
Pseudo Trust: Zero-Knowledge Based Authentication in Anonymous
Peer-to-Peer Protocols

Li Lu1, Jinsong Han2, Lei Hu1, Jinpeng Huai3, 4, Yunhao Liu2, and Lionel M. Ni2

1State Key Lab of Information Security
Graduate School of Chinese Academy of

Sciences
Beijing, China

{luli, hu}@is.ac.cn

2Dept. of Computer Science and Engineering
Hong Kong University of Science and Technology

Kowloon, Hong Kong
{jasonhan, liu, ni}@cse.ust.hk

3School of Computer Science
Beihang University

Beijing, China
huaijp@buaa.edu.cn

4State Key Lab of Software Developing
Environment

Beihang University
Beijing, China

huaijp@buaa.edu.cn

Abstract

Most of the current trust models in peer-to-peer (P2P)

systems are identity based, which means that in order for
one peer to trust another, it needs to know the other
peer’s identity. Hence, there exists an inherent tradeoff
between trust and anonymity. To the best of our
knowledge, there is currently no P2P protocol that
provides complete mutual anonymity as well as
authentication and trust management. We propose a zero-
knowledge authentication scheme called Pseudo Trust
(PT), where each peer, instead of using its real identity,
generates an unforgeable and verifiable pseudonym using
a one-way hash function. A novel authentication scheme
based on Zero-Knowledge Proof is designed so peers can
be authenticated without leaking any sensitive
information. With the help of PT, most existing identity-
based trust management schemes become applicable in
mutual anonymous P2P systems. We analyze the levels of
security and anonymity in PT, and evaluate its
performance using trace-driven simulations and a
prototype implementation. The strengths of Pseudo Trust
include the lack of need for a centralized trusted party or
CA, high scalability and security, low traffic and
cryptography processing overheads, and man-in-middle
attack resistance. We aim for the Pseudo Trust design to
be included in the P2P trust and anonymity context.

1. Introduction

As an emerging model of communication and
computation, peer-to-peer (P2P) networking has recently
gained significant acceptance. Millions of users share
huge amounts of resources by forming an abstract, logical
network called an overlay network. Most widely-deployed
P2P systems today, including Gnutella, KaZaA, and
BitTorrent, employ a routed-search-and-direct-download
mechanism. Peers are linked in the overlay network, each
maintaining several logical neighbors. Query flooding is
the most popular search method in such systems. If a peer
receiving a query can provide the requested object, a
response message is sent back to the requesting peer, and
a direct download path is constructed between the
downloader and the content provider.

One drawback of the above protocols is the fact that
such P2P systems might compromise users’ privacy. The
IP addresses of object requesters and providers can easily
be discovered and translated into users’ names and postal
addresses. Hence, many studies such as the Peer-to-Peer
Personal Privacy Protocol (P5) [22] and Anonymous Peer-
to-Peer File Sharing (APFS) [20] focus on providing
anonymous searching and downloading in P2P systems.

On the other hand, numerous concerns have been
raised about the issue of providing authentic resources in
P2P systems. To guarantee that real resources are received
from authentic responders, some researchers have built
trust models to help peers verify the validity of other

1-4244-0910-1/07/$20.00 ©2007 IEEE.

entities [5, 6, 11, 13]. However, most trust models are
identity-based, which means that for one peer to trust
another, it needs to know the identity of the other peer.
Thus, there exists an inherent tradeoff between trust and
anonymity in P2P systems. To the best of our knowledge,
there is no existing P2P protocol that provides mutual
anonymity as well as trust management.

The purpose of designing an anonymous authentication
protocol in P2P systems is motivated by a specific
problem: how to support authentication without exposing
the real identities of peers. In this paper, we propose the
design of the Pseudo Trust (PT) protocol, in which each
peer generates an unforgeable and verifiable pseudonym
using a one-way hash function. Such one-way mapping
can effectively defend against impersonation, forgery, and
Man-In-Middle-Attacks, so that the pseudonyms can be
used as the real IDs in P2P systems. This means that
previous methods of identity-based trust management can
be adopted. We also design a novel authentication scheme
based on Zero-Knowledge Proof to help unfamiliar peers
successfully complete authentication procedures during
transactions. Thus, trust management can be pseudonym-
based so that the real identities of peers are protected and
users are able to verify each other without leaking any
sensitive or private information. The salient features of
Pseudo Trust include (1) achieving anonymity as well as
authentication, (2) eliminating the support of a centralized
CA system, and (3) resisting man-in-middle-attacks.

We discuss the implementation choices that were made
for security and efficiency reasons, and conduct trace-
driven simulations to evaluate the parameter selections
and the performance of our protocol. We also implement
a Pseudo Trust prototype within a 50-machine overlay in
the Internet. Both our theoretical analyses and
experimental results show that Pseudo Trust is effective,
scalable, and completely decentralized with no need of a
central CA. We believe the Pseudo Trust design should be
included in peer-to-peer trust and anonymity contexts.

The rest of this paper is organized as follows. Section 2
introduces related works including trust management
schemes, anonymous P2P protocols, and Zero-Knowledge
Proof. Section 3 presents the PT design. Section 4
analyzes the anonymity and security degree of PT.
Section 5 presents our trace driven simulations and the
performance evaluation of the design. We introduce the
PT prototype implementation and experimental results in
Section 6, and conclude this work in Section 7.

2. Related Work

In this section, we briefly describe related works in
authentication, anonymity, and Zero-Knowledge Proof.

2.1 P2P trust and authentication

A number of approaches have been proposed to provide
trust and reliable authentication in the P2P systems. XREP
[6] enables peers to evaluate and share other peer
reputations by introducing a distributed polling algorithm.
This study also employs confirmation voting procedures
among randomly chosen peers in order to resist collusive
cheating from cliques of malicious peers. P-Grid [2]
utilizes on an efficient data management technique to
construct a scalable trust model for decentralized
applications. EigenTrust [11] builds a virtual global matrix
to represent individual reputations. NICE [14] provides a
platform to implement distributed cooperative
applications. Based on trust chains, NICE computes a user
reputation in a PGP-like model. By employing an
asymmetric cryptographic algorithm, it requires peers to
encrypt cookies to help others compute their reputations.
Indeed, most P2P trust designs are identity-based, where
one peer does not trust another before knowing its
identity.

2.2 Anonymity

Privacy has becomes an increasingly salient issue, and
considerable progress has been made with anonymous
communications [20, 22, 25]. Several solutions achieve
mutual anonymity for both initiators and responders in
P2P systems, which generally aim to conceal the real
identities of users during transactions. For example, in
APFS [20], peers construct an anonymous path with tail
nodes using an onion technique [25], providing complete
and mutual anonymity for peers. Recent research has
attempted to introduce reputation value into anonymous
P2P systems [24], or construct a trust management based
on proxy techniques [16]. However, failure to support
authentication makes these approaches vulnerable to
impersonation and man-in-middle attacks. Therefore, it is
argued that increasing the privacy of peers increases the
difficulties of ensuring authenticity and security.
Obviously, there is a clear tradeoff between authentication
and anonymity.

2.3 Zero-knowledge proof

The purpose of Zero-Knowledge Proof (ZKP) protocols
is to help a prover convince a verifier that she holds some
knowledge (usually secret), without leaking any
information about this knowledge during the verification
process (Zero-knowledge). The concept of ZKP was first
introduced by Goldwasser et al. in [10], and has been
employed in many authentication and identification
protocols. Loosely speaking, a ZKP is an

Overlay P2PI

R
IT

RT
PathOnoin Respond &Query Link TCP

Figure 1. PT query-downloading and authentication.

interactive proof system which comprises a prover and a
verifier. The principle rule is that the prover demonstrates
knowledge of a secret to the verifier through several
interactive rounds. During the process, the prover does not
reveal any sensitive information of the secret to the verifier
or any other parties. Each round involves a challenge (say,
a question) from the verifier, and a response (say, an
answer) from the prover. If the secrets are related to user
identities, ZKP can be used for identification and, in this
case, is called Zero-Knowledge Proof of Identity (ZKPI).
The security of ZKPI protocols is often based on the
intractability of factoring large integers [10, 19] or
computing a discrete logarithm problem [3]. Some of them
have been improved to employ mutual authentication and
key exchanges [4]. However, since almost all ZKP-based
identification schemes [12, 18, 23] depend on a trusted
third party (such as a CA) as an authorized central server,
they are not directly adopted by this design.

3. Pseudo Trust

The real and specific challenge that underlies the
tradeoff between trust and anonymity is that on one hand,
all existing P2P trust systems attempt to link each peer ID
with a trust value; on the other hand, anonymous designs
hide the real IDs of communicating parties during
transactions. This is where our proposed Pseudo Trust
design enters the picture. Instead of using their real IDs in
a P2P society, can peers use pseudonyms to interact with
others and accumulate their reputations?

Clearly, if we attempt to adopt such a mechanism, we
need to guarantee that when a peer selects a pseudonym, it
is not likely to be a name already being used by another
peer; and that pseudonym impersonations must be made
impossible. That is, each peer is able to verify whether the
other party it is communicating with is the real holder of
the claimed pseudonym.

In this section, we first give an overview of the design
of PT, and then discuss its three key components,
including Pseudo Identity Generation and Issuance, New
Peer Initialization, and Authentication and Session Key
Exchange.

3.1 Design overview

PT is applicable under most of today’s widely-
deployed P2P protocols, such as Gnutella and KaZaA. For
simplicity of discussion, we take a Gnutella-like P2P
environment as a platform that PT runs on. In Gnutella, a
requesting peer issues its queries in a flooding manner. A
query is broadcast and rebroadcast until a certain criterion
is satisfied. If the peer receiving the query can provide the
requested object, a response message containing the IP
address of the responder is sent back to the source peer
along the reversed path of the query.

To protect real identities, in the PT design, each peer is
required to generate a pseudo identity (PI) before joining
the system. As illustrated in Fig. 1, peers construct
anonymous onion paths and find tail nodes based on the
APFS protocol [20]. Other selections of anonymous
protocol designs are possible, but such changes are out of
the scope of this discussion.

3.2 Pseudo identity generation and issuance

In PT, each peer is required to generate two items
before joining the system: a pseudo identity (PI) and a
pseudo identity certificate (PIC).

A PI is used to identify and replace the real identity of
a peer in a P2P system. In this way, a peer does not have
to expose its real identity when communicating with
others. Furthermore, a peer’s reputation is also coupled
with its PI instead of its real ID. To avoid impersonation,
PIC is generated to authenticate the PI holder. Terms not
defined here can be found in [9].

Let ID∈{0,1}* denote the real identity of a peer A
({0,1}* denotes a set of binary strings). Zn

* is a
multiplicative group of integers modulo n.

PI and PIC Generation: PT adopts a hash function,
such as SHA-1, to generate PI and PIC for each peer. We
slightly modify the prototype SHA-1 and name the

I RIT RT

Request
tionAuthentica

message Challenge Challenge

onverificati
Request Request

generation
 Proof

Proof
onverificati

 Proof

pathOnion pathOnion

Figure 2. Procedure of Zero-Knowledge Proof.

revisions hi to fit the different inputs and outputs. A
randomly chooses two large primes p1 and p2, and
calculates the integer n = p1 × p2. Here, A first uses

m
nn ZZh }1,0{}1,0{: ***

1 →×× to generate a Seed, where m
is the length of Seed, and ***}1,0{ nn ZZ ×× is a Cartesian
product. A then computes its SeedA by:

SeedA = h1(ID, p1, p2) ∈{0,1}m
Having SeedA, A computes its PIA and PICA as follows:
(1) Choose k distinct integers, j1...jk. Compute vj =

h2(SeedA, ji, n)(mod n) ∈ Zn
* for each small integer ji, i =

1...k, such that vj is a quadratic residue (mod n), where h2
is a hash function such that h2:{0, 1}m × N × N → Zn

* , and
N is the set of positive integers.

(2) Compute the smallest square root sj of
ij

v mod n,

where i = 1...k. Here we use }{ ijJ = , {
ij

s }k, {
ij

v }k to
denote the sets of ji, ijs , and

ijv , respectively. According
to the Number Theory, it is computationally infeasible to
compute square roots modulo n without knowing the
factoring of n. The details can be found in §6.6 in [17].

(3) Compute PIA = h3(SeedA, n)∈{0, 1}m, where h3 is
a hash function such that h3:{0, 1}m × N→{0, 1}m.

 After the above operation, A generates PICA = {PIA, n,
J, SeedA}, and publishes its PICA on public sites. Other
peers can obtain the valid PICA of peer A from well-
known sites for later verification. To protect the
authenticity of n, we combine each PI with n through hash
functions. Therefore, whether or not the public sites are
secured, PT becomes a “counterfeit-sensitive” protocol.

3.3 New peer initialization

After joining the P2P system, peer A constructs
anonymous sessions with existing peers using the APFS
[20] protocol. In this design, anonymous sessions are
onion routes (OR) consisting of chosen peers. A tail node
TA acts as an agent relaying a message for A. TA and other
peers in this path do not know A is at the end point
position. In APFS, peers use a multicast technique to send
the query via a tail node to some servers anonymously,

which is similar to the flooding procedure used by PT. To
allow TA to send messages back to A, A constructs an OR:

},...}}{,{...,{
ATAAA KKmixATOR =

Meanwhile, peer A builds another onion path AOR for
sending message to TA anonymously.

After the construction of anonymous sessions (note
each node selects its tail node and builds two onion
paths), each peer can anonymously issue queries for
desired files. We use I to denote an initiator. I forwards a
query q for a certain requested file f, through IOR to its
tail node TI. TI then starts a flooding search in the P2P
system.

When a peer receives the query and holds the
requested file, it gets I’s credit based on the trust
management mechanism to help it decide whether to act
as a responder R and provide the file. If it decides to
provide the file, R replies to this query through its tail
node with a response including the IP address of its tail
node and its reputation record.

requestfTPICRTI II
flooding

I
ORI ,,,: →→

3.4 Authentication and session key exchange

PT employs a modified ZKP of Identification scheme.
To adopt it into decentralized P2P networks, we remove
the central authority servers in [8]. ZKP used in PT is
based on the assumption that factoring a large integer is
computationally infeasible.

When the query initiator, I, receives multiple
responses, it selects those peers with high reputations as
potential responders. Without loss of generality, suppose
R is selected as one of the responders. I can initiate the
authentication procedure to verify that the peer claiming
to be the holder of R is not lying. I sends an authentication
request to R through the anonymous path, I→TI→TR→R,
where I→TI and TR→R are onion paths

ITOR and
RTOR ,

and TI→TR is a TCP connection. If R decides to prove that
it is the holder of pseudo identity R, it sends the reply with
its PICR to its tail node TR.

responsefTPICTR RRR
OR RT ,,,: →

Following the APFS protocol, TR delivers the messages
to TI directly through the TCP connection, and TI delivers
the response to peer I through

ITOR .

responsefTPICIT RR
OR

I
IT ,,,: →

Having PICR, I initiates the authentication procedure
as illustrated in Fig. 2. The authentication procedure
includes two main phases: (1) I acts as a prover to prove
its validity to R, and (2) R also proves its validity to I.
These two phases are symmetrical and opposite in the
proving direction. However, the order has been carefully

chosen to avoid potential Dos attacks that may be
launched onto R, which is further discussed in our full
version paper [15].

To provide confidentiality and integrity to data
exchanges after authentication, we embed a Diffie-
Hellman Key Exchange protocol [7] into the
authentication procedure to generate a session key held by
I and R only. Three publicly known parameters g, P, and
Q are published by bootstrapping servers. P (512 bits or
longer) and Q (160 bits) are prime numbers such that Q
divides P-1. The g, satisfying gQ = 1 mod P, is chosen
from (1, P-1) randomly. A detailed authentication
procedure is described as follows.

(a) (Authentication Request) Before starting
authentication, peer I chooses two random numbers x and
a, where x is a commitment for R authenticating the PI of
I in step (f), and a∈[1, Q) is used to generate the session
key. I chooses c∈(0, nI) randomly and computes x = c2

(mod nI), ga mod P (for simplicity, we denote ga mod P as
ga), and u = h4(x, PIR, TR, ga). I sends {x, u, ga} to Peer R,
and keeps a as a secret. Here, h4 is a hash function

k
p

m
n ZZh }1,0{}1,0{}1,0{: ***

4 →××× to generate u, and u is
k-bits long. We use (u1…ui...uk), where ui ∈ {0,1}, to
represent u.

(b) (Request Verification) R computes u’ = h4(x, PIR,
TR, ga), then verifies whether u = u’. If the verification
holds, peer R goes to next step (c), otherwise it rejects this
authentication request.

(c) Peer R checks whether PII = h3(SeedI, nI) holds. If
not, peer R terminates authentication. Otherwise, peer R
computes {

ijv }k of peer I,
ijv = h2(SeedI, ji, nI), j∈JI, i

= 1...k.
(d) (Challenge) R sends a random binary vector

k
jjj k

eee }1,0{),,(
1

∈= … to I.
(e) (Proof generation) Peer I sends the following to

peer R:

kissnscy k
IjjI

k

i

ue
j ii

iij

i
…1,}{)),(mod(

1
=∈∏=

=

+

(f) (Verification) Peer R checks (note here R uses its
own PIR, TR to compute the following result):

kivvnvxy k
IjjI

k

i

ue
j ii

iij

i
…1,}{)),(mod(

1

2 =∈∏=
=

+

Peer R accepts I’s proof if the equality holds, otherwise
it rejects the proof. After peer R verifies I, I verifies R.
The above interactive communication is anonymous,
since the messages are relayed through onion paths from I
or R to their tail nodes TI or TR.

The session key exchange scheme here deserves some
discussion. When peer R executes step (a) on its side, it
picks a random number b∈ [1, Q) simultaneously, and
keeps b as secret. When the authentication is successfully
completed, peer I computes K = (gb)a mod P, and peer R
computes K’ = (ga)b mod P. Clearly, we have K = K’ =

gab mod P, and therefore, peer I and peer R use K as their
session key for the subsequent file transmissions.

In PT, (1) the length of PI, (2) the length of m, (3) the
large integer n, and (4) the number of quadratic residue k
are four key parameters. The selections of m, n and k are
essential to the security degree of PT, on which we have
more discussions in Section 4.

4. Security Analysis

PT is designed to achieve three security goals:
anonymity of peer real identity, authentication among
peers, and resistance against impersonation and Man-In-
Middle-Attacks (MIMA).

4.1 Degree of anonymity

The anonymity of a peer’s identity comes directly from
the one-way property of cryptographic hash functions. Let
h(·) be a hash function with m-bit-long hash values, and
assume it is well designed and has no structural drawback
for cryptanalysis. In cryptograph terminology, h(·) takes
advantage of a pre-image-resistance property, i.e., for any
given hash value y, it is computationally infeasible to find
an x such that h(x) = y. Here “infeasible” means we need
at least 2m-1 calculations of hash evaluation in general to
find such an x [21].

A malicious peer may launch advanced attacks, such as
finding two different but real identities so that the two
identities have the same PI. It might then use one of the
two identities to impersonate the peer with the other
identity. However, this kind of attack is withstood by the
collision-resistance of hash functions: it is computationally
infeasible to find a pair (x, y) such that h(x) = h(y), say a
collision. An adversary needs 2m/2 calculations to find a
collision with probability 1/2, which is infeasible for m ≥
128, see §18 in [21].

For m = 64, finding the pre-image of this hash value
needs 600,000 mips-year, while finding the collision of
this hash value only needs 232 calculations, which can be
executed in 1 mips-hour (more details can be found in §
7.2 in [21]). Hence, the length of hash values should be
more than 64 bits. In the PT design, proper hash functions
include SHA-1 (m = 160) and its offspring. If we choose
SHA-1, a malicious peer must take 2159 calculations to
compute the identity from the PI, and 280 calculations to
find a collision with probability 1/2. These are
computationally infeasible. Thus, PT achieves anonymity
for peers in networks. Malicious peers cannot deduce a
real identity from a PI. In other words, PT provides a
secure conversion from real identities to anonymous PIs.

A BM nodeMalicious
?you are , mI' AB ?you are , mI' BA

A of Proof
A of Proof

B of Proof
B of Proof

Figure 3. MIMA attack. M cheats A or B that M
is the real opposing party.

4.2 Security discussion

In PT, the authentication of peers is employed through
an underlying ZKP protocol (see Section 3.4). A ZKP
protocol has the characteristic that even if multiple
collaborating adversaries collect interactive information
about former executions between two participants, they do
not benefit more from launching impersonation attacks on
participants of the protocol than in the situation of
observing nothing. Due to the limitation of pages, in the
security analysis below, we only give the analysis of
impersonation and man-in-middle attacks. In our full
version paper [15], we analyze the security goals of PT
against replay, collaborating, and denial of service attacks.
We also prove that PI is secure when it is issued in unsafe
public sites. At last, we compare PT with PKI-based
authentication protocols. From the comparison, we show
that PT outperforms PKI-based authentication
approaches.

Impersonation: To successfully defend against
impersonations, PT should have the properties of
completeness and soundness. In cryptology, completeness
is defined as the ability of the verifier to accept true
statements by the prover, while soundness asserts that the
verifier cannot be “tricked” into accepting an invalid
statement from a false prover. We prove these two
properties of the PT design via the following lemmas.

Lemma 1 (Completeness) If peers I and R properly
follow the authentication procedure, then R always accepts
the PI of I as valid.

Lemma 2 (Soundness) Assume it is computationally
infeasible for factoring n, and a malicious peer M does
not have any partial knowledge of the initiator’s secret
{

ijs }, i = 1...k. Suppose M interacts the ZKP protocol
with responder R to impersonate initiator I and convince R
that it is I. Then the probability that M succeeds is

)2,2max(tk −− , where k is the length of a challenge
message e (in PT, k = 80, on which we have more

discussions later), and t is an integer dependent on n only.
When n is of 1024 bit length, t = 87.

The proofs of above lemmas can be found in our full
version paper [15].

According to Lemma 2, the probability of a successful
impersonation decreases when k grows (here k is the bit
number of e). In this design, we believe it is safer to
choose k = 80 to get high overall security.

4.3 Man-In-Middle-Attack

A Man-In-Middle-Attack (MIMA) is an attack in
which an intruder M is able to arbitrarily access and
modify messages between two parties without either party
knowing that the link between them has been
compromised [15]. As a result, M can successfully
impersonate the initiator to the responder, or vice versa.
To PT users, intruders can modify and relay the forged
authentication messages to participants and try to
convince peer I or peer R that M is the opposing party. We
define a MIMA to be successful if a malicious peer M is
able to convince peer I or peer R that TM, which is actually
the tail node of M, is TI or TR, a tail node of peer I or peer
R. We also assume M is able to intercept, replace, and
modify the messages arbitrarily.

As shown in Fig. 3, M impersonates two victims
simultaneously, which is challenging to defend against,
and a key issue in our discussion. Such a MIMA is based
on two possible instances. Instance 1: R does not receive
I’s query q. Instance 2: R receives I’s q.

For Instance 1, since R does not receive q, R does not
respond. In this case, to cheat R, M has to (1) forward peer
I’s query q directly to R, or (2) send a forged q, q’, to R.

For (1), M operates as other relaying nodes in the
transmission. Since M does not modify anything, R
connects with TI through TR directly. Thus, M cannot
cheat anyone.

For (2), the possible modification on q by M leads to
two sub-cases: (a) M modifies or just replaces the PICI
with its PICM in q such that R considers M as an initiator.
This is useless for M’s attack because it would fail in the
later verification without a valid PII. Otherwise, M may
hope to find a valid PICM with the same hash value as PII,
which is computationally infeasible as we discussed in
Theorem 1. (b) M modifies q into q’ = (PICI, TM, f), as
the point ① shown in Fig. 4. The following discussion is
based on this situation.

 After receiving q’, R replies to I with (PICR, TR, f). M
intercepts this reply, modifies this message to (PICR, TM,
f), and delivers it to I. Note that M has to modify TR to TM,
otherwise I would ask TI to contact TR. Thus, TM is not
involved in the authentication and the attack fails. See
point ② in Fig. 4.

I M R
fTPICq II ,,=

fTPICq MI ,,? =

fTPICr RR ,,=

fTPICr MR ,,? =

uKx I ,,

2

4

),,,(

,mod

,mod

Computing
2

a
MR

a
I

I

gTPICxhu

pgK

ncx

=

=

=
),,,(a

RR gTPICxhu =

e Challenge
y Proof

y Proof
passcannot

, Checking 2y

1

3

Figure 4. Resistance from the Man-in-middle-

attack.

Following step (a) in the authentication procedure,
peer I randomly chooses c and a and computes the
commitment x = c2 mod nI，ga mod P, and u=h4(x, PIR,
TM, ga). Then I sends them back to TM.

Upon intercepting this message, M has only two
choices of how to continue its intruding actions:

i) M relays this message to R without modification.
Then R computes the u’ = h4(x, PIR, TR, ga) and checks it
with the u peer R just received. According to the pseudo-
random feature of the hash function, we have u ≠ u’. R
terminates the authentication procedure, and the attack
fails. See point ③ in Fig. 4.

ii) M computes u’’ = h4(x, PIR, TR, ga) and sends it to
R. In such a case, u’’ = u’. R continues authentication. R
then sends a challenge e to TM. M cannot know e in
advance and the best choice for M is to deliver the
challenge to I. Otherwise M can only guess e with a
probability of 2-k.

In ii), M cannot modify the x and ga to make a u = u’.
This is because that according to the collision-resistance
property of well-designed hash functions, finding such x’
and ga’ that makes h4(x, PIR, TM, ga) = h4(x’, PIR, TR, ga’) is
computationally infeasible.

I and R continue the authentication procedure following
the PT protocol until step (e). At this point, I generates a

proof))(mod(
1

I

k

i

ue
j nscy iij

i∏
=

+= , and sends it back. Since

the secret {
ijs }k of I is unknown to M, M cannot forge a

proof to pass R’s verification. If M changes e so as to pass
the verification, it must guess the value of e before R
generates e, and change the value of y accordingly. Since
the probability of such a successful guess is 2-k, it is
infeasible. See point ④ in Fig. 4.

In step (f), R checks whether =2y

∏
=

+
k

i

ue
j

iij

i
vx

1

'
In mod holds. According to the previous

discussion, u = h4(x, PIR, TM, ga), but u’ = h4(x, PIR, TR,
ga). It is clear that u ≠ u’. Thus, R stops the authentication.

If M attempts to continue cheating I by impersonating
R, since M does not know the secret {

ijs }k of R, it cannot
pass the verification on I’s side. Thus, MIMA attempts
made by intruder M in Instance 1 fail.

For Instance 2, R receives I’s query q. In this case, R
has multiple queries containing an identical PI with
different tail nodes. Aware of being under attack, R can
simply discard the query, or randomly select one of them
to initiate the authentication procedure. The remaining
analysis is similar to the case in Instance 1.

The key point of the authentication technique in PT is
that we bind the commitment, the tail node’s information,
and the key exchange data together with a peer’s PI. With
this design, any attempts to modify the identity messages
cannot pass the verification of genuine protocol
participants. Thus, MIMA fails to attack our proposed PT
protocol.

5. Performance Analysis

We first evaluate the PT design by trace-driven
simulations, in which the P2P topologies are obtained
from the DSS Clip2 trace [1]. Our simulations are
performed on those traces in a variety of network sizes
ranging from hundreds to thousands. For each simulation,
we take the average result from 1,000 runs. The results
are consistent with traces of different days and here we
show the representative results.

5.1 Response time

Of all latencies in a P2P system, the response time
from query issuance to the start of the download is of
greatest concern, as it has a significant bearing on the
system usability. Figure 5 plots the simulation results of
the response time, where we show the accumulative
percentage of returned responses versus time for PT, overt
Gnutella protocol, and APFS. Note that we have only
included the latency of sending queries and responses in
the APFS protocol, as we do not want the other
components of APFS to influence our results.

The comparison in Fig. 5 shows that the response time
of APFS is approximately 3 times that of overt Gnutella,
while PT is around 7 times that of overt Gnutella. In
APFS, users need one onion path plus a flooding
procedure to send a query out, one TCP link to deliver the
response between tail nodes, and two onion paths to send
the response anonymously. In PT’s two-phase
authentication procedures between two parties, the
numbers of used onion paths and TCP links are 12 and 6
to follow APFS, respectively. According to the design of

0 5 10 15
0

20

40

60

80

100

Time(seconds)

A
cc

um
ul

at
iv

e
P

er
ce

nt
ag

e

Gnutella
APFS
Direct Authentication
PT

0 500 1000 1500

1.05

1.1

1.15

1.2

1.25

T
ra

ffi
c

st
re

tc
h

Search scope

Figure 5. Response time. Figure 6. Traffic stretch.

PT, the authentication messages pass through the TCP
connections between two tail nodes 6 times in a mutual
authentication procedure. We also simulate a pure mutual
authentication procedure without overt Gnutella and
APFS, shown as the star line in Fig. 5. Our observation
shows that the average response time of normal query
flooding, direct authentication, APFS, and PT are about
493ms, 600ms, 2031ms, 9296ms, respectively. Note that
the time consumed in anonymous paths of PT constitutes
a major part of the whole latency, which is four times
more than that of APFS. Therefore, the time consumption
of authentication is indeed trivial. Our later offline
implementations also support this summary.

5.2 Traffic overhead

In our next experiment, we test the extra traffic cost
brought about by authentication procedures. We define
the traffic stretch as the traffic cost ratio between PT plus
Gnutella, and Gnutella only. As shown in Fig. 6, traffic
stretch decreases when search scope increases. The traffic
stretch is lower than 1.03 when the search scope reaches
1,400 peers, which means less than 3% additional traffic
is incurred by PT.

The extra traffic cost is mainly incurred by anonymous
communications and authentication interactions among
peers. These connections comprise two anonymous
sessions and a TCP link. Therefore, the scale of extra
traffic cost mostly depends on the sum of those connection
lengths. In fact, we observe that the average distance
between two random nodes tends to be constant with the
growing size of the P2P overlay. As a result, the extra
traffic cost caused by the PT authentication also slightly
fluctuates around a constant. In our experiments, the traffic
stretch first decreases sharply and then tends to be
constant. As a reflection, Fig. 6 illustrates this tendency.

6. Prototype Implementation

To better evaluate PT, we implemented a prototype in
our labs at the Chinese Academy of Sciences (CAS), the
campus of Beihang University and Hong Kong University
of Science and Technology, and others sites. We launched
two-part experiments.

The first set focuses on the extra computation overhead
caused by PT, and test the computing capabilities of
normal PCs running this protocol. The second set tests the
overall latency of pseudo identity authentication
procedures in the Internet environment.

6.1 Offline experiments

We first examine the performance of PT in an offline
environment by conducting experiments on four different
desktop PCs with the following configurations:
PIII450M/128M, PIV1.8G/256M, PIV2.6G/256M, and P-
M1.4G/256M. Figure 7 plots the time consumption of PIC
generation (including the PI generation) on the above four
machines with a 1024-bits moduli, which is a default
selection, providing enough security to PT. The average
time to generate a PIC increases linearly when the amount
of quadratic residue, k, grows. In previous discussions, we
show it is safe when k is no less than 80. For a current
popular PC configuration, such a generation needs less
than 8 seconds, which is acceptable because PIC
generation is a one-time job, necessary only when a peer
joins the P2P community.

Figures 8 and 9 plot the time used for the proving and
verifying operations on the four machines. We can see
that with 1024-bit moduli, for a popular machine, proof
generation requires less than 0.01 seconds and verification
only needs 0.002 seconds when k is 80. Even for poorly
configured PCs such as PIII450M/128M, the processing
time is still acceptable.

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5x 10
4

Number of quadratic residues

T
im

e
co

ns
um

pt
io

n(
m

s) PIV 2.66G
PIV 1.8G
PM 1.4G
PIII 450M

0 20 40 60 80 100

0

10

20

30

40

Number of quadratic residues

T
im

e
co

ns
um

pt
io

n(
m

s) PIV 2.66G
PIV 1.8G
PM 1.4G
PIII 450M

0 20 40 60 80 100

0

2

4

6

8

10

Number of quadratic residues

T
im

e
co

ns
um

pt
io

n(
m

s) PIV 2.66G
PIV 1.8G
PM 1.4G
PIII 450M

Figure 7. PIC generation

(1024bit moduli).
Figure 8. Proof generation

(1024bit moduli).
Figure 9. Verification

(1024bit moduli).

0 20 40 60 80 100
60

80

100

120

140

160

180

T
im

e
co

ns
um

pa
tio

n(
m

s)

Number of quadratic residues

length of moduli n=2048 bits
length of moduli n=1024 bits

0 20 40 60 80 100

200

250

300

350

400

T
im

e
co

ns
um

pa
tio

n(
m

s)

Number of quadratic residues

length of moduli n=2048 bits
length of moduli n=1024 bits

0 20 40 60 80 100

560

580

600

620

640

660

680

T
im

e
co

ns
um

pa
tio

n(
m

s)

Number of quadratic residues

length of moduli n=2048 bits
length of moduli n=1024 bits

Figure 10. CAN test. Figure 11. MAN test. Figure 12. WAN test.

6.2 Implementation in real internet environments

We then implement our PT prototype in the internet via
a P2P overlay comprising of fifty desktop PCs at the labs
in Beijing and Hong Kong. The LANs of the lab are
interconnected with D-Link switches 3624i, and connected
with the campus network with Cisco routers Catalyst
2950. All LAN bandwidths are 100Mbps. To better
evaluate PT, in this implementation, we ignore the time
consumed by the APFS protocol. Figures 10-12 show
experimental results in the Campus Area Network (CAN),
Metropolitan Area Network (MAN), and Wide Area
Network (WAN). The number of quadratic residues range
from 10 to 100 and we use 1024 and 2048 bits as moduli
sizes, respectively.

 In the campus network of HKUST, the ping time of
the biggest packet of PT messages is less than 2ms. This
latency mainly comprises the time consumption for the
proving and verifying operations of PT. In WAN, the
distance between two parties becomes the main factor of
latency. As shown in Fig. 12, sometimes the irregular
variety of communication channels influences the curve
of latency and causes the curves to plunge down or rise
into revulsions.

We employ ping tests with packets of the same size as
PT messages over the two involved computers between
Hong Kong and Beijing in WAN. The results range from
0.07 seconds to 0.12 seconds. Therefore, the overall
latency of PT is less than 0.67 seconds, which is relatively
small for an authentication procedure. Note that the extra
latency of PT in implementation results is much shorter
than that in the simulation results because the time

consumed by the Gnutella and APFS protocols is included
in the simulation, but not in the prototype implementation.
The package of PT prototype is available at [15].

7. Conclusion

Due to the inherent tradeoff between trust and
anonymity, existing attractive identity-based trust
management schemes cannot be directly employed in
anonymous P2P systems. We propose an anonymous
zero-knowledge authentication protocol in this paper,
called Pseudo Trust. In this design, a ZKP-based
authentication scheme is designed to support trust
management in anonymous P2P systems, so that peers
may use unforgeable and verifiable pseudonyms instead
of their real identities in P2P communities.

We prove that the probability of a successful
impersonation is computationally infeasible, even if the
adversaries have collected all of the previous
authentication messages. We also manage to address man-
in-middle-attacks in the PT design. The results of trace-
driven simulations show that PT has perfect scalability in
both static and dynamic environments. We also
implement a prototype of PT and evaluate its performance
by experiments. We believe that wide deployment of
Pseudo Trust will provide better privacy and security for
P2P users.

Acknowledgements

This work was supported in part by the NSFC grants
No. 60573053 and No.90412011, the National Grand

Fundamental Research 973 Program of China under Grant
No. 2005CB321803, the NSFC Funds for Distinguished
Young Scholar under grant No. 60525209, and the Hong
Kong RGC grants HKUST6264/04E and
HKUST6152/06E.

References

[1] The Gnutella Protocol Specification v4.0.
http ://www.clip2.com/GnutellaProtocol04.pdf.

[2] K. Aberer and Z. Despotovic. Managing Trust in a Peer-2-
Peer Information Systems. In Proceedings of the
international conference on Information and knowledge
management, 2001.

[3] T. Beth. Efficient Zero-Knowledge Identification Scheme
for Smart Cards. In Proceedings of EUROCRYPT, 1988.

[4] J. Brandt, I. B. Damgard, P. Landrock, and T. Pedersen.
Zero-Knowledge Authentication Scheme with Secret Key
Exchange. In Proceedings of Advances in Cryptology,
1990.

[5] F. Cornelli, E. Damiani, S. D. C. d. Vimercati, S.
Paraboschi, and P. Samarati. Choosing Reputable Servents
in a P2P Network. In Proceedings of the international
WWW conference, 2002.

[6] E. Damiani, S. D. C. d. Vimercati, S. Paraboschi, P.
Samarati, and F. Violante. A Reputation-Based Approach
for Choosing Reliable Resources in Peer-to-Peer Networks.
In Proceedings of ACM CCS, 2002.

[7] W. Diffie and M. E. Hellman. New Directions in
Cryptography. IEEE Transactions on Information Theory,
1976.

[8] U. Fiege, A. Fiat, and A. Shamir. Zero Knowledge Proofs
of Identity. In Proceedings of ACM Symposium on Theory
of Computing(STOC), 1987.

[9] O. Goldreich. Foundations of Cryptography: Basic Tools.
Cambridge: Cambridge University Press, 2001.

[10] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge
complexity of interactive proof systems. SIAM Journal on
Computing, 1989.

[11] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The
EigenTrust Algorithm for Reputation Management in P2P
Networks. In Proceedings of the international WWW
conference, 2003.

[12] Z. Kim and K. Kim. Provably-Secure Identification Scheme
based on Braid Group. In Proceedings of the international
conference on soft computing and intelligent
systems(SCIS), 2004.

[13] P. P. C. Lee, J. C. S. Lui, and D. K. Y. Yau. Distributed
Collaborative Key Agreement and Authentication Protocols
for Dynamic Peer Groups. IEEE/ACM Transactions on
Networking, 2006.

[14] S. Lee, R. Sherwood, and B. Bhattacharjee. Cooperative
Peer Groups in NICE. In Proceedings of IEEE INFOCOM,
2003.

[15] L. Lu, Y. Liu, L. Hu, J. Han, and L. M. Ni. Pseudo Trust:
Zero-Knowledge Authentication in Anonymous Peer-to-
Peer Protocols.
http://www.cse.ust.hk/~liu/PseudoTrust050608.htm.

[16] Y. Lu, W. Wang, D. Xu, and B. Bhargava. Trust-Based
Privacy Preservation for Peer-to-peer Data Sharing. In
Proceedings of the NSF/ NSA/ AFRL workshop on secure
knowledge management (SKM), 2004.

[17] W. Mao. Modern Cryptography: Theory and Practice,
2004.

[18] D. H. Nyang and J. S. Song. Knowledge-Proof Based
Versatile Smart Card Verification Protocol. ACM
SIGCOMM Computer Communication Review, 2000.

[19] K. Ohta and T. Okamoto. A Modification of the Fiat-
Shamir Scheme. In Proceedings of Advances in Cryptology,
1990.

[20] V. Scarlata, B. N. Levine, and C. Shields. Responder
Anonymity and Anonymous Peer-to-Peer File Sharing. In
Proceedings of IEEE ICNP, 2001.

[21] B. Schneier. Applied Cryptography - Protocols, Algorithms,
and Source Code in C, Second ed: John Wiley & Sons, Inc,
1996.

[22] R. Sherwood, B. Bhattacharjee, and A. Srinivasan. P5: A
Protocol for Scalable Anonymous Communication. In
Proceedings of IEEE Symposium on Security and Privacy,
2002.

[23] G. J. Simmons and G. B. Purdy. Zero-Knowledge Proofs of
Identity And Veracity of Transaction Receipts. In
Proceedings of EUROCRYPT, 1988.

[24] A. Singh and L. Liu. TrustMe: Anonymous Management of
Trust Relationships in Decentralized P2P Systems. In
Proceedings of the 3rd International IEEE Conference on
Peer-to-Peer Computing, 2003.

[25] P. F. Syverson, D. M. Goldschlag, and M. G. Reed.
Anonymous Connections and Onion Routing. In
Proceedings of IEEE Symposium on Security and Privacy,
1997.

