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Abstract

Certain emerging network applications involve dynam-
ically allocating shared resources to a variety of services
to provide QoS guarantees for each service. Motivated by
such applications, we address the following online schedul-
ing problem belonging to the recently introduced class of
reconfigurable resource scheduling problems: unit jobs of
different categories arrive over time and need to be com-
pleted within category-specific delay bounds, or else they
are dropped at a unit drop cost; processors can be reconfig-
ured to process jobs of a certain category at a fixed recon-
figuration cost; the goal is to minimize the total cost. We
study this problem in the framework of competitive anal-
ysis. Through a novel combination of the EDF and LRU
scheduling principles, we obtain an online algorithm that is
constant competitive when given a constant factor resource
advantage over an optimal offline algorithm.

1. Introduction

Multi-core and multi-processor environments are in-
creasingly used to support a wide range of high-throughput
applications, such as web services, network applications,
and database servers. These environments host multiple
services simultaneously (e.g., a router supporting various
packet processing services).

To isolate — with respect to security and performance —
services from one another, these environments often config-
ure processors to support only one service at a time. The set
of processors configured to support a particular service de-
pends upon the associated workload; fluctuations in work-

1Supported by NSF Grants CNS-0326001, CCF-0310970, and CCF-
0635203.

2Supported by NSF Grant CNS-0326001 and Texas Advanced Tech-
nology Program Grant 003658-0608-2003.

1-4244-0910-1/07/$20.00 c©2007 IEEE.

load require changes in processor allocation. For instance, a
shared data center dynamically adjusts the allocation of pro-
cessors to independent services as the composition of the
workload changes [4, 5]. Similarly, a multi-service router
based on multi-core network processors adjusts the alloca-
tion of processors to different packet categories as the traffic
load fluctuates [16, 17, 18]. In these systems, reallocating
a processor from one category to another tends to incur a
nonnegligible overhead. For instance, on Intel’s IXP2400
network processor, loading the instruction store of a proces-
sor core with the code for a new category incurs a context
switch time, which is much (two or three orders of magni-
tude) greater than the time to process a packet [8]. In certain
applications involving QoS guarantees, jobs are required to
be processed within a delay tolerance, where the delay tol-
erance is a function of the job category [9].

Problem Statement. Motivated by the aforementioned
applications, we have recently introduced reconfigurable re-
source scheduling [14], a class of scheduling problems with
the following salient features: there are jobs of different cat-
egories; resources can be reconfigured to process jobs of a
certain category at an overhead, in terms of cost or time.

In this paper, we solve a specific problem in this class.
The following is an informal description of this problem;
a formal definition is given in Section 2. Each request is
a set of unit jobs. Each job has a category, and needs to
be executed within a category-specific delay bound from its
arrival, or else it is dropped at a unit drop cost. A job of a
given category can only be executed on a resource config-
ured for that category. A resource can be reconfigured at
any time at a fixed reconfiguration cost. The objective is to
minimize the total cost. We refer to this problem as recon-
figurable resource scheduling with variable delay bounds.

The high level goal of our work in reconfigurable re-
source scheduling is to design online algorithms that pro-
vide good performance under all possible operating condi-
tions. This motivates us to adopt the framework of com-
petitive analysis, where the performance of an online algo-
rithm is measured by the competitive ratio [15], that is, the



maximum ratio between the cost incurred by the online al-
gorithm and that incurred by an optimal offline algorithm,
over all request sequences. (See [1] for a comprehensive in-
troduction to competitive analysis.) In this paper, we adopt
a standard technique in competitive analysis, sometimes re-
ferred to as resource augmentation [7, 13], in which the on-
line algorithm is given extra resources in order to compen-
sate for its lack of future information. We refer to an online
algorithm that achieves a constant competitive ratio when
given a constant factor resource advantage as a resource
competitive algorithm. The specific objective of the present
work is to provide a resource competitive online algorithm
for reconfigurable resource scheduling with variable delay
bounds.

Our Contribution. To appreciate some of the difficul-
ties associated with variable delay bounds, consider a sce-
nario in which we are scheduling two categories of jobs on
a single resource: “background” jobs and “short-term” jobs.
Background jobs have deadlines far in the future, and short-
term jobs have smaller delay bounds and arrive intermit-
tently. We need to decide whether to use idle cycles to ex-
ecute background jobs. If we allow background jobs to use
idle cycles whenever available, we may incur a large num-
ber of reconfigurations, or drop a lot of short-term jobs; later
on, we may regret incurring these costs if we encounter a
lengthy interval during which no short-term jobs arrive, and
during which all of the background jobs could have been ex-
ecuted using a single reconfiguration. On the other hand, if
we do not allow background jobs to use small chunks of idle
cycles, and instead wait for a long idle interval, then later
on, we may regret doing so if we never encounter a long idle
interval. In summary, these two basic approaches lead to ei-
ther thrashing (i.e., excessively high reconfiguration cost)
or underutilization (i.e., excessively high drop cost).

A natural way to try to overcome these difficulties is
to consider algorithms based on the Least Recently Used
(LRU) principle. To pursue this approach, we need to define
an appropriate notion of an LRU timestamp in the current
setting. We have investigated various natural alternatives.
(See Section 3.3 for an example.) For all of these alter-
natives, we encounter the following basic difficulty, even
with resource augmentation: If we configure the categories
with the most recent LRU timestamps without consider-
ing whether these categories have jobs to execute, then we
are vulnerable to underutilization; if we configure the cate-
gories with the most recent LRU timestamps and with jobs
to execute, then we are vulnerable to thrashing.

Another natural approach is to consider algorithms based
on the Earliest Deadline First (EDF) principle. As with
LRU, there are different ways that we can formulate a spe-
cific algorithm based on the EDF principle. (See Section 3.2
for an example.) However, even with resource augmenta-
tion, all EDF variants seem to suffer from thrashing, and

therefore fail to yield a resource competitive solution. Fur-
thermore, it is not hard to argue that similar scheduling prin-
ciples, such as Least Slack First, also suffer from thrashing.

Though EDF alone or LRU alone seems insufficient to
solve our problem, each maintains a dynamic ordering that
addresses a key aspect of the request sequence. EDF ad-
dresses the urgency aspect and tends to reduce the drop cost.
LRU addresses the recency aspect and tends to reduce the
reconfiguration cost. Moreover, each dynamic ordering is
efficiently maintainable. It is natural to ask whether we
can efficiently combine these two orderings, and thereby
address both key aspects of the request sequence. In this
paper, we answer the question in the affirmative. We pro-
pose a natural and efficient combination of EDF and LRU.
The main idea is to keep two sets of categories configured:
one set picked by the EDF principle and the other picked
by the LRU principle. (See Section 3.4 for a formal defini-
tion of this combination.) We prove that this combination
yields a resource competitive algorithm for reconfigurable
resource scheduling with variable delay bounds. The com-
bining mechanism that we use to combine EDF and LRU
is general in nature, and can be used to combine multiple
scheduling principles, each of which maintains a dynamic
ordering of the jobs. The present work suggests that, for
problems which cannot be solved by a single dynamic or-
dering, it is worthwhile to explore algorithms based on a
combination of dynamic orderings.

We use a layered approach to solve reconfigurable re-
source scheduling with variable delay bounds. First, we use
a batching subroutine to reduce the problem to the special
case in which jobs of a given category arrive at integral mul-
tiples of the category-specific delay bound. Second, we re-
duce the batched problem to a rate-limited problem in which
at most p jobs with delay bound p arrive at each integral
multiple of p. Third, we solve the rate-limited problem us-
ing the aforementioned combination of EDF and LRU.

Related Work. In recent work, we introduce the class of
reconfigurable resource scheduling problems, and use a lay-
ered approach to solve a variant with uniform delay bounds
and variable drop costs [14]. First, we use a batching sub-
routine to reduce to the special case in which jobs arrive at
integral multiples of a fixed delay bound. Second, we use a
reshaping technique to reduce to the special case in which
the delay bound is 1. Third, we use a serialization technique
to reduce to a file caching problem. Fourth, we solve the
file caching problem by modifying Young’s Landlord algo-
rithm [19]. There are some high level similarities between
the present paper and [14]. The first layer in the present
paper is analogous to the first layer in [14], but is more in-
volved. In [14], the Landlord algorithm can be viewed as a
generalization of LRU, which handles the recency aspect of
the request sequence, but there is no component analogous
to EDF, which addresses the urgency aspect. In summary,



in order to handle variable delay bounds, the present work
introduces substantially different techniques than those pre-
sented in [14]. On the other hand, since we do not handle
variable drop costs in the present paper, these two works are
incomparable. It remains to be seen whether the approach
used in the present paper can be extended to handle other
problem dimensions such as variable drop costs.

Brucker [2, Chapter 9] surveys a class of offline schedul-
ing problems with changeover time (i.e., context switch
time). Results for single and multiple machine problems
are summarized. In this class of problems, each job be-
longs to a certain group, and between the executions of any
two jobs in different groups on the same machine, there is a
changeover time during which the machine cannot process
any job. For a variant with identical machines, equal sized
groups, and equal processing and changeover time, Brucker
et al. [3] give a polynomial time offline algorithm that de-
cides whether there exists a schedule in which all jobs are
executed within a common delay bound.

Srinivasan et al. [17] discuss scheduling problems for
multi-core network processors, and consider the applica-
tion of existing multiprocessor scheduling algorithms in this
domain. Various challenges are identified and some ini-
tial ideas are presented. Kokku et al. [8] give a schedul-
ing algorithm, called Everest, for multi-core network pro-
cessors. The parameters considered are per-service delay
bounds, per-service execution requirements, and a fixed
context switch time. Everest is shown to perform well in
experiments in terms of maximizing the number of packets
processed within service-specific delay bounds.

The EDF scheduling algorithm is shown [6, 10] to be an
optimal preemptive uniprocessor scheduling algorithm for
problems that do not involve reconfiguration overhead, in
terms of the number of jobs executed. In this paper, we dis-
cuss the drawbacks associated with using EDF to solve the
problem of reconfigurable resource scheduling with vari-
able delay bounds, and propose a combination of EDF and
LRU to address these drawbacks.

The classic disk paging problem studied by Sleator and
Tarjan [15] can be viewed as a special case of reconfigurable
resource scheduling with unit delay bounds, unit reconfigu-
ration cost, infinite drop cost, and where each request con-
sists of a single job. In this seminal work, the competitive
ratio of any deterministic online paging algorithm is shown
to be at least the cache size, and certain algorithms, such as
LRU, are shown to be resource competitive.

O’Neil et al. [12] consider a variation of LRU called
LRU-K, which keeps track of the time of each of the last
K references to a given page. Megiddo et al. [11] con-
sider a self-tuning cache replacement policy called Adap-
tive Replacement Cache, which captures the recency and
frequency aspects of the request sequence by maintaining
a separate ordering for each aspect. As indicated earlier,

our combination of EDF and LRU captures the urgency and
recency aspects of the request sequence.

Due to space limitations, proof sketches are provided for
some of the results claimed in this paper. Complete proof
details will be provided in the full version of the paper.

2. Preliminaries

Before we define the reconfigurable resource schedul-
ing problems considered in this paper, we first make some
preliminary definitions. We define a request as a (possibly
empty) set of unit jobs, where each job is characterized by a
non-black color, a nonnegative integer arrival time, a pos-
itive integer delay bound, and a positive integer drop cost.
The deadline of a job is defined as the arrival time plus the
delay bound minus one. There is a finite set of resources on
which jobs are executed. Each resource has an associated
color, which is initially black. There is a cost to reconfigure
a resource, i.e., to change the color of a resource.

The processing of a given request sequence σ proceeds
in rounds numbered from 0 to |σ| − 1. At the beginning of
round i, we have a set of pending jobs, each of which has
an arrival time smaller than i, and a deadline at least i. Each
round i consists of four phases: (1) in the first phase, the
arrival phase, the next request is received; (2) in the sec-
ond phase, the reconfiguration phase, each resource can be
reconfigured to a different color; (3) in the third phase, the
execution phase, each resource configured with color � can
execute up to one pending job of color �; (4) in the fourth
phase, the drop phase, jobs with deadline i are dropped.

We refer to the sequence of rounds in the processing a
given request sequence as a schedule. The number of re-
sources used by a schedule is the number of resources that
are reconfigured at least once. The cost of a schedule is the
sum of all reconfiguration and drop costs incurred.

For the reconfigurable resource scheduling problems
considered in this paper, the input is a pair (σ,m), where
σ is a request sequence, and m is a positive integer. Given
an instance (σ,m), an algorithm produces a schedule for σ.
An algorithm is said to be offline if it knows all the requests
in advance, and it is said to be online if does not know the
future requests. An algorithm A is b-feasible if for any in-
stance (σ,m), A produces a schedule that uses at most bm
resources. An algorithm is feasible if it is 1-feasible. For
any instance (σ,m) and any algorithm A, the cost of A on
(σ,m), denoted Cost(A, σ,m), is the cost of S, where S
is the schedule produced by A on (σ,m). An algorithm A
is (a, b)-competitive if A is b-feasible and for any instance
(σ,m), Cost(A, σ,m) is at most a·Cost(OPT, σ,m), where
OPT is an optimal feasible offline algorithm. An algorithm
A is resource competitive if A is (a, b)-competitive for some
positive constant reals a and b.

For the sake of brevity, we use the [reconfig | drop |



delay | batch] notation introduced in [14]. The reconfig
field describes the details of the reconfiguration cost. In this
paper, there is only one possible value for this field, a fixed
reconfiguration cost denoted ∆. The drop field describes
the details of the drop cost. In this paper, there is only one
possible value for this field, a unit drop cost denoted 1. The
delay field contains the details of the delay bound. In this
paper, there is only one possible value for this field, per-
color delay bounds denoted D�. The batch field constrains
that the requests of color � can only arrive at integral multi-
ples of the specified value. In this paper, the possible values
for this field are 1 and D�.

With this notation, our main problem is denoted [∆ | 1 |
D� | 1]. The special case in which jobs of color � arrive
at integral multiples of D� is denoted [∆ | 1 | D� | D�].
We use the terminology “rate-limited [∆ | 1 | D� | D�]”
to denote the special case of [∆ | 1 | D� | D�] in which at
most D� color � jobs arrive at each integral multiple of D�.
In this paper, we assume ∆ is a positive integer (it is not
hard to generalize our results to an arbitrary ∆).

Roadmap. The rest of the paper is organized as follows.
Section 3 solves rate-limited [∆ | 1 | D� | D�], where
each D� is a power of 2. Section 4 solves [∆ | 1 | D� | D�],
where each D� is a power of 2, by a reduction to rate-limited
[∆ | 1 | D� | D�]. Section 5 solves our main problem
[∆ | 1 | D� | 1] by a reduction to [∆ | 1 | D� | D�].

3. Rate-Limited Batched Arrivals

In this section, we solve rate-limited [∆ | 1 | D� | D�],
where each D� is a power of 2. This problem is charac-
terized by a fixed reconfiguration cost ∆, a unit drop cost,
per-color delay bounds D�, batched arrivals (jobs of color
� arrive at integral multiples of D�), and rate-limited input
(at most D� jobs of color � arrive at each integral multiple
of D�). As mentioned in Section 1, this problem is a key
building block to solve our main problem [∆ | 1 | D� | 1].

In this section, we introduce three online algorithms:
EDF, ∆LRU, and ∆LRU-EDF. In Section 3.1, we first
present the common aspects of the three algorithms. For
instance, due to the difference between the reconfiguration
and drop costs, we do not configure a color until it has
enough job arrivals.

Algorithm EDF is based on the EDF scheduling princi-
ple. The main idea is that, among the colors with enough
job arrivals, we configure the colors with the earliest dead-
lines and with jobs to execute. Algorithm EDF addresses
the urgency aspect of the request sequence. However, since
it favors colors that have jobs to execute, EDF suffers from
thrashing. See Section 3.2 for a detailed discussion of EDF.

Algorithm ∆LRU is based on the LRU scheduling prin-
ciple. The main idea is that, among the colors with enough
job arrivals, we configure the colors with the most recent

timestamps. (For the formal definition of the timestamp of
a color, see Section 3.3.) Algorithm ∆LRU addresses the
recency aspect of the request sequence. However, since it
does not consider whether colors have jobs to execute or
not, ∆LRU suffers from underutilization. See Section 3.3
for a detailed discussion of ∆LRU.

Algorithm ∆LRU-EDF is a combination of EDF and
∆LRU. The EDF component ensures that the resources
are well utilized. The ∆LRU component reduces thrash-
ing by allowing colors with recent timestamps to remain
configured. See Section 3.4 for a detailed discussion of
∆LRU-EDF, and Section 3.5 for the proof that shows
∆LRU-EDF is resource competitive.

3.1. Common Aspects

For convenience of presentation, we consider the set of
resources as a cache, where resource k is viewed as location
k. We view reconfiguring resource k with color � as caching
color � at location k. We use a counting scheme to ensure
that only colors with a sufficient number of job arrivals can
be brought into the cache.

In the following, we formally present the common as-
pects of the three algorithms. Given an instance (σ,m) of
rate-limited [∆ | 1 | D� | D�], we allow the online al-
gorithms to use n resources, where n > m. Each color
is either eligible or ineligible. Only eligible colors can
be brought into the cache. For each color, we maintain a
counter and a deadline. Initially, the cache is empty, all col-
ors are ineligible, and the counter and deadline associated
with any color are zero. In each round j, the actions per-
formed in the four phases are described as follows.

Arrival phase We receive a request. For any color �, if j is
an integral multiple of D�, we perform the following
steps.

1. We increase the counter of � by the number of
color � jobs received in this phase.

2. If the counter of � is at least ∆, we set � to eligible
and reset the counter of �.

3. We set the deadline of � to j + D� − 1.

Reconfiguration phase We update the contents of the
cache; the method used depends on the algorithm, see
Sections 3.2 through 3.4.

Execution phase For any color �, each resource configured
with color � executes one pending job of color �.

Drop phase For any color �, if j mod D� is D� − 1, we
perform the following steps.

1. We drop all pending jobs of color �.

2. If color � is eligible and not in the cache, we set
color � to ineligible.



3.2. EDF

We say a color � is idle if there are no pending jobs of
color �, and nonidle otherwise. We rank nonidle colors
ahead of idle colors. The rank of idle colors is arbitrary. We
rank nonidle colors in ascending order of deadlines. Ties
are broken according to ascending order of delay bounds.
Further ties are broken according to a fixed order of colors.
We update the cache as follows. If a nonidle eligible color
� in the top n positions of the ranking is not in the cache,
we bring � into the cache, evicting the color with the lowest
rank if there the cache is full.

Consider a color � with a short delay bound that receives
a small number of jobs every D� rounds. The priority of �
changes from high to low, and then low to high, from time
to time, which may lead to thrashing. We refer the reader
to Appendix A for an example establishing that EDF is not
resource competitive.

3.3. ∆LRU

For each color �, we maintain a timestamp as follows.
Initially, the timestamp of � is zero. In the arrival phase of
any round j, if the counter of � is reset, we set the timestamp
of � to j immediately after the counter is reset. In each
reconfiguration phase, we cache the n eligible colors with
the most recent timestamps, breaking ties as in EDF.

Due to the difference between the reconfiguration and
drop costs, we require at least ∆ job of color � to arrive in
order to update the timestamp of �. Algorithm ∆LRU favors
idle colors with recent timestamps over nonidle colors that
do not have recent timestamps, which may result in low uti-
lization. We refer the reader to Appendix B for an example
establishing that ∆LRU is not resource competitive.

3.4. ∆LRU-EDF

In this section, we formally define algorithm
∆LRU-EDF. We give ∆LRU-EDF a factor of 8 resource
advantage over an optimal feasible offline algorithm, that
is, n = 8m. We use the first half of the cache capacity to
keep distinct colors and the remaining half to replicate the
cache contents of the first half. We use the replication to
give half of the resources a factor of 2 speedup. Below we
describe how we update the first half of the cache.

Let X be the n
4 eligible colors with the most recent

timestamps, where ties are broken as in ∆LRU. We rank
eligible colors not in X as in EDF (see Section 3.2 for de-
tails). Let Y be the set of nonidle eligible colors in the top
n
4 positions of the ranking. For any color � that is in X ∪ Y
but not in the cache, we bring � into the cache, replacing an
arbitrary color �′ that is in the cache but not in X∪Y , if nec-
essary. Since |X ∪ Y | ≤ n

2 , such a color �′ is guaranteed to
exist if the first half of the cache is full.

3.5. Analysis of ∆LRU-EDF

In this section, we show that ∆LRU-EDF is resource
competitive. The analysis is organized as follows. First,
Lemmas 3.1 through 3.4 argue that, on any instance such
that each color appearing in the request sequence has at least
∆ jobs, the cost incurred by ∆LRU-EDF is within a con-
stant factor of that incurred by an optimal feasible offline al-
gorithm. For convenience of analysis, we partition the drop
costs incurred by ∆LRU-EDF into “eligible” and “ineligi-
ble” drop costs (the formal definitions are provided later in
this section). Lemma 3.1 bounds the eligible drop cost in-
curred by ∆LRU-EDF. Our proof of Lemma 3.1 uses the
EDF properties of ∆LRU-EDF, and three intermediate al-
gorithms: “parallel” EDF, denoted Par-EDF, “sequential”
EDF, denoted Seq-EDF, and “double-speed” Seq-EDF, de-
noted 2X-Seq-EDF. (See the proof of Lemma 3.1 for the
formal definitions of the three algorithms.)

To bound the other costs incurred by ∆LRU-EDF, for
each color �, we partition the sequence of rounds into subse-
quences, denoted “�-epochs” (the formal definition is given
later in this section). Lemma 3.2 gives an upper bound on
the ineligible drop cost incurred by ∆LRU-EDF, in terms
of the total number of epochs, over all colors. The proof
of Lemma 3.2 is straightforward. For any problem instance
such that each color appearing in the request sequence has
at least ∆ jobs, Lemma 3.3 upper bounds the reconfigura-
tion cost incurred by ∆LRU-EDF, and Lemma 3.4 lower
bounds the total cost incurred by an optimal feasible of-
fline algorithm, in terms of the total number of epochs. Our
proofs of Lemmas 3.3 and 3.4 make use of amortized anal-
ysis; our proof of Lemma 3.4 relies on the LRU properties
of ∆LRU-EDF.

Second, Theorem 1 establishes the resource competitive-
ness of ∆LRU-EDF by a reduction to a problem instance in
which each color appearing in the request sequence has at
least ∆ jobs, and by using Lemmas 3.1 through 3.4.

Now we give the formal definitions for the analysis. Let
(σ,m) be any instance of rate-limited [∆ | 1 | D� | D�].
Let A be any algorithm. Let OFF be an optimal feasible
offline algorithm for (σ,m). Let Cost(A, σ,m) (resp.,
ReconfigCost(A, σ,m), DropCost(A, σ,m)) denote the
cost (resp., reconfiguration cost, drop cost) incurred by A
on (σ,m). A job x of color � is considered to be ineligible
(resp., eligible) if color � is ineligible (resp., eligible) at the
end of the arrival phase in which x arrives. We define the in-
eligible (resp., eligible) drop cost incurred by ∆LRU-EDF,
denoted IneligibleDropCost(∆LRU-EDF, σ,m) (resp.,
EligibleDropCost(∆LRU-EDF, σ,m)), to be the drop cost
incurred by ∆LRU-EDF on ineligible (resp., eligible) jobs
in σ.

For each color �, we partition the sequence of rounds
into �-epochs as follows. We define �-epoch 0 to start with



round 0 and end with the first round in which � becomes
ineligible. For every i ≥ 1, �-epoch i starts when �-epoch
i − 1 ends, and ends with the first round following �-epoch
i − 1 in which � becomes ineligible. For convenience, we
use the term epoch to refer to an �-epoch, for some �. We
use numEpochs(σ) to denote the total number of epochs as-
sociated with σ.

Lemma 3.1 For any instance (σ,m) of rate-limited [∆ |
1 | D� | D�], EligibleDropCost(∆LRU-EDF, σ,m) is at
most DropCost(OFF, σ,m).

Proof sketch. To show the lemma, we find it convenient to
define the following three algorithms: Par-EDF, Seq-EDF,
and 2X-Seq-EDF. Each of the three algorithms is allowed to
use m resources. Algorithm Par-EDF is defined as follows.
In each reconfiguration phase, we reconfigure the resources
in such a way that we can execute m pending jobs with the
best ranks in the immediately following execution phase,
where jobs are ranked in ascending order of deadlines, and
ties are broken as in EDF. Algorithm Seq-EDF is defined
as follows. In each reconfiguration phase, we configure m
nonidle colors with the best ranks, where colors are ranked
as in EDF. We define a double-speed schedule to be a
schedule in which the reconfiguration and execution phases
are performed twice in each round. We use 2X-Seq-EDF
to denote double-speed Seq-EDF. Note that the three algo-
rithms defined in this paragraph do not require a color to be
eligible to in order to be configured on the resources.

By a standard EDF-type swapping argument, one can
easily show the following inequality.

DropCost(Par-EDF, σ,m) ≤ DropCost(OFF, σ,m) (1)

It is more challenging to show the follow two inequalities,
which are needed to obtain the lemma.

DropCost(2X-Seq-EDF, σ,m)
≤ DropCost(Par-EDF, σ,m) (2)

EligibleDropCost(∆LRU-EDF, σ,m)
≤ DropCost(2X-Seq-EDF, σ,m) (3)

We omit the proof for Inequalities (2) and (3) due to
space limitations. The lemma follows from Inequalities (1)
through (3).

Lemma 3.2 For any instance (σ,m) of rate-limited [∆ |
1 | D� | D�], IneligibleDropCost(∆LRU-EDF, σ,m) <
numEpochs(σ) · ∆.

Proof. Consider any color �. Let h be any �-epoch. Let C
be the ineligible drop cost incurred by ∆LRU-EDF on color
� jobs in h. It is sufficient to show that C is less than ∆.

Let h′ be the longest prefix of h throughout which � is
ineligible. Let C ′ be the drop cost incurred by ∆LRU-EDF
on color � jobs in h′. Since � does not become eligible in
h′, the number of color � jobs that arrive in h′ is less than
∆. Hence, C ′ < ∆. By the definition of an epoch, once
� becomes eligible in h, it remains eligible until h ends.
By the definition of ineligible jobs and ineligible drop cost,
C = C ′. Therefore, C < ∆.

Lemma 3.3 For any instance (σ,m) of rate-limited [∆ |
1 | D� | D�] such that each color appearing in σ
has at least ∆ jobs, ReconfigCost(∆LRU-EDF, σ,m) ≤
O(Cost(OFF, σ,m) + numEpochs(σ) · ∆).

Proof sketch. In order to establish this result, it is useful to
label each eviction as either an “LRU eviction” or an “EDF
eviction” in our analysis of ∆LRU-EDF. We say that an
LRU eviction occurs whenever a color is evicted in a given
round and that color was kept by the LRU principle in the
preceding round. All other evictions are EDF evictions.

We proceed in three stages. In the first stage, we are
able to show the following claim. For any instance (σ,m)
of rate-limited [∆ | 1 | D� | D�] such that each color ap-
pearing in σ has at least ∆ jobs, the total number of LRU
evictions times ∆ is O(Cost(OFF, σ,m)).

In the second stage, we are able to show the following
claim. For any color �, any �-epoch h, and any two rounds
i and j in h such that i < j and ∆LRU-EDF brings � into
the cache in round i and j, the following conditions hold in
round j: (1) color � is brought into the cache by the EDF
principle, and (2) if bringing � into the cache results in an
EDF eviction, then the evicted color is idle. Due to space
limitations, we omit the proofs of the claims associated with
the first two stages.

In the third stage, we prove the lemma using the above
claims and amortized analysis as follows. We associate
4∆ units of credit with each epoch: 2∆ units of “first-
time” credit and 2∆ units of “end-of-epoch” credit. We
also associate 2∆ units of credit with each LRU evic-
tion. From the claim of the first stage, the total credit
is O(Cost(OFF, σ,m) + numEpochs(σ) · ∆). It is suffi-
cient to show that the total reconfiguration cost incurred by
∆LRU-EDF can be paid for by the total credit.

Consider any color � and any �-epoch h. If ∆LRU-EDF
does not bring � into the cache in h, then it does not incur
any reconfiguration cost in h. Otherwise, let rounds i0 <
· · · < ik be the rounds in h in which ∆LRU-EDF brings �
into the cache. For every j such that 0 ≤ j ≤ k, let Rj be
the reconfiguration operation performed by ∆LRU-EDF to
bring in � in round ij . Since each cached color is replicated
in ∆LRU-EDF, the cost of operation Rj is 2∆. We use the
2∆ units of “first-time” credit associated with h to pay for
operation R0. In the following, we show that the remaining
Rj’s can also be paid for.



Fix j arbitrarily, where 0 < j ≤ k. It is not hard to
see that, when color � is brought into the cache in round
ij , some color �′ is evicted. If the eviction of color �′ is
an LRU eviction, operation Rj can be paid for by the 2∆
units of credit associated with the LRU eviction. If the evic-
tion of color �′ is an EDF eviction, then the claim of the
second stage implies that color �′ is evicted idle in round
ij . Since jobs of color �′ arrive only at integral multiples of
D�′ , �′ remains idle until the next integral multiple of D�′ ,
at which point �′ becomes ineligible and its current �-epoch
h′ ends. Hence, we can use the “end-of-epoch” credit as-
sociated with h′ to pay for operation Rj . It is not difficult
to argue that each unit of credit is used at most once. This
completes the proof.

Lemma 3.4 For any instance (σ,m) of rate-limited [∆ |
1 | D� | D�] such that each color appearing in σ has at
least ∆ jobs, Cost(OFF, σ,m) = Ω(numEpochs(σ) · ∆).

Proof sketch. To get a lower bound on the cost of OFF,
we find it convenient to partition the sequence of rounds
into super-epochs. Super-epoch 0 is the minimum sequence
of rounds, beginning with round 0, during which at least
2m colors have their counters reset. For every i ≥ 1,
super-epoch i is the minimum sequence of rounds follow-
ing super-epoch i − 1 during which at least 2m colors have
their counters reset. Note that the last super-epoch may be
incomplete. We say that a color � is active in super-epoch
i if the counter of � is reset in super-epoch i. We parti-
tion the epochs into two sets: special epochs, the epochs
that are not active in any complete super-epoch, and regular
epochs, the epochs that are not special. We handle special
and regular epochs separately. For special epochs, we show
that, Cost(OFF, σ,m) is Ω(∆) times the number of special
epochs. For regular epochs, we define the amortized cost
of OFF in such a way that the total amortized cost of OFF
is within a constant factor of the actual cost of OFF, and
show that the total amortized cost of OFF is Ω(∆) times
the number of regular epochs.

Theorem 1 Algorithm ∆LRU-EDF is resource competitive
for rate-limited [∆ | 1 | D� | D�], where each D� is a power
of 2.

Proof. Let (σ,m) be an arbitrary instance of rate-limited
[∆ | 1 | D� | D�]. We say a color � is heavy (resp., light)
if there are at least (resp., less than) ∆ jobs of color � in
σ. Any job of a heavy (resp., light) color is a heavy (resp.,
light) job. We break each request into two requests, one
consisting of the light jobs and the other consisting of the
heavy jobs. Let α (resp., β) denote the resulting sequence
of requests involving heavy (resp., light) jobs.

Since there are less than ∆ jobs of any light color, OFF,
as an optimal feasible offline algorithm, drops all light jobs.

Hence, Cost(OFF, σ) equals Cost(OFF, α) plus the total
number of light jobs. Since there are are less than ∆
jobs of any light color, no light color ever becomes eli-
gible. Thus, ∆LRU-EDF never caches a light color, and
drops all light jobs. Hence, Cost(∆LRU-EDF, σ,m) equals
Cost(∆LRU-EDF, α,m) plus the total number of light jobs.
From Lemmas 3.1 through 3.4, Cost(∆LRU-EDF, α,m) =
O(Cost(OFF, α,m)). Hence, the lemma follows.

4. Batched Arrivals

In this section, we solve [∆ | 1 | D� | D�], where each
D� is a power of 2. This problem is characterized by a fixed
reconfiguration cost ∆, a unit drop cost, per-color delay
bounds D�, and batched arrivals (jobs of color � arrive at
integral multiples of D�).

As mentioned in Section 1, [∆ | 1 | D� | D�] is a build-
ing block to solve our main problem [∆ | 1 | D� | 1]. To
solve [∆ | 1 | D� | D�], we use a reduction to rate-limited
[∆ | 1 | D� | D�], which is solved in Section 3. Sections
4.1 and 4.2 give the reduction algorithm and analysis, re-
spectively.

4.1. Algorithm

Given any instance (σ,m) of [∆ | 1 | D� | D�], where
D� is a power of 2, algorithm Recolor proceeds in the fol-
lowing three steps. In the first step, we construct a request
sequence σ′ for rate-limited [∆ | 1 | D� | D�] as follows.
Let σi be request i of σ, where 0 ≤ i < |σ|. For any color
�, we rank color � jobs in σi in an arbitrary order. For any
color � and color � job x in σi, we construct a job y that
is the same as x except that the color of y is given by the

pair (�, j), where j =
⌊

rank(x)
D�

⌋
, and rank(x) is the rank

of x in σi. Let σ′
i be the union of all such y’s that are con-

structed over all colors �. We obtain σ′ by concatenating
σ′

i’s in increasing order of i.
In the second step, we use algorithm ∆LRU-EDF on

(σ′, 3m) to obtain a schedule S′ for σ′. In the third step,
from S′ we construct a schedule S for σ as follows. For
any color �, any integers j and k, whenever S′ configures
color (�, j) on resource k, S configures color � on resource
k; whenever S′ executes a job of color (�, j) on resource k,
S executes a job of color � on resource k. Note that Recolor
is an online algorithm.

4.2. Analysis

In this section, we show that algorithm Recolor is re-
source competitive. The request sequences σ and σ′, and
the schedules S and S′ mentioned in the lemma statements
and proofs below are defined in Section 4.1.



Lemma 4.1 If there exists a schedule T for σ that uses m
resources and incurs cost C, then there exists a schedule T ′

for σ′ that uses 3m resources and incurs cost O(C).

The main proof idea of Lemma 4.1 is to construct T ′ by
rearranging and recoloring the jobs executed in T . Due to
space limitations, we omit the proof of Lemma 4.1.

Lemma 4.2 The cost of S is at most that of S′.

Proof. Since the schedule S replaces color (�, j) with color
�, the reconfiguration cost incurred by S is at most that in-
curred by S′. From the way we construct σ′ and S′, it is not
hard to see that the number of color � jobs executed by S is
equal to the total number of color (�, j) jobs executed by S′,
over all j. Since the number of color � jobs associated with
σ is equal to the total number of color (�, j) jobs associated
with σ′, over all j, the drop cost incurred by S is equal to
that incurred by S′.

Theorem 2 Algorithm Recolor is resource competitive for
[∆ | 1 | D� | D�], where each D� is a power of 2.

Proof. Let T be the schedule produced by an arbitrary fea-
sible offline algorithm on (σ,m). By the definition of a fea-
sible algorithm, T uses m resources. Let C be the cost of T .
By Lemma 4.1, there exists a schedule T ′ for σ′ that uses
3m resources and incurs cost O(C). By Theorem 1, the
schedule S′ for σ′ generated by algorithm ∆LRU-EDF uses
O(m) resources and incurs cost O(C). By construction, S
uses the same number of resources as S′. By Lemma 4.2,
the cost of S is at most that of S′. Hence, S uses O(m)
resources and incurs O(C) cost. Since S is a schedule for
σ, the theorem follows.

5. Main Result

In this section, we solve our main problem [∆ | 1 | D� |
1], which is characterized by a fixed reconfiguration cost ∆,
a unit drop cost, per-color delay bounds D�, and nonbatched
arrivals (requests can arrive at any round).

To simplify the presentation, we focus on the special case
where each D� is a power of 2. The special case is solved
by a reduction to [∆ | 1 | D� | D�], which is solved in
Section 4. For any color � such that D� is equal to 1, jobs
of color � are already batched. For convenience, we fo-
cus on the case where D� is greater than 1, for all colors
�. Sections 5.1 and 5.2 give the algorithm and analysis for
the reduction, respectively. Section 5.3 comments on how
to extend our solution to arbitrary delay bounds, that is, the
delay bounds are not necessarily powers of 2.

5.1. Algorithm

For any delay bound p and any nonnegative integer i,
we define halfBlock(p, i) to be the p

2 rounds starting from
round i · p

2 . Let σ be an arbitrary request sequence for [∆ |
1 | D� | 1]. We define the batched version of σ, denoted
σ′, as follows. We obtain σ′ by moving the arrival of any
job x of color � that arrives in halfBlock(D�, i) in σ to the
beginning of halfBlock(D�, i + 1), and changing the delay
bound of x to D�

2 . Thus, the request sequence σ′ can be
viewed as a request sequence for [∆ | 1 | D�

2 | D�

2 ].
Algorithm VarBatch proceeds in the following three

steps. First, given an arbitrary instance (σ,m) of [∆ | 1 |
D� | 1], we construct an instance (σ′, 7m) of [∆ | 1 | D�

2 |
D�

2 ], where σ′ is the batched version of σ. Second, we ap-
ply algorithm Recolor (defined in Section 4.1) on (σ′, 7m)
to obtain a schedule S′ for σ′. Finally, we obtain a schedule
S for σ from S′. The schedule S is the same as S′ except
the request sequence associated with S is σ. Note that algo-
rithm VarBatch is an online algorithm.

5.2. Analysis

In this section, we show that algorithm VarBatch is re-
source competitive. The request sequences σ and σ′, and
the schedules S and S′ mentioned in the lemma statements
and proofs below are defined in Section 5.1.

Lemma 5.1 If there exists a schedule T for σ that uses m
resources and incurs cost C, then there exists a schedule T ′

for σ′ that uses 7m resources and incurs cost O(C).

Proof sketch. For any color � job x that arrives in
halfBlock(D�, i) in σ, we say the execution of x
in T is early (resp., punctual, late) if x is exe-
cuted in halfBlock(D�, i) (resp., halfBlock(D�, i + 1),
halfBlock(D�, i + 2)) in T . We prove the lemma in two
stages as follows. First, we construct a schedule T ′ for σ′

that uses 7m resources by rearranging the job executions in
T . The main idea is to use extra resources to move the early
executions in T forward, and the late executions in T back-
ward. Second, we use amortized analysis to show that the
cost of T ′ is O(C). In the following, we give more details
about these two stages.

We first describe how to construct T ′. For convenience,
we number the resources from 0. Consider any integer k
such that 0 ≤ k < m. Let Wk be the set of jobs that are
executed on resource k in T . Let Xk, Yk, and Zk be the
jobs in Wk such that the corresponding executions are early,
punctual, and late in T , respectively. All the jobs in Xk

(resp., Yk, Zk) are rearranged to execute in T ′ on resources
7k through 7k + 2 (resp., 7k + 3, 7k + 4 through 7k + 6).
The jobs in Yk are arranged to execute in the same round as



in T . Below we describe how to rearrange the jobs in Xk.
The jobs in Zk can be rearranged in a similar manner.

A job x in Xk is defined to be k-special if, in sched-
ule T , the color of x, call it �, is configured on resource k
throughout halfBlock(D�, i) and halfBlock(D�, i + 1), and
x is executed on resource k in halfBlock(D�, i). Any job
in Xk that is not k-special is said to be k-regular. We use
resource 7k to execute k-special jobs as follows. For any
color � and any k-special job x of color � that is executed
in round j in T , we execute x in round j + D�

2 . We use
resources 7k + 1 and 7k + 2 to execute k-regular jobs. To
avoid collisions (i.e., different jobs executed on the same
resource and in the same round), we proceed in the follow
manner. We rearrange k-regular jobs in increasing order
of delay bounds. For any delay bound p and any nonnega-
tive integer i, let R be the set of k-regular jobs with delay
bound p that are executed on resource k in halfBlock(p, i)
in T . For any color � with delay bound p, let R� be the
color � jobs in R. To rearrange the jobs in R, we iteratively
consider each color � with delay bound p (in arbitrary or-
der), and rearrange the jobs in R�. In the remaining of the
paragraph we describe how to rearrange the jobs in R�. We
define a slot to be a round on a resource. We say a slot is
free if no job is assigned to execute in the slot. We order the
slots in increasing order of resource indices, breaking ties
by increasing round indices. We arrange the jobs in R� in
the first |R�| free slots in halfBlock(p, i + 1) on resources
7k + 1 and 7k + 2.

It is not hard to see that T ′ is a schedule for σ′, and that
all jobs executed by T are executed by T ′. It remains to
show that the reconfiguration cost incurred by T ′ is O(C).
Fix k arbitrarily, where 0 ≤ k < m. Let Ck be the reconfig-
uration cost incurred on resource k in T . It is sufficient to
show that the reconfiguration cost in T ′ associated with the
jobs in Wk (i.e., the jobs executed on resources 7k through
7k + 6) is O(Ck). It is straightforward to show that the re-
configuration cost in T ′ associated with the jobs in Yk (i.e.,
the jobs executed on resource 7k + 3) is at most Ck. Be-
low we argue that the reconfiguration cost in T ′ associated
with the jobs in Xk (i.e., the jobs executed on resources 7k
through 7k + 2) is O(Ck). Similarly, one can argue that
the reconfiguration cost in T ′ associated with the jobs in Zk

(i.e., the jobs executed on resources 7k + 4 through 7k + 6)
is O(Ck). It is straightforward to show that the reconfigu-
ration cost in T ′ associated with the k-special jobs in Xk

is at most Ck. Hence, it is sufficient to account for the re-
configuration cost in T ′ associated with k-regular jobs in
Xk. To do this, we associate O(∆) units of credit with each
reconfiguration on resource k in T , and show that the total
reconfiguration cost incurred by the k-regular jobs can be
paid for by the credit.

Theorem 3 Algorithm VarBatch is resource competitive for

[∆ | 1 | D� | 1], where each D� is a power of 2.

Proof. Let T be the schedule produced by an arbitrary fea-
sible offline algorithm on (σ,m). By the definition of a
feasible algorithm, T uses m resources. Let C be the cost
of T . By Lemma 5.1, there exists an offline schedule T ′ for
σ′ that uses 7m resources and incurs cost O(C).

Since σ′ can be viewed as a request sequence for [∆ | 1 |
D�

2 | D�

2 ], and by Theorem 2, algorithm Recolor is resource
competitive for [∆ | 1 | D�

2 | D�

2 ], S′ uses O(m) resources
and incurs cost O(C). By definition, S is a schedule for σ,
uses O(m) resources, and incurs cost O(C).

5.3. Extension to Arbitrary Delay Bounds

The extension of our solution to arbitrary delay bounds is
straightforward. The basic idea is as follows: for any delay
bound p such that 2j ≤ p < 2j+1, and any job x with delay
bound p that arrives in halfBlock(2j , i), we delay the arrival
of x to the beginning of halfBlock(2j , i + 1), and change
the delay bound of x to 2j−1. The proof that the extended
solution is resource competitive is similar to the proof given
in Section 5.2.
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A. Analysis of EDF

In this section, we show that EDF is not constant com-
petitive, even if EDF is given an arbitrary constant factor
resource advantage, and an arbitrary constant replication
factor r, that is, each color in the cache is replicated in r
locations.

Consider an arbitrary instance (σ,m) of rate-limited [∆ |
1 | D� | D�]. Let OFF denote an arbitrary feasible offline
algorithm. We assume that, n, the number of resources that
EDF can use, is equal to rsm, where r is the replication
factor, and s is an arbitrary positive constant. We consider
(s + 1)m colors as follows: m colors with a delay bound
2j , m colors with a delay bound 2k, m colors with a delay
bound 2k+1, . . ., and m colors with a delay bound 2k+s−1,
where 2k > 2j > ∆. For convenience, we refer to each
color with a delay bound 2j as a short-term color and any
other color as a long-term color. The request sequence pro-
ceeds in 2k+s−1 rounds as follows. For each short-term

color, we receive ∆ jobs at each integral multiple of 2j , in
rounds 0 through 2k−1−1. For each long-term color with a
delay bound of 2k+i, for 0 ≤ i < s, we receive 2k+i−1 jobs
at the very beginning.

Consider rounds 0 through 2k−1

r . Each long-term color
always has jobs to execute. Since 2j > ∆, each short-
term color is brought into the cache and then evicted 2k−1

2jr
times. Hence, the reconfiguration cost incurred by EDF is
Ω(2k−jm∆).

Suppose that OFF caches the short-term colors in rounds
0 through 2k−1 − 1, and caches the colors with a delay
bound 2k+i in rounds 2k+i−1 through 2k+i − 1, where
0 ≤ i < s.

Algorithm OFF does not incur any drop cost and incurs
a reconfiguration cost of O(m∆). Hence the competitive
ratio of EDF is Ω(2k−j), which can be arbitrarily large by
setting j and k appropriately.

B. Analysis of ∆LRU

In this section, we show that ∆LRU is not constant com-
petitive, even if ∆LRU is given an arbitrary constant fac-
tor resource advantage, and an arbitrary constant replication
factor r, that is, each color in the cache is replicated in r lo-
cations.

Consider an arbitrary instance (σ,m) of rate-limited [∆ |
1 | D� | D�]. Let OFF denote an arbitrary feasible offline
algorithm. We assume that n, the number of resources that
∆LRU can use, is equal to rsm, where r is the replication
factor, and s is an arbitrary positive constant. Consider sm
colors with a delay bound 2j and m colors with a delay
bound 2k, where 2k > 2j > ∆. For convenience, we refer
to each color with a delay bound 2j as a short-term color
and each color with a delay bound 2k as a long-term color.
The request sequence proceeds in 2k rounds as follows. We
receive ∆ jobs of each short-term color at each integral mul-
tiple of 2j , and 2k jobs of each long-term color at the very
beginning.

It is not hard to verify that, from the reconfiguration
phase of round 2j , the timestamp of any short-term color is
more recent than that of any long-term color. Hence, in the
reconfiguration phase of round 2j , ∆LRU caches all short-
term colors, and evicts all long-term colors; from onwards,
∆LRU does not change the configuration. Thus, the drop
cost incurred by ∆LRU is at least (2k −2j)m. Since k > j,
the cost incurred by ∆LRU is Ω(2km).

Suppose that OFF caches the long-term colors through-
out. The reconfiguration cost incurred by OFF is m∆. The
drop cost incurred by OFF is 2k−jsm∆. Hence the total
cost incurred by OFF is O(2k−jm∆). Thus, the competi-
tive ratio of ∆LRU is Ω( 2km

2k−jm∆
) = Ω(2j

∆ ), which can be
arbitrarily large by setting j and k appropriately.


