
1

Gossip-based Reputation Aggregation for  

Unstructured Peer-to-Peer Networks* 

Runfang Zhou and Kai Hwang 

University of Southern California 

 Los Angeles, CA, 90089 

Abstract: Peer-to-Peer (P2P) reputation systems are 

needed to evaluate the trustworthiness of participating 

peers and to combat selfish and malicious peer behaviors. 

The reputation system collects locally generated peer 

feedbacks and aggregates them to yield global reputation 

scores. Development of decentralized reputation system is 

in great demand for unstructured P2P networks since most 

P2P applications on the Internet are unstructured. In the 

absence of fast hashing and searching mechanisms, how to 

perform efficient reputation aggregation is a major 

challenge on unstructured P2P computing.1

We propose a novel reputation aggregation scheme 

called GossipTrust. This system computes global 

reputation scores of all nodes concurrently. By resorting to 

a gossip protocol and leveraging the power nodes, 

GossipTrust is adapted to peer dynamics and robust to 

disturbance by malicious peers. Simulation experiments 

demonstrate the system as scalable, accurate, robust and 

fault-tolerant. These results prove the claimed advantages 

in low aggregation overhead, storage efficiency, and 

scoring accuracy in unstructured P2P networks. With 

minor modifications, the system is also applicable to 

structured P2P systems with projected better performance.

1. Introduction 

Peer-to-peer (P2P) computing accounts for an large 

portion of the Internet traffic in recent years [13]. These 

include distributed file-sharing [6], [16], digital content 

delivery [3], [13],  and Grid computing [7]. Despite the 

demand of robustness and scalability of P2P networks, the 

anonymous and dynamic nature of peer activities makes 

them very vulnerable to abuses by selfish and malicious 

peers [20]. As most P2P file-sharing networks, e.g. 

Gnutella, consist of autonomous peers with different self-

interests [3] [8], their open and decentralized nature makes 

* Presented in IEEE International on Parallel and Distributed 

Processing Symposium (IPDPS-2007), Long Beach, CA. March 27-29, 

2007. This work was supported by NSF Grant ITR-0325409 at the 

University of Southern California. Corresponding author is Kai Hwang at  

kaihwang@usc.edu, Tel: 213 740 4470, and Fax: 213 740 4418.   

them extremely susceptible to malicious users spreading 

harmful content like viruses, fake files or just wasting 

others’ resources. 

To combat malicious peers and encourage resource 

sharing among peers, reputation management is essential 

for peers to assess the trustworthiness of others and to 

selectively interact with more reputable ones. Without an 

efficient reputation management facility, peers may 

hesitate to interact with unknown peers due to the concern 

of receiving corrupted or poisoned files or being exploited 

by malwares. Furthermore, identifying trustworthy peers is 

especially necessary in commercial P2P applications, such 

as P2P auctions, trusted content delivery, pay-per-

transaction, and P2P service discovery. The mechanism 

through which online reputations are managed is 

extremely important for evolution and acceptance of these 

P2P services.

In a traditional reputation system, after a peer completes 

a transaction, e.g. downloading a music file, the peer will 

rate the other based on its experience in the transaction. 

The reputation system computes the global reputation 

score of a peer by aggregating the local rates (i.e. 

feedbacks) from those who have interacted with this peer. 

By making the global reputation scores publicly available, 

peers are able to make informed decisions about which 

peers to trust.  

The field of P2P reputation systems is currently 

receiving a lot of attention as a means of helping peers 

avoid unreliable or malicious peers. In an open and 

decentralized P2P system, there is no centralized authority 

to maintain and distribute reputation data. Instead, P2P 

reputation systems calculate the global reputation scores 

by aggregating peer feedbacks in a distributed manner 

[12]. The most important issue involved in this process is 

the reputation aggregation from locally generated 

feedbacks to yield global reputation scores.  

Most proposed reputation aggregation scheme, e.g., 

PowerTrust [22], EigenTrust [10] and PeerTrust [19] rely 

on the DHT mechanism to achieve scalability in 

aggregating and managing reputation data. However, the 

P2P architectures that are most prevalent in today’s 

Internet are decentralized and unstructured, e.g. Gnutella, 

Kazaa and Freenet. To the best of our knowledge, there 

exists no specific reputation systems for unstructured P2P 

1-4244-0910-1/07/$20.00 ©2007 IEEE



2

networks. How to perform efficient reputation aggregation 

is the major challenge in unstructured P2P networks due to 

lack of embedded fast hashing or searching mechanism. 

 In this paper we present a GossipTrust system, a 

scalable, robust and fault-tolerant reputation aggregation 

scheme for unstructured P2P networks. GossipTrust 

resorts to gossip protocols to aggregate global reputation 

scores. Each peer repeatedly contacts others at random, 

and exchanges reputation data with them.  

The remaining parts of this paper are organized as 

follows. Section 2 reviews existing work on the 

development of reputation systems for both structured and 

unstructured P2P networks. Section 3 introduces the 

architecture of GossipTrust. The gossip protocol is 

described in Section 4.  We present distributed gossip and 

aggregation algorithms in Section 5. Simulation 

experimental results are given in Section 6. Finally, we 

conclude with a summary of contributions and make 

suggestions for further research needed. 

2. Related Work and Our Approach 

Several reputation systems have been proposed to 

discourage maliciousness and motivate trustworthiness 

and cooperation in P2P networks. Xiong and Liu presented 

PeerTrust [19], which computes the trustworthiness of a 

given peer based on five factors. Srivatsa took a further 

step to improve the robustness of PeerTrust itself. They 

proposed methods to especially counter vulnerabilities in 

reputation management.  

The EigenTrust algorithm [11] aggregates local scores 

by having peers perform a distributed calculation 

approaching the eigenvector of the trust matrix over the 

peers. We proposed the PowerTrust [22], which leverages 

the power law distribution of peer feedbacks to fast 

aggregate global reputations. All the above approaches are 

designed for DHT-based P2P networks. 

Trust management was first studied by Abrerer and 

Despotovic 1] for unstructured P2P networks. Their 

approach is based on a decentralized storage method (P-

Grid). The information provided by P-Grid is used to 

assess the probability that an agent will cheat in the future. 

This approach suffers from the fact trust is evaluated only 

by referrals from neighbors, not based on global 

information. 

TrustMe [17] is a secure and anonymous underlying 

protocol for trust management. TrustMe uses a random 

assignment of reputation-holding peers and employs smart 

Public Key mechanisms to prevent the loss of anonymity. 

When a peer intends to query the global reputation of 

another peer, it will broadcast the query message; when a 

peer wants to report its feedbacks, it will broadcast the 

reports. This method will impose a lot of message in the 

network. Besides, when network size is very large, it will 

take a long time to disseminate peer reports and to get a 

peer’s global reputation.  

In [12], peer reputation scores are not aggregated from 

global information, but from very limited local 

information, i.e. a peer’s local ratings or incorporating 

neighbors’ rating. XRe [4] provides a protocol 

complementing current Gnutella protocol by allowing 

peers to keep track of and share information about the 

reputation of other peers and resources. No guarantees are 

given with respect to computational efficiency and 

scalability. 

The idea of gossiping in cyberspace communication 

is very similar to gossiping to reach consensus in the 

human society. Gossip protocols were proposed for 

randomized communication [2], [9] and for aggregation of 

large amounts of distributed information [11]. These 

protocols do not rely on specific network topologies. They 

support the computation of aggregate functions like 

weighted sum, average value and maximum over large 

collection of distributed numeric values [14].  

We are the very first attempt to use gossip protocol 

for fast global reputation aggregation in unstructured P2P 

networks. This P2P protocol does not require error 

recovery mechanisms, and thus enjoys an advantage in 

simplicity, while causes only moderate overhead 

compared to a deterministic communication protocol.

GossipTrust is adaptable to peer dynamics and robust to 

disturbance of malicious peers by leveraging gossip 

protocols and power nodes. The power nodes are 

dynamically chosen after each reputation aggregation [22].

3. The GossipTrust Architecture   

The major challenge in designing an efficient reputation 

aggregation scheme is to achieve a nice tradeoff between 

the following two key performance metrics. 

Computational complexity: The computation overhead, 

especially the time to aggregate the global reputation 

scores, is the major concern. Small computation overhead 

means significant traffic reduction in the system and less 

work for all peers involved.

Accuracy of estimation: We would like our estimation of 

the global reputation score to be very close to the actual 

value. In this work, our goal is that the probability should 

be high for the estimated reputation score v’ to be within 

[(1- )v, (1+ )v], where v is the actual reputation score and 

 is the small relative error.

A very high level of accuracy can be achieved if one is 

willing to incur more complexity in terms of computation. 

Therefore, there is an inherent tradeoff between the 

computational complexities and accuracy of estimation. 



3

This tradeoff can be exploited through the choice of 

various design parameters, as explained in Section 5. In 

addition, listed below are six key issues that we take into 

account in the design of GossipTrust.  

System reliability: To help distinguish reputable from 

malicious peers, the system should calculate the 

reputation scores of peers as close to their real 

trustworthiness as possible.   

Simple to implement:  The system should be simple to 

implement and maintain in a fully distributed manner. 

Light-weight communication: The system should only 

consume limited computation and bandwidth resources 

for peer reputation monitory and evaluation. 

Adaptive to peer dynamics. Peer joins and leaves an 

open P2P network dynamically. The system should be 

adaptive and robust to peer dynamics. 

Robust to malicious peers. The system should be robust 

to various attacks by both independent and collective 

malicious peers. 

System scalability: The system should be able to scale to 

serve a large number of peers in term of accuracy, 

convergence rate, and extra overhead per peer. 

We have developed a simulated GossipTrust 

reputation system at USC Internet and Grid Computing 

Laboratory. Figure 1(a) shows the architecture of the 

GossipTrust system running on a typical node Ni, where 

i=1,2,…,n. GossipTrust consists of three functional 

modules. The Gossip-based Reputation Aggregation

module supports both Initial Reputation Computation and 

Reputation Updating. After each round of global 

reputation computation, GossipTrust will identify power 

nodes for the next round of reputation updating.

In this system, each node keeps a row vector of trust 

matrix S based on its outbound local trust scores. In 

addition, each node also maintains a global reputation 

vector V(t) at aggregation cycle t. Internally, this vector is 

represented by a collection of <node_id, score> pairs. At 

the first aggregation cycle, V(0) is initialized with equal 

global reputation scores, i.e. vi(0)=1/n, i=1,2,…,n.

To compute the successive reputation vectors, 

GossipTrust uses a gossip-based protocol to perform the 

matrix-vector computation. Gossiping supports light-

weight communications among nodes during the 

aggregation process. In GossipTrust, each aggregation 

cycle consists of several gossip steps as shown in Fig.1(b). 

In a gossip step, each node receives reputation vectors 

from others, selectively integrates the vectors with its 

current reputation vector, and then sends the updated one 

to a random node in the network. 

This gossiping process continues until the gossiped 

scores converge in g steps, where g is determined by a set 

gossiping error threshold . After the convergence of 

gossip steps, GossipTrust continues the next aggregation 

cycle until the global reputation vectors converge in d

cycles, where d is determined by the aggregation error 

threshold . Figure 1(b) illustrates the process of 

reputation aggregation in GossipTrust. 

(a) GossipTrust system architecture 

b) Global reputation aggregation | 

     through iterative gossip steps 

Figure 1.  The GossipTrust architecture and        
          control flow among functional modules 

4.  Gossip-based Reputation Aggregation

In this section, we first characterize the global 

reputation aggregation problem. Then we present our 

gossip protocol for distributed reputation aggregation..  

4.1  Global Reputation Aggregation  

In a P2P network of n nodes, each node evaluates the 

trustworthiness of other nodes with local trust scores after 

conducting a P2P transaction, such as a file download. 

Consider a trust matrix R=(rij), 1 i, j n, where rij is the 

local score issued by node i for node j. If there is no 

feedback from node i to j, rij is set to 0. For global 

reputation aggregation, each node must normalize all local 



4

scores issued by itself. The normalized local score sij is 

defined as follows:  

sij = rij / j rij                                                  (1)   

Then we have a normalized trust matrix S = (sij). Note 

that  10 ijs  and each row sum n
j=1 sij = 1 for all 

rows i = 1, 2, …, n. In other words, the normalized trust 

matrix S is a stochastic matrix, in which all entries are 

fractions and all row entries add up to be 1.   

Let vi(t)  be the global reputation score of node i at

aggregation cycle t, where i = 1, 2, …, n and t = 0, 1, 2, 

…, d for d cycles. The global scores of all nodes form a 

normalized reputation vector with n components V(t) = 

{vi(t)}
T, where i vi(t)= 1. The iterative method specified 

below calculates the V(t) at cycle t. Let V(0) be the initial 

reputation vector value. For all iterative cycles t =1, 2,…, 

d, we generate successive reputation vectors, recursively, 

by performing the following matrix-vector computations:  

V(t+1) = ST V(t)                                    (2) 

Initially, all nodes are equally trusted, i.e. vi(0) = 1/n,

where i = 1,2,…,n. The iterative computation in Eq.(2) 

continues until the average relative error between V(d) and 

V(d+1) is lower than  for a given aggregation error 

threshold  at the last cycle d. We have proved in [22] that

d logb  with b = 2/ 1, where 1 and 2 are the largest 

and second largest eigenvalues of the trust matrix S. The 

convergence threshold  is often predefined by system 

designers. In other words, after d cycles, the global 

reputation vector converges to the eigenvector of trust 

matrix S.  

This recursive process is motivated by Markov 

random walk among nodes, which is widely used in 

ranking web pages. Consider a random surfer hopping 

from nodes to nodes to search for a reputable node. At 

each surfing step, the surfer selects a neighbor according 

to the current distribution of local trust scores. The 

stationary distribution of the Markov chain is the 

converged global reputation vector.  

Both EigenTrust and PowerTrust have developed 

scalable algorithms to calculate the global reputation 

vector V(t) for DHT-based P2P networks. In this paper, we 

propose a GossipTrust system for global reputation 

aggregation in unstructured P2P networks. The new 

scheme is fully distributed without using any topological 

structure among the nodes. It is also proven fast in 

convergence rate and secure in dynamic peer 

participations.  

4.2    Gossip Aggregation Protocol 

 Gossiping is done iteratively in a small number 

steps. We reserve the index k to indicate the gossip step. 

According to Kempe, et al [11], k is upper by a final step g
= O(log2n). We use index t to refer to discrete times for 

aggregation cycles. The upper bound for t is d iterations 

specified in section 3.1. Associated with each peer node i
is a gossip pair {xi (k), wi(k)} at each gossip step k.

At time t, we have the weighted score xi (t)  = sij×vi(t)

as the local score sij weighted  by the global score vi(t) of 

node i. The wi(k) is called the consensus factor of node i at 

step k. During each gossip step, every node i executes two 

computing threads:  One thread sends the halved gossip 

pair {½ xi (k), ½ wi (k)} to itself (node i) and to a randomly 

selected node in the network. Another thread receives the 

halved pairs from other nodes and computes the updated 

xi(k+1) and wi(k+1) as follows, where r refers the index of 

remote nodes sending halved gossip pairs in step k:

 xi(k+1) = r ½ xr (k)                                       (3)

             wi(k +1) = r ½ wr (k)                                      (4)

This process continues until the consensus values i(k) = 
xi(k)/wi(k) agree on all nodes i = 1, 2,…, n. The global 

score vj(t+1) is thus generated as follows on all n nodes at 

the final step g.

 vi(t+1) =  xi(g)/wi(g) =  i(g)                            (5) 

The above gossiping process is best illustrated by a 

small example in Fig.2. Consider a P2P network with three 

nodes. At time t, the global scores are given: v1(t) = 1/2, 

v2(t) = 1/3, and v3(t)=1/6. Given also normalized local 

score s12 = 0.2, s12 = 0, and s32 = 0.6. By Eq.(1), the 

updated global score of node N2 is calculated as: 

           v2(t+1) =  v1(t)×0.2 + v2(t)×0 + v3(t)×0.6

                       = (1/2) ×0.2 + (1/6) ×0.6 = 0.2            (6) 

(a) First gossip step (k = 1)

(b) Second gossip step k = 2

Figure  2.  Halved score sharing among 3 nodes in two 
gossiping steps to aggregate the global scores on all 
nodes, concurrently



5

We use Table 1 to illustrate the gossiping procedure 

in Fig.2. The end purpose is to generate the global score

v2(t+1) = 0.2 at all 3 nodes in 2 steps. In general, gossip 

protocols are used to calculate any aggregate function such 

as sum, maximum, or average of the numeric values 

distributed over many nodes. Here, we concentrate on the 

gossiped calculation of the global score of node N2.

Initially at step 0, we thus assume w2(0) = 1 and w1(0) = 

w3(0) =0. The initial weighted scores x1(0) = (1/2)×0.2 = 

0.1, x2(0) = (1/3)×0 = 0, and x3(0) = (1/6)×0.6 = 0.1.  

At the first gossip step, as shown in Fig.2(a), N1

sends the pair (½x1(0), ½w1(0)) = (0.05, 0) to N1 and to a 

randomly chosen node N3 The node N2 sends the pair (0, 

0.5) to N2 and a random node N1. Node N3 sends the pair 

(0.05, 0) to N3 and a random node N1. Then N1 updates 

x1(1) = 0+0.05+0.05=0.1 and updates w1(1) = 0+0.5+0 

=0.5. After first gossip step, N1 has the pair {x1(1), 

w1(1)}= (0.1, 0.5). The gossiped score x1/w1 = 0.2 on N1. 
Similarly, nodes N2 and N3 go through the same gossiping 

process to produce x2/w2 =0 and  x3/w3 = .

Table 1   Gossiped Scores Aggregated at Successive                    
                 Steps on All Nodes in Fig.2, Concurrently   

Node N1 x1(k) w1(k) 1 (k) = x1(k)/w1(k)

Step 1 0.1 0.5 0.2 

Step 2 0.05 0.25 0.2 

Node N2 x2(k) w2(k)
2(k) = x2(k)/w2(k)

Step 1 0 0 0 

Step 2 0.1 0.1 0.1 

Node N3 x3(k) w3(k)
3(k) = x3(k)/w3(k)

Step 1 0.1 0.1 0.1 

Step 2 0.05 0.05 0.05 

Figure 2(b) illustrates halved score sharing by the 

same gossiping process in step 2. After step 2, we have 

reached the consensus that x1/w1 = x2/w2 = x3/w3 = 0.2. 

Thus, we accept the updated global score for node N2 as 

v2(t+1) = x1/w1 = x2/w2 = x3/w3 = 0.2, which agree with the 

dot product calculation in Eq.(5). Thus, gossiped scores 

are equalized in all 3 nodes at the process end. Suppose we 

extend the gossiping process to another step, we will see 

no more changes in the consensus values  x1/w1 = x2/w2 =

x3/w3 = 0.2. Lacking centralized control, the consensus 

must be determined on distributed nodes locally. This last 

step determines the global consensus.  

5.   Distributed Aggregation  in GossipTrust

The iterative method in Eq.(2) specifies global 

reputation aggregation in each cycle. Mathematically, we 

need to compute the weighted sum of all local scores sij for 

each peer j= 1, 2, …,n  in Algorithm 1, where the 

normalized global scores {vi(t-1)} are the weights applied. 

The numerical computation in Eq.(6) for the 3-node 

network example in Fig.2 is generalized for a general P2P 

network having n nodes  indexed by j = 1,2,…, n . 

vj(t)  = ij

n

i i stv )1(
1

                 (7)

The above gossip protocol is generalized by the 

following Algorithm 1 for an n-node P2P network.  The 

procedure shows how to perform the gossiping operation 

in g steps to reach the consensus on all nodes. Algorithm 1 

is thus executed on all nodes, concurrently, even we 

specify the protocol only one node below.  

Algorithm 1: Gossip Protocol to Compute Any Single Peer Score 

1: INPUT: local score sij, global score vi(t-1) at time t-1, where i = 1,2,…,n

        and  gossip threshold 

2: OUTPUT: global reputation score vj(t) of node j at time t

3: forall i = 1, 2, ….n do     { simultaneously } 

4:     xi sij×vi(t-1)            { initialize weighted score xi }

5:     if (i == j), set  wi  1,  else wi = 0        { initialize consensus factor wi }

6     k  0                      { initialize gossip step k}
7: repeat 

8:         u xi/wi                     { save previous score before convergence }

9:         let {(xr, wr)} be all gossip pairs sent to i in previous step   

10:         xi r xr, wi r wr             { update xi and wi } 

11:         choose a random node q                     

12:         send the pair (½ xi, ½ wi) to node q and node i itself 

13:          k k+1                { increase gossip step by 1} 

14:      until |xi/wi – u|          {  is a preset error tolerance or the gossip threshold} 

15: endfor

16: output vj(t) xi/wi



6

          In GossipTrust, every node has a unique identifier

and keeps a global reputation vector. The global-scale 

gossip-based reputation aggregation is specified in 

Algorithm 2. During each aggregation cycle t, each  vector 

element is internally represented by a triplet (xid, id, wid),

where id is a node identifier,  xid is the weighted score 

defined in Eq.(3) and wid is the consensus factor defined in 

Eq.(4).   

          We aggregate all triplets in the reputation vector, 

concurrently. During each gossip step, every node i sends 

its reputation vector to a randomly chosen node, which can 

be a neighbor node or any other node. Upon receiving the 

global reputation vectors from others, node i updates xid

and wid for every triplet in the reputation vector. 

         At the end of an aggregation cycle t, the gossip 

process converges to an equalized gossiped score xid/wid on 

all nodes. Node i checks the difference between the 

current global reputation vector and the one from 

aggregation cycle t-1. If the difference is larger than a pre-

defined aggregation error threshold , node i will enter the 

next aggregation cycle t+1. Otherwise, the global 

reputation vector has converged, node i will replace the 

triplet <xj, j, wj > with the pair <vj, j>, where vj = j = xj /wj

is the converged global score of node j.

Algorithm 2:   Aggregation to Update All Peer Scores Concurrently  

1: INPUT: local trust matrix S=(sij) and tolerable aggregation error 

2: OUTPUT: Converged global reputation vector V(t)

3: forall i = 1, 2, ….n do    { Concurrently on n nodes } 

t  0                             {initialize the aggregation cycle} 

4:     Repeat 

5:          forall local score sij do

6:              { initialize weighted score and consensus factor } 

7:                 if  (t == 0) then  xj sij / n

8:                 else  xj sij vi(t-1) where vi(t-1) is node i's reputation at time instance t-1
9:                  if ( j == i ) then wj  1  else wj  0 

10:                 add the triplet <xj, j, wj > to global reputation vector V(t)

11:          endfor                   
12:          repeat  

13:                   let { Vr } be all received vectors from previous gossip step

14:                  forall  j  in  Vr do  

15:                         xj r xj , wj r wj , 

16:                         update the triplet <xj, j, wj > in V(t)

17:                   endforall 

18:                   choose another node q randomly 

19:                   send ½ V (t) to node q and to node i itself 

20:           until all n gossiped scores { i = xj / wj} are equalized and converged to vi(t). 

21:           forall  j=1, 2, …, n  do 

22:                vj xj / wj  and replace every triplet <xj, j, wj > with the updated pair <vj, j>

23:           endfor 

24:           t t +1                 {increase time instance by 1}

25:      until   |V(t) – V(t-1)| <         {Test with tolerable convergence threshold} 

26: endfor

27: output   The updated global scores V(t) = {v1(t), v2(t), …, vn(t)}          

6. Simulation Experimental Results  

In this section, we evaluate the performance of the 

GossipTrust reputation aggregation scheme by analyzing 

reputation convergence overhead, gossip propagation 

error under different design parameters and reputation 

aggregation error with respect to different threat models. 

We assess the query success rate of using GossipTrust in 

simulated P2P file sharing applications. 

6.1 Simulation Setup  

We evaluate GossipTrust using our own discrete event 

driven simulator. In our experiments, we construct a 

Gnutella-like flat unstructured network initially consisting 

of 1000 nodes. The number of feedbacks every node 

issued is power law distributed. Initially the maximum 

feedback amount dmax is 200 and the average feedback 

amount davg is 20. This distribution better models feedback 

distribution in existing reputation systems [21], [22].  



7

We choose greedy factor  = 0.15 as a default value. 

The system selects up to 1% of the total number of nodes 

as the power nodes. The base setting such as simulation 

parameters and default values used in most of the 

experiments are summarized in Table 2. and  represent 

the threshold for global reputation convergence and 

threshold for gossip protocol convergence respectively. 

We study two kinds of malicious behaviors, namely, 

independent setting and collusive setting. In independent 

setting, malicious peers cheat during transactions and issue 

dishonest feedbacks to others. They rate the peers who 

provide good service very low and rate those who provide 

bad service very high. In collusive setting, malicious peers 

collaborate with each other to boost up their own ratings. 

They may rate the peers in their collusion group very high 

and rate outsiders very low.  

The simulated experiments were run on a dual-processor 

Dell server and the operation system installed on this 

machine is Linux with kernel 2.6.9. Each data point 

reported in the following sections represents the average 

of at least 10 simulation runs with different seeds. 

Table  2. Parameters and Default Values used  

Parameter Basic Definition Default 

Value

n No.of peers in P2P network  1000 

Greedy factor of a peer  0.15 

dmax Max. peer feedback amount  200 

davg Average peer feedback amount 20 

Percentage of malicious peers 10% 

q Max. No. of power nodes 1% 

Global  aggregation threshold   10-3

Gossip error threshold  10-4

6.2  Gossip  Overhead vs. Threshold Applied 

The objective of this set of experiments is to evaluate 

computational efficiency and scalability of GossipTrust. 

There are two convergence processes in GossipTrust: one 

is the convergence of the reputation computation round 

and another is during every aggregation cycle, the 

convergence of gossip protocol to aggregate the weighted 

sum. Figure 3 shows the effects of various gossiping error 

threshold  and network size n on gossip steps. 

We measure both the number of reputation 

convergence cycles and the number of gossip aggregation 

iterations. Our studies prove that GossipTrust only runs a 

small number of aggregation cycles before the reputation 

scores converge, given an arbitrary trust matrix and a fixed 

greedy factor  > 0.1. The larger the number of gossip 

steps, the higher is the convergence overhead.   

The convergence overhead increases with the 

decrease of gossiping error threshold and growth of 

network size. When the gossiping error threshold  is very 

small, as  <10-4, the gossiping error threshold dominates 

the convergence overhead, regardless of the network size. 

While when  is large, as  >10-2, the network size 

dominates the convergence overhead. With a fixed small ,

the convergence overhead remains closes for different 

network sizes, which means that GossipTrust is able to 

scale well when reputation system grows. 

0.01 1E-3 1E-4 1E-5

0

5

10

15

20

25

30

35

40

G
o

s
s
ip

 s
te

p
 c

o
u
n
ts

 (
g
)

Gossip error threshold ( )

n= Number of nodes

n = 10
2

n = 10
3

n = 10
4

Figure 3  Gossip step counts of three  P2P network 
configurations under various gossip error thresholds

6.3  Gosssip and Aggregation Error Analysis 

The relative error incurred by gossip protocols in 

each aggregation cycle is propagated in the aggregation 

process. Table 3 reports both gossip error and aggregation 

error under three convergence settings for a P2P network 

of 1000 nodes. We consider the effects of varying both  

aggregation error threshold  and gossiping error threshold 

. We assess the gossip error by measuring the relative 

error of the global reputation scores caused by gossip 

protocol. The aggregation error is measured as the distance 

between actual and estimated global reputation vectors. 

Table 3  Gossip and Aggregation Errors under Three  
               Convergence Threshold Settings for a 1000- 
               Node P2P Network 

Aggrega-

tion Cycle 

Gossip

Step

Gossip

Error 

Aggregation  

Error 

10-5 10-4 19 35 1×10-6 1.6 × 10-4

10-4 10-3 15 28 7×10-6 7.3 × 10-4

10-3 10-2 5 22 1.6×10-4 3.8 × 10-3

Tradeoffs exist between computational efficiency 

and accuracy: the smaller are the aggregation error 

threshold and gossiping error , the less the propagation 

of gossip error, but the larger the number of gossip steps 

and reputation aggregation cycles. Based on the result in 

Table 3, for a network of 1000 nodes, we choose  = 10-4 



8

and  = 10-3 to balance the tradeoff between the 

convergence overhead and computational accuracy 

We evaluate the robustness of GossipTrust against 

malicious peer behaviors. The experiments were 

performed to compare non-collusive and collusive peer 

operations. In a non-collusive setting, malicious peers 

report dishonest trust scores independently. In a collusive 

setting, abusers collaborate with each other to boost up 

their own ratings.  

They rate the peers in their collusion group very high 

and rate outsiders very low. The probability of a node 

behaving  maliciously is inversely proportional to its 

global reputation, because a node providing corrupted 

services is highly likely to issue dishonest local trust 

scores. 

We compute below the root-mean-square (RMS) 

error E in aggregated global scores under different 

percentage of malicious peers in a P2P network. Lower 

RMS error implies the system is  more robust to attacks by 

malicious peers. The RMS error is defined by:   

RMS aggregation error   E =

2(( ) / )i i iv u v

n
(8)

where vi and ui  are the calculated and gossiped global 

reputation scores of peer i, respectively. 

The greedy factor  indicates the eagerness for a peer 

to work with selected power nodes [22]. We plot in 

Fig.4(a) the RMS errors under different values of and

various percentages of independent malicious peers. By 

leveraging power nodes, we set the the greedy factor  = 

0.15. This gives 20% less aggregation error than treating 

all peers equally with  = 0.  

However, increasing the greedy factor  to 0.3 does 

not lead to higher performance. This is because relying too 

much on the power nodes will miss the global view of the 

reputation data provided by majority nodes in the system. 

Therefore, setting  = 0.15 is indeed a very good choice.
Figure 4(b) reports the RMS aggregation error under 

collusive peers working collectively to abuse the system. 

 The plot represents the effects of various collusion 
group sizes, defined by the number of malicious peers in a 

group. In all cases (5% and 10% collusive peers), 

leveraging the power nodes with a greedy factor  = 0.15 

makes the system more robust against peer collusions. 

With 5% collusive peers, using power nodes has resulted 

in 30% less errors when collusion group size is greater 

than 6. The message being conveyed is proper use of 

power nodes are indeed  effective to cope with peer 

collusions.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
M

S
 A

g
g
re

g
a
ti
o
n
 E

rr
o
r

Percentage of Malicious Nodes(%)

 greedy factor  = 0

 greedy factor  = 0.15

 greedy factor  = 0.30

(a) Independent malicious peers 

2 3 4 5 6 7 8 9 10 11

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

R
M

S
 A

g
g
re

g
a
ti
o
n
 E

rr
o
r

Collusion Group Size

 = 0 w/5% malicious peers 

 = 0.15 w/5% malicious peers

 = 0 w/10% malicious peers 

 = 0.15 w/10% malicious peers

(b) Collusive malicious peers

Figure 4. Global aggregation errors from fake trust  
                scores reported by malicious peers in a P2P  
                network of 1,000 nodes 

6.4   P2P File Sharing Experimental Results 

We conducted extensive simulation experiments to 

measure the performance of using GossipTrust in P2P file-

sharing applications. There are over 100,000 files 

simulated in these experiments. The number of copies of 

each file is determined by a Power-law distribution with a 

popularity rate = 1.2. Each peer is assigned with a 

number of files based on the Sarioiu distribution [12].  At 

each time step, a query is randomly generated at a peer 

and completely executed before the next query step. The 

query popularity reflects the file preferred by a peer. 

We rank the queries according to their popularity. 

We use a power law distribution with a = 0.63 for 

queries ranked 1 to 250 and  = 1.24 for lower-ranking 

queries. This distribution models the query popularity 

distribution in Gnutella. After a query for a file is issued 

and flooded over the entire P2P network, a list of nodes 

having this file is generated and the one with the highest 

global score is selected to download the file. The system 



9

updates global reputation scores at all sites after 1,000 

queries. 

The query success rate is measured by the percentage 

of successful queries over the total number of queries 

issued. Every node has a rate to respond a query with 

inauthentic files. For simplicity, this rate is modeled 

inversely proportional to node’s global reputation. We also 

consider the case of a NoTrust system, which randomly 

selects a node to download the desired file without 

considering node reputation. We plot in Fig.5 the results of 

using GossipTrust and NoTrust in simulated P2P file 

sharing applications.

In this experiment, the malicious peers issue 

unreliable scores and provide corrupted files. The 

performance of GossipTrust drops only slightly with the 

increase of the number of malicious peers, while 

performance of NoTrust drops sharply with more 

malicious peers. With the help of GossipTrust, even when 

the system has 20% malicious peers, it can still maintain 

around 80% query success rate. This experiment proves 

the effectiveness of using reputation-based selection 

scheme in unstructured P2P file sharing applications

0 5 10 15 20 25

0

20

40

60

80

100

Q
u

e
ry

 S
u
c
c
e

s
s
 R

a
te

 (
%

)

Percentage of Malicious Peers (%)

 GossipTrust

 NoTrust

Figure 5 . Query success rate of simulated P2P file  
    sharing applications on a 1000-node P2P network 

7.  Conclusions and Further Research  

To our best knowledge, GossipTrust offers the very 

first attempt to extend the gossip protocol for reputation 

aggregation in P2P networks without any structured 

overlay support. GossipTrust is shown very fast in 

aggregating local trust scores into global reputation scores. 

The major innovations in GossipTrust development are 

summarized in three aspects: fast gossip-based 

aggregation algorithms, efficient reputation storage with 

Bloom filters, and secure communication with identity-

based cryptography. 

GossipTrust enables peers to compute global 

reputation scores in a fully distributed, secure, scalable 

and robust fashion. The simulation results show that the 

system scales well with the increase of network size. The 

system can also tolerates link failures and peer collusions. 

The benchmark experiments on P2P file-sharing 

applications demonstrate significant performance gains in 

using GossipTrust, compared with an unstructured P2P 

network without reputation services.  

We have to point out that the GossipTrust system is 

not restricted to apply only in unstructured P2P systems 

exclusively. With minor modifications, the system can 

perform even better in a structured P2P system. The gossip 

steps and reputation aggregation process reported here can 

be further accelerated by the fast hashing and search 

mechanisms built in DHT-based overlay networks. A peer 

providing corrupted services is highly likely to issue 

dishonest reputation scores.  

To probe further, we suggest to keep two kinds of 

reputation scores on each peer node: one to measure the 

quality-of-service (QoS) such as those performance 

measures reported here and another for quality-of-

feedback (QoF) by participating peers. We suggest 

integrating these two scores together and address the 

tradeoffs between them in future research challenges.  

Further research is also encouraged to apply 

reputation systems to enforce copyright protection in P2P 

systems. With the help of object reputation [18], a client 

can validate the authenticity of an object before initiating 

parallel file download from multiple peers. This opens up 

a meaningful direction to extend gossip-based systems for 

managing object reputations.  

Acknowledgements: This work was fully supported by 

NSF ITR Grant ACI-0325409 at the Internet and Grid 

Research Laboratory, University of Southern California. 

References: 

[1] K. Aberer and Z. Despotovic, “Managing Trust in a 

Peer-2-Peer Information System”, Tenth

International Conference on Information and 
Knowledge Management, New York, 2001 

[2] S. Boyd, A. Ghosh, B. Prabhakar, D. Shah, 

“Randomized Gossip Algorithms”, IEEE Trans. on 
Information Theory, June 2006, 52(6):2508-2530.  

[3] N. Christin, A.S.Weigend, and J. Chuang, “Content 

Availability, Pollution and Poisoning in File Sharing 

Peer-to-Peer Networks”, ACM Conf. on E-
Commerce, Vancouver, June 2005. 

[4] E. Damiani, S. Vimercati, S. Paraboschi, P. Samarati, 

and F. Violante, “A Reputation-based Approach for 

Choosing Reliable Resources in Peer-to-Peer 



10

Networks”, ACM Symposium on Computer 
Commmunication Security,  2002 

[5] C. Gkantsidis, M. Mihail, and A. Saberi, 

“Conductance and Congestion in Power Law 

Graphs”, ACM/IEEE SIGMETRICS, San Diego, 

June. 2003 

[6] K.Gummadi, R.Dunn, R. Dunn, “Measurement, 

Modeling and Analysis of a Peer-to-Peer File-

Sharing Workload”, Proceedings of the 19th ACM 
Symposium on Operating Systems Principles, Bolton 

Landing, NY, 2003. 

[7] J. Hu and R. Klefstad, “Decentralized Load 

Balancing on Unsructured Peer-2-Peer Computing 

Grids”, IEEE Int’l Symp. on Network Computing 

Applicatons (NCA’06), Boston, July, 2006 

[8] D. Hughes, G. Coulson, and J. Walkerdine, “Free 

Riding on Gnutella Revisited: The Bell Tolls?”, 

IEEE Distributed Systems Online, Vol. 6, June 2005 

[9] M. Jelasity, A. Montresor and O.Babaoglu, “Gossip-

Based Aggregation in Large Dynamic Networks”, 

ACM Trans. on Computer Systems, Vol.23, No.3,

August 2005 

[10] S. Kamvar, M. Schlosser, and H. Garcia-Molina, 

“The Eigentrust Algorithm for Reputation 

Management in P2P Networks”, ACM WWW’03,

Budapest, Hungary, May 2003 

[11] D. Kempe, A. Dobra and J. Gehrke, “Gossip-Based 

Computation of Aggregate Information”, IEEE 
Symp. on Foundations of Computer Science,

Cambridge, MA, Oct.2003 

[12] S. Marti and H. Garcia-Molina, “Limited Reputation 

Sharing in P2P Systems”, Proc. of ACM Conference 

on Electronic Commerce, New York, May 2004 

[13] J. Meserve, “P2P Traffic Still Dominates the 'Net”, 

Network World, 2005. 

[14] S. Nandy, L. Carter and J. Ferrante, “GUARD: 

Gossip Used for Autonomous Resource Detection”, 

19th Int’l Parallel &Distributed Processing 

Symposium, Colorado, Apr. 2005.  

[15] R. L. Page, S.Brin and T. Winograd, “the Pagerank 

Citation Ranking: Bringing Order to the Web”, 

Technical report, Stanford Digital Library 

Technologies Project, 1998 

[16] D. Qiu and R.Srikant, “Modeling and Performance 

Analysis of Bit Torrent-Like Peer-to-Peer 

Networks”, Sigcomm 2004, Portland, Aug-Sep, 2004 

[17] A. Singh and L. Liu, “TrustMe: Anonymous 

Management of Trust Relationships in Decentralized 

P2P Systems”, IEEE Intl. Conf. on Peer-to-Peer 

Computing, Sep. 2003 

[18] K. Walsh and E. Sirer, “Experience with an Object 

Reputation System for Peer-to-Peer File-sharing”, 

NSDI’ Symp.on Networked Systems Design & 
Implementation, San Jose, May 8-10, 2006 

[19] L. Xiong and L. Liu, “PeerTrust: Supporting 

Reputation-based Trust for Peer-to-Peer Electronic 

Communities”, IEEE Trans. Knowledge and Data 
Engineering, Vol.16, No.7, 2004, pp. 843-857 

[20] B. Yang, T.Condie, S. Kamvar and H. Garcia-

Molina, “Non-Cooperation in Competitive P2P 

Networks”, Proceedings of the 25th IEEE Int’l 
Conference on Distributed Computing Systems 

(ICDCS’05), Columbus, Ohio, 2005 

[21] M. Yang, Z. Zhang, X. Li and Y. Dai, “An Empirical 

Study of Free-Riding Behavior in the Maze P2P File-

Sharing System”, Proc. of IPTPS, Ithaca, Feb, 2005. 

[22] R. Zhou and K. Hwang, “PowerTrust: A Robust and 

Scalable Reputation System for Trusted P2P 

Computing”, IEEE Trans. on Parallel and 

Distributed Systems, accepted to appear 2007. 

Biographical Sketches 

Runfang Zhou is currently pursuing Ph.D. degree in 

Computer Science at the University of Southern 

California. Her research activities cover Peer-to-Peer 

reputation systems, overlay network design, web services 

performance improvement, and trust and secure 

collaboration in Grid computing. She can be reached at: 

rzhou@usc.edu.

Kai Hwang is a Professor of Electrical Engineering and 

Computer Science and Director of Internet and Grid 

Research Laboratory, University of Southern California. 

He received the Ph.D. from University of California, 

Berkeley in 1972. An IEEE Fellow, he specializes in 

computer architecture, parallel processing, Grid and 

cluster computing, and distributed computing systems. 

He has published over 200 technical papers and 8 books 

in these areas. His research group at USC has developed 

security-binding techniques, peer reputation systems, and 

distributed defense systems against worms and DDoS 

attacks for trusted Grid, P2P, and Internet computing. 

Contact him at kaihwang@usc.edu.


