds a Link reference to the “orderer” components α, since
it has no special offloading constraints. On the other hand,
the “orderer” offcode must be offloaded with the broadcast
offcode (i.e, β) hence a Pull constraint is used. Note that
in order to compare the results of this offload-aware TO al-
gorithm with a non-offloaded version, a developer merely
needs to interchange the two constraints and re-execute the
application. The effect of doing so is that the “orderer” will
be executed at the host while the broadcaster remains at the
networking device.

6.2.2 Total Ordering Evaluation

We used five Intel Pentium 4 2.4 GHz systems, with 512MB
of RAM and 32-bit, 33 MHz PCI bus. Each machine was
equipped with programmable Netgear 620 NICs, which
have 512 kB of memory. We used Linux version 2.6.11
with the HYDRA module enabled. The hosts were inter-
connected by a Gigabit ethernet switch (Dell PowerCon-
nect 6024). The right side of Table 3 presents the maximum
throughput and latency measurements for the offload-aware
TO when all nodes act as both senders and receivers. Each
node generates traffic at a rate bounded by the flow control
mechanism imposed by the TO Service component. The
presented latency is defined as the time elapsed between the
TO Broadcast and TO Receive method invocations that re-
fer to the same message.

We compare our results with those from a recent work by
Dolev et al. [3], which are given on the left side of the ta-
ble with title “Hardware-based TO”. That work implements
a wire-speed total order algorithm using hardware-based

component comprised of two switches connected back-to-
back. Each host is equipped with two NICs: one NIC is
used for transmitting (connected to the first switch) and
one for receiving (connected to the second switch). The
back-to-back switch connection serializes the packets, thus
effectively acts as a hardware sequencer. In addition to
the switch configuration, a lightweight user-space TO al-
gorithm is invoked at each node. The throughput obtained
from the offload-aware TO application is close to that of
the hardware-based solution. Note that the throughput in-
creases with the number of nodes due to PCI bus properties
as explained in previous work [3, 22].

Although with HYDRA we have used a software algo-
rithm to order the messages, we found that bypassing the
OS networking stack overhead enabled us to significantly
increase the throughput over typical user-based total order-
ing. This fact strengthens the motivation for offloading and
specifically for using HYDRA.

As for the measured latency, the results are approxi-
mately twice those in the hardware-based configuration.
Although we have offloaded the ordering algorithm to the
NIC, a distributed solution requires an extra round of com-
munication that is not required in centralized solutions (like
the hardware-based solution). In addition, Lamport’s times-
tamp algorithm is known to be very expensive in terms of
communication overhead and latency; messages must be re-
ceived from every node in order to be able to determine the
messages’ order. We expect to improve the performance by
deploying more efficient ordering algorithms.

7. Conclusions and Future Work

This paper has presented HYDRA—a novel framework
for building high-performance distributed applications that
can benefit from offload capabilities of modern peripherals.
HYDRA proposes a new dimension of flexibility for the ar-
chitects of distributed applications: the ability to program
offloading layout policies separately from the application’s
logic. We have developed a programming model that care-
fully balances between programmer scalability and system
scalability. We believe that programmable devices will con-
tinue to grow in popularity. The need for a framework such
as HYDRA is to enable the use of these devices to improve
performance and capability of a broader range of applica-
tions. We have evaluated HYDRA by implementing several
applications and discussed its potential use for accelerating
distributed computing. In the future we intend to provide a
toolbox of offcodes consisting of reusable building blocks
that will suit a variety of distributed applications. We ex-
pect to release an experimental version of HYDRA towards
the end of this year.



Nodes Hardware-based TO Offload-Aware TO
Throughput [Mbps] Latency [ms] Throughput [Mbps] Latency [ms]

3 310.5 4.2 301.8 8.7
5 362.5 4.1 324.6 9.5

Table 3. TO Performance (all-to-all)
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