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Abstract 
 

Replicating data objects onto servers across a system 
can alleviate access delays. The selection of data objects 
and servers requires solving a constraint optimization 
problem, which is NP-complete in general. A majority of 
conventional replica placement techniques falter on 
issues of scalability or solution quality. To counteract 
such issues, we propose a game theoretical replica 
placement technique, in which computational agents 
compete for the allocation or reallocation of replicas 
onto their servers in order to reduce the user perceived 
access delays. The technique is based upon six well-
defined axioms, each guaranteeing certain basic game 
theoretical properties. This eccentric method of designing 
game theoretical techniques using axioms is unique in the 
literature and takes away from the designers the 
cumbersome mathematical details of game theory. The 
distinctive feature of these axioms is that when amassed 
together, their individual properties constrict into one 
system-wide performance enhancement property, which 
in our case is the reduction of access time. The control of 
the proposed technique is “semi-distributed” in nature, 
wherein all the heavy processing is done on the servers of 
the distributed system and the central body is only 
required to take a binary decision: (0) not to replicate or 
(1) to replicate. This semi-distributed approach makes the 
technique scalable and helps solutions to converge in a 
fast turn-around time without loosing much of the 
solution quality. Experimental comparisons are made 
against: 1) branch and bound, 2) greedy, 3) genetic, 4) 
Dutch auction, and 5) English auction. As attested by the 
results, the proposed technique maintains superior 
solution quality in terms of lower communication cost 
and reduced execution time. 

 
 

1. Introduction 
 
Numerous methods  have  been proposed that address  
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the data object replication problem in large distributed 
computing systems. (For a recent survey see  [20].) 
However, all of the reported methods operate under the 
generic assumption that the servers cooperate with each 
other in order to attain system-wide benefits. For instance, 
in a content distribution network (CDN) the distribution 
system moves contents to the replica servers  [12],  [13], 
 [14]. This distribution system acts as a centralized 
decision making body, and makes decisions on where and 
what to replicate by observing the system’s parameters 
such as server load, storage capacity, communication 
latencies, etc. Although the Internet encourages 
distributed control, it requires that the overall system 
performance criteria be met. Managing a large distributed 
system, such as the Internet, through a single entity would 
require huge amounts of data processing in order to find a 
feasible replica schema and would be vulnerable to 
system failures  [6]. Consequently, we propose a “semi-
distributed”  [1] (a hybrid of both the centralized and 
decentralized approaches) replication technique, by which 
all the heavy processing is done on the servers of the 
distributed system and the central body is only required to 
take a binary decision: (0) not to replicate or (1) to 
replicate. This leads to a simple yet an efficient scheme 
with enhanced scalability and low complexity that grows 
in proportion to the number of servers in the system. 

For the proposed semi-distributed replica allocation 
technique, we abstract the Internet as an agent based 
model wherein agents continuously compete for 
allocation and reallocation of data objects. An agent is a 
computational entity that is capable of autonomous 
behaviour in the sense of being aware of the options 
available to it when faced with a decision making task 
related to its domain of interest  [28]. In such a 
competitive model, there is no a-priori motivation for 
cooperation and the agents due to their localized view of 
the problem domain are encouraged to take decisions 
individually that are beneficial only to themselves. To 
cope with such individualism and localized optimization, 
new mechanisms based on novel oracles need to be 
derived. The objective of the mechanisms should be to 
allow the agents to take decisions that are based on their 



 

local information, which essentially translate into the 
overall system performance enhancement.  

This paper aims to formally specify a semi-
distributed game theoretical replica allocation 
mechanism, in which autonomous agents compete to 
replicate data objects in a non-cooperative game. Briefly, 
the mechanism works as follows. It first asks all the 
agents to provide a list of objects that are beneficial for 
replication onto their servers. Having obtained this data, 
the mechanism makes the allocation and informs the 
agents. For every allocation the mechanism makes a 
payment to each agent (to compensate for hosting 
object(s)). Each agent’s goal is to provide the mechanism 
with a list of objects that maximize its benefit. The 
mechanism on the other hand, is designed such that, the 
agents maximize their benefit only if the reported list 
contains objects that when replicated, brings the overall 
system communication cost to the minimum. Thus, the 
agents which are competing against each other in a non-
cooperative game collaborate unknowingly to optimize 
the overall system goal.  

The major contributions of this paper are as follows: 
1. We derive a general purpose axiomatic game 

theoretical mechanism. This mechanism ensures that 
although, the agents use self-beneficial strategies, yet 
the effect is translated into a global optimization.  

2. The essence of this mechanism is captured in six 
well-defined axioms that exhibit properties of global 
optimality, truthfulness, and utilitarianism. 

3. The distinctive feature of these axioms is that when 
amassed together, their individual properties constrict 
into one system-wide performance enhancement 
property.  

4. We use these axioms to obtain an efficient algorithm 
for the data replication problem.  
The remainder of this paper is organized as follows. 

In Section 2 we present a formal description of the data 
replication problem. Section 3 focuses on describing the 
generalized axiomatic game theoretical mechanism along 
with its properties. Section 4 concentrates on modeling 
the mechanism for the data replication problem. The 
experimental results, related work, and concluding 
remarks are provided in Sections 5, 6, and 7, respectively. 

 
2. The Data Replication Problem 

 
Consider a distributed system comprising M servers, 

with each server having its own processing power, 
memory (primary storage) and media (secondary storage). 
Let Si and si be the name and the total storage capacity (in 
simple data units e.g. blocks), respectively, of server i 
where 1 ≤ i ≤ M. The M servers of the system are 
connected by a communication network. A link between 
two servers Si and Sj (if it exists) has a positive integer 
c(i,j) associated with it, giving the communication cost 

for transferring a data unit between servers Si and Sj. If 
the two servers are not directly connected by a 
communication link then the above cost is given by the 
sum of the costs of all the links in a chosen path from 
server Si to the server Sj. Without the loss of generality we 
assume that c(i,j) = c(j,i). Let there be N objects, each 
identifiable by a unique name Ok and size in simple data 
unites ok where 1 ≤ k ≤ N. Let rk

i and wk
i be the total 

number of reads and writes, respectively, initiated from Si 
for Ok. 

Our replication policy assumes the existence of one 
primary copy for each object in the network. Let Pk, be 
the server which holds the primary copy of Ok, i.e., the 
only copy in the network that cannot be de-allocated, 
hence referred to as primary server of the k-th object. 
Each primary server Pk, contains information about the 
whole replication scheme Rk of Ok. This can be done by 
maintaining a list of the servers where the k-th object is 
replicated at, called from now on the replicators of Ok. 
Moreover, every server Si stores a two-field record for 
each object. The first field is its primary server Pk and the 
second the nearest neighborhood server NNk

i of server Si 
which holds a replica of object k. In other words, NNk

i is 
the server for which the reads from Si for Ok, if served 
there, would incur the minimum possible communication 
cost. It is possible that NNk

i = Si, if Si is a replicator or the 
primary server of Ok. Another possibility is that NNk

i = Pk, 
if the primary server is the closest one holding a replica of 
Ok. When a server Si reads an object, it does so by 
addressing the request to the corresponding NNk

i. For the 
updates we assume that every server can update every 
object. Updates of an object Ok are performed by sending 
the updated version to its primary server Pk, which 
afterwards broadcasts it to every server in Rk.  

For the data replication problem (DRP) under 
consideration, we are interested in minimizing the total 
Object Transfer Cost (OTC) due to object movement. 
There are two components affecting OTC. The first 
component of OTC is due to the read requests. Let Rk

i 
denote the total OTC, due to Sis’ reading requests for 
object Ok, addressed to the nearest server NNk

i. This cost 
is given by:  

( ),i i i
k k k kR r o c i NN= ,                 (1) 

where NNk
i = {Server j | j∈Rk ^ min c(i,j)}. The second 

component of OTC is the cost arising due to the writes. 
Let Wk

i be the total OTC, due to Sis’ writing requests for 
object Ok, addressed to the primary server Pk. This cost is 
given by the following equation:  

( ) ( )
,
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Here, we made the indirect assumption that in order to 
perform a write we need to ship the whole updated 
version of the object. This of course is not always the 



 

case, as we can move only the updated parts of it 
(modeling such policies can also be done using our 
framework). The cumulative OTC, denoted as Coverall, due 
to reads and writes is given by:  

      ( )1 1
M N i i

overall k ki kC R W= == +∑ ∑ .                     (3) 

Let Xik = 1 if Si holds a replica of object Ok, and 0 
otherwise. Xiks define an M×N replication matrix, named 
X, with boolean elements. Equation 3 is now refined to: 
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Servers which are not the replicators of object Ok 
create OTC equal to the communication cost of their 
reads from the nearest replicator, plus that of sending 
their writes to the primary server of Ok . Servers 
belonging to the replication scheme of Ok, are associated 
with the cost of sending/receiving all the updated versions 
of it. Using the above formulation, the DRP can be 
defined as:  “Find the assignment of 0, 1 values in the X 
matrix that minimizes Coverall, subject to the storage 
capacity constraint:    1 (1 )N

iik kk X o s i M= ≤ ∀ ≤ ≤∑ , and subject to 
the primary copies policy: 1   (1 )P kk

X k N= ∀ ≤ ≤ .” 

 
3. Axiomatic Game Theoretical Mechanism 

 
In this section we use various building blocks to 

construct a generalized axiomatic game theoretical 
mechanism. We begin by defining a mechanism  [3], 
which has two components: a) the algorithmic output, and 
b) the agents’ valuation functions.  

Definition 1 ( [3]):  A mechanism is in which:  
1. The system consists of M agents. Each agent i 

has some private data ti∈ℜ . This is termed as 
the agent’s true data or true value. Everything 
else in the mechanism is public knowledge. 

2. The algorithmic output maps to each true data 
vector t = t1…tM a set of allowed outputs x∈X, 
where x = x1…xM. 

3. Each agent i’s preferences are given by a real 
valued function vi(ti,x) called valuation.  

Remarks:  The valuation of an agent represents the 
quantification of its value from the output x, when its true 
data is ti in terms of some predefined currency. For 
example, if the output of the mechanism is x and it hands 
the agent pi amount of payment, then its utility becomes: 
ui = pi + vi(ti,x).  

We now focus on identifying a mechanism that 
allows the algorithmic output to optimize a given 
objective function. Below we give a refined definition of 
an optimization (minimization in our case) oriented 
mechanism. 

Definition 2 ( [3]): An optimization oriented 
mechanism is one where: 

1. The algorithmic output is given by a positive real 
valued objective function g(t,x), and  

2. a set of feasible outputs X. 
Thus, we require an output x∈X that minimizes g, 

such that for any other output x’∈X, g(t,x) ≤ g(t,x’). This 
is fine as long as we can find a mechanism that can solve 
a given problem by assuring that the required algorithmic 
output occurs, when all the agents choose strategies that 
maximize their utility functions (a min-max procedure). 
Let a-i denote a vector of strategies, not including agent i, 
i.e, a-i = (a1,…,ai-1,ai+1,…,aM). We can define a 
mechanism that is able to solve a utilitarian based 
minimization problem as: 

Definition 3 ( [24]): A mechanism (m = (x(·),p(·))) is 
composed of a) an algorithmic output function x(·), and b) 
the payment function p(·). The mechanism should have 
the following properties: 

1. The mechanism allows for each agent i a set of 
strategies Ai. It is up to the agent what strategy 
(ai∈Ai) to adopt in order to have its utility 
function optimized.  

2. The mechanism should provide an algorithmic 
output x derived from the output function, i.e., x 
= x(ai…aM). 

3. In order to motivate the agents, the mechanism 
should provide a payment pi = pi(a1…aM) to each 
of the M agents. 

Remarks:  Recall that x = x1…xM. It is then not 
difficult to see that agent i’s algorithmic output can easily 
be obtained once the mechanism identifies the output x. It 
is possible that agents due to their selfish nature may alter 
the output of the algorithm in order to fervently gather 
more resources. Hence, we are required to enforce the 
mechanism to handle the special case of selfish agents by 
adding the following property to Definition 3. 

Property 4: The mechanism should be a 
representation of dominant strategies, and this is possible 
if for each agent i and each ti there exists a dominant 
strategy (ai∈Ai), such that for all possible strategies of 
the other agents a-i, ai maximizes agent i’s utility. 

Remarks:  Literature survey reveals that the simplest 
of all the mechanisms that exhibits dominant strategies is 
the one where the agents’ strategies are to report their true 
data. Such types of mechanisms are called truthful 
mechanisms, and they are based on the revelation 
principle  [11]. This principle reports that for a given 
optimization problem, if there exists a truthful mechanism 
then pareto-optimality is guaranteed (by default).  To 
align ourselves with Property 4 of Definition 3, we show 
that truth-telling is indeed a dominating strategy. 

Lemma 1: For agents to report their type (truth-
telling) is a dominating strategy. 

Proof: Let (ai,a-i) denote a vector of strategies of all 
the M agents, i.e., (ai,a-i) = (a1…aM). Truth-telling would 
mean that ai = ti. Then, for every ai’∈Ai, if we define x = 



 

x(ai,a-i), x’ = x(ai’,a-i), pi = pi(ai,a-i), and pi’ = pi’(ai’,a-i), 
then pi+vi(ti,x) ≥ pi’+vi(ti,x’), i.e., ui ≥ ui’.                         ■ 

We can use this result to couple it with a useful 
theorem reported in  [23]. This will characterize the 
mechanism as truthful. Below we state the theorem. 

Theorem 1 ( [23]): A mechanism that implements a 
given problem with dominant strategies is truthful.         ■ 

In Definition 3 we stated (Property 1) that a 
mechanism m = (x(·),p(·)) allows the agents to maximize 
their utilities. Since utilities enable the agents to express 
their preferences, it is important to identify an oracle that 
does exactly that. Literature survey revealed the following 
result, which we append as property 5 to the property list 
of Definition 3.  

Theorem 2 ( [24]): A mechanism is called utilitarian 
if its objective function satisfies g(x,t) = ∑ivi(ti,x).           ■ 

Property 5: The mechanism should have an 
objective function that satisfies g(x,t) = ∑ivi(ti,x). 

The above property is so useful that it can help us 
identify the two important components of a game 
theoretical mechanism. We state:  

Theorem 3 ( [10]): A truthful mechanism m = 
(x(t),p(t)) belongs to the class of minimization utilitarian 
mechanisms if and only if:  

1. x(t) ∈ argminx(∑ivi(ti,x). 
2. pi(t) = ∑j≠ivj(tj,x(t)) + hi(t-i), where hi(·) is an 

arbitrary function of t-i.                                       ■ 
Remarks: Note that conditions 1 and 2 of Theorem 3 

are the exact mathematical derivations of Properties 2 and 
3 of Definition 3, respectively. Moreover, the mechanism 
stated in Theorem 3 takes in as argument t for both the 
algorithmic output and the payment function, i.e., m = 
(x(·),p(·)) is now written as m = (x(t),p(t)). This is because 
of the mergence of Theorems 1 and 2. For convenience 
we shall now state the truthful mechanism in the 
axiomatic form (Figure 1). 

We aim to use the above (discussed) axiomatic game 
theoretical mechanism to find solutions for the data 
replication problem (Section 3). The six axioms defined 
above will act as a cast for the data replication problem. 
In essence, we want a replica allocation mechanism that 
solves the data replication problem with the properties 
guaranteed by the six axioms.  

 
4. Axiomatic Game Theoretical Replica 
Allocation Mechanism (AGT-RAM) 

 
The directions laid down in Section 3 will be used to 

apply the axiomatic game theoretical mechanism to the 
data replication problem.  

Ingredients (Axiom 1): The distributed system 
describe in Section 2 is considered and it consists of M 
agents. That is, each server is represented by an agent. 

Assume for the time being that the feasible output (of the 
algorithm exists, and) are all partitions x = x1…xM of the 
objects to the agents, where xi is the set of objects 
allocated to agent i. Also assume that each agent i’s utility 
function ui exists. (In the subsequent text it will be clear 
what exactly x and ui are.) 

Agent disposition (Axiom 2): An agent holds two 
key elements of data a) the available server capacity bi, 
and b) the cost of replication or valuation (CoRk

i) of 
object Ok to the agent’s server i. There are three possible 
cases: 

1. DRP [π]: Each agent i holds the cost to replicate 
CoRk

i=ti associated with each object Ok, where as 
the available server capacity and everything else 
is public knowledge. 

2. DRP [σ]: Each agent i holds the available server 
capacity bi=ti, where as CoRk

i and everything 
else is public knowledge. 

3. DRP [π,σ]: Each agent i holds both the cost of 
replication and the server capacity {CoRk

i,bi} = 
ti, where as everything else is public knowledge. 

Remarks: Intuitively, if agents know the available 
server capacities of other agents, that gives them no 
advantage whatsoever. However, if they come about to 
know their CoRk

i then they can modify their valuations 
and alter the algorithmic output. Note that an agent can 
only calculate CoRk

i via the frequency of read and writes. 
Everything else such as the network topology, latency on 
communication lines, and even the server capacities can 
be public knowledge. Therefore, DRP[π] is the only 
natural choice. 

Description of valuation (CoRk
i): We can write 

CoRk
i as follows: 

Axiomatic Game Theoretical Mechanism 
 
Axiom 1 (Ingredients): A mechanism should have a) an algorithmic
output specification, and b) agents’ utility functions.  
 
Axiom 2 (Agent disposition): Every agent has a private value termed
as true data, everything else is public knowledge. This value along
with a valuation function should reveal the preferences of the agent. 
 
Axiom 3 (Truthful): The mechanism should have agents that project
their dominant strategies. 
 
Axiom 4 (Utilitarian): The mechanism’s objective function should be
to sum the agents’ valuations. 
 
Axiom 5 (Motivation): The mechanism should reward the agents with
a payment. These payments are made in accordance to a specified
function based on the algorithmic output. 
 
Axiom 6 (Algorithmic output): The mechanism’s algorithmic output
should be a function that aids the agents to execute their preferences.  
 
Figure 1: Axiomatic Game Theoretical Mechanism.
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which implies that if an agent replicates Ok (denoted in 
Equation 5 as k∈Xi

k=1), then the cost incurred due to 
reads is 0 = ri

kokc(i,NNi
k) since NNi

k = i. The cost incurred 
due to local writes (or updates) is equal to zero since the 
copy resides locally, but whenever Ok is updated 
anywhere in the network, agent i has to continuously 
update Ok’s contents locally as well. Therefore, the 
aggregate cost of writes is equivalent to wi

kok Σ∀(j∈Rk), i≠j 
c(Pk,j). On the other hand if an agent does not replicate Ok 
(denoted in Equation 5 as k ∈ Xi

k=0), then the cost 
incurred due to reads is equal to ri

kokc(i,NNi
k), and the 

cost incurred due to writes is equal to wi
kokc(i,Pk) since it 

only has to send the update to the primary server which 
then broadcasts the update based on Rk to the agents who 
have replicated the object.   

Remarks: Equation 5 (above) captures the dilemma 
faced by an agent i when considering replicating Ok. If i 
replicates Ok then it brings down the read cost to zero, but 
now it has to keep the contents of Ok up to date. If i does 
not replicate Ok, then it reduces the overhead of keeping 
the contents up to date, but now it has to redirect the read 
requests to the nearest neighborhood server which holds a 
copy of Ok.  

Truthful (Axiom 3): From Lemma 1, we know that 
truth-telling is a dominate strategy. From Axiom 2 
(above) we know that ti = CoRk

i. 
Utilitarian (Axiom 4): We proceed in two steps.  
1. Let y = {xi,o} and y’ = {xi,o’}. In the context of 

the data replication problem, the valuation of an 
agent is give as vi(x,ti) = ∑k∈xiCoRk

i. This means 
that when an agent i is asked to express its 
preference over two objects o and o’, it can do so 
by calculating the object impact factor, i.e., the 
agent expresses its preference as min {∑k∈yCoRk

i 
, ∑k∈y’CoRk

i }. 
2. A utilitarian mechanism is one that has an 

objective function that is the sum of all agents’ 
valuations, i.e., g(x,t) = ∑ivi(x,ti) = ∑i∑k∈xiCoRk

i. 
We can see that Axiom 4 (Step 2) represents the data 

replication problem in its exact form as described in 
Equation 4. For a minute, let us ponder over both the 
representations. Equation 4 expresses the fact that in the 
data replication problem we have to find object 
allocations such that the object transfer cost (OTC) is 
minimized. Step 2 (in conjunction with Step 1) of Axiom 
4 does exactly the same, i.e., find the object allocations xi 
such that the total cost of replication CoRk

i is minimized 
Motivation (Axiom 5): The motivational payment 

for each agent i is defined as pi(t) = ∑k∈xi(t)mini’≠iti’= 

∑k∈xi(t)mini’≠iCoRk
i’, i.e., for each object allocated to it, the 

agent is given payment equal to the overall second best 
cost of replication of any object to any server (a very 
strong incentive). The payment procedure also answers 
one of the pending questions of Axiom 1 (utility 
function), i.e., ui = ∑k∈xi(t)mini’≠iti’+vi(ti,x). 

Remarks: This motivational payment is need by the 
agents to cover the cost of hosting the object onto their 
server. This payment also ensures that the agents do 
indeed report true data. We justify this payment by 
analyzing the following cases: 

1. Over projection: Agents in anticipation of more 
revenue over project their true data, but this does 
not help, as the agent who is allocated the object 
gets the second best payment. 

2. Under projection: If every agent under projects 
their true data, that does not help either as the 
revenue would drop in proportion to the under 
projection.  

3. Random projection: In this case the deserving 
agent would be at loss. Therefore, it is unlikely 
that a selfish agent would agree to project 
random true data. 

For more details on the optimality of such type of 
payment procedure see  [27]. In that paper, the authors 
have identified many such scenarios, but all fail to exploit 
this payment option. 

Algorithmic output (Axiom 6): We now define an 
algorithm that actually aids the agents to execute their 
preferences. In the context of the data replication 
problem, the mechanism after gathering the true data from 
every agent, decides which object to be allocated to 
which agent. The mechanism is described in Figure 2. 
This also answers the pending question of Axiom 1 
(algorithmic output function). Before we describe the 
algorithm, the data replication problem in the axiomatic 
game theoretical mechanism form is given as follows: 

Find all the feasible outputs of the mechanism which 
are all the partitions x={x1…xM}, where x is the entire 
replica allocation of the distributed system, and xi is the 
set of replicas allocated to server i.  

1. The objective function of the mechanism is g(x,t) 
= ∑ivi(x,ti). 

2. Agent i’s valuation is vi(x,ti) = ∑k∈xiti. 
3. Agent i’s true data is ti = CoRk

i.  
4. Agent i’s payment is pi(t) = ∑k∈xi(t)mini’≠iti’. 
5. Agent i’s utility function is ui = pi + vi(ti,x). 
Remarks: In the above problem formulation we did 

not mention that: 1) the agent i’s valuation is actually to 
obtain the object impact (minimum cost of replication), 2) 
the agent i’s server capacity constraint, and 3) the primary 
object constraints (both 2 and 3 are captured by xi), but it 
is to be understood that they are indirectly embedded into 
the problem formulation. 



 

                                                                        
Description of Algorithm: We maintain a list Li at 

each server. This list contains all the objects that can be 
replicated by agent i onto server Si. We can obtain this list 
by examining the two constraints of the DRP. List Li 
would contain all the objects that have their size less then 
the total available space bi. Moreover, if server Si is the 
primary host of some object k’, then k’ should not be in 
Li. We also maintain a list LS containing all servers that 
can replicate an object, i.e., Si∈LS if Li≠NULL. The 
algorithm works iteratively. In each step the mechanism 
asks all the agents to send their preferences (first 
PARFOR loop). Each agent i recursively calculates the 
true data of every object in list Li. Each agent then reports 
the dominant true data (line 08) to the mechanism. The 
mechanism receives all the corresponding entries, and 
then chooses the best dominant true data. This is 
broadcasted to all the agents, so that they can update their 
nearest neighbor table NNk

i, which is shown in Line 20 
(NNi

OMAX). The object is replicated and payments made to 
the agent. The mechanism progresses forward till there 
are no more agents interested in acquiring any data for 
replication.   

The above discussion allows us to deduce the 
following two results about the mechanism. 

Theorem 4: In the worst case AGT-RAM takes 
O(MN2) time. 

Proof: The worst case scenario is when each server 
has sufficient capacity to store all objects. In that case, the 
while loop (Line 01) performs MN iterations. The time 
complexity for each iteration is governed by the two 
PARFOR loops (Lines 03 and 19). The first loop uses at 
most N iterations, while the send loop performs the 
update in constant time. Hence, we conclude that the 
worst case running time of the mechanism is O(MN2).    ■ 

Theorem 5: AGT-RAM is a truthful mechanism. 
Proof:  The algorithmic output is an allocation that 

minimizes the utilitarian function ∑ivi(x,ti). Let h-I be 
∑kmini’≠iti’, then ∑i’≠ivi’(x,ti’)+h-i is exactly the 
mechanism’s payment function. It is also evident that 
truth-telling is the only dominate strategy. For simplicity 
let us consider the case for only one object. The argument 
for k>1 is similar. Let d denote the declarations and t their 
real types. Consider the case where di≠ti (i=1,2). If di>ti, 
then for d3-i such that di>d3-i>ti, the utility for agent i is ti-
di<0, which should have been zero in the case of truth-
telling.                                                                               ■ 

 
5. Experiments, Results and Discussions 

 
We performed experiments on a 440MHz Ultra 10 

machine with 512MB memory. The experimental 
evaluations were targeted to benchmark the placement 

Axiomatic Game Theoretical Replica Allocation Mechanism (AGT-RAM) 

Initialize: 
LS, Li, Tk

i, Mech, MT 

01 WHILE LS ≠ NULL DO 
02     OMAX = NULL; MT = NULL; Pi = NULL; 
03            PARFOR each Si∈LS DO 
04                           FOR each Ok∈ Li DO 
05                                     Tk

i = compute (tk
i);  /*compute the valuation corresponding to the desired object*/ 

06                           ENDFOR 
07                    tk

i = argmaxk(Tk
i);  

08                    SEND tk
i to Mech; RECEIVE at Mech tk

i in MT; 
09             ENDPARFOR 
10   OMAX = argmaxk(MT);    /*Choose the global dominate valuation*/ 
11   DELETE k from MT;  
12   Pi = argmaxk(MT);               /*Calculate the payment*/ 
13   BROADCAST OMAX;  
14   SEND Pi to Si;         /*Send payments to the agent who is allocate the object OMAX*/ 
15   Replicate OOMAX;  
16   bi=bi - ok;                           /*Update capacity*/ 
17   Li = Li - Ok;                    /*Update the list*/ 
18   IF Li = NULL THEN SEND info to Mech to update LS = LS - Si;        /*Update mechanism players*/ 
19           PARFOR each Si∈LS DO  
20                  Update NNi

OMAX                   /*Update the nearest neighbor list*/ 
21           ENDPARFOR                  /*Get ready for the next round*/ 
22 ENDWHILE 

 
Figure 2: Pseudo-Code for Axiomatic Game Theoretical Replica Allocation Mechanism (AGT-RAM). 

 



 

policies. AGT-RAM was implemented using Ada and 
Ada GNAT’s distributed systems annex GLADE  [25].  

To establish diversity in our experimental setups, the 
network connectively was changed considerably. We 
used GT-ITM  [2] for the network topologies, the 
procedure for which is as follows: A random graph 
G(M,P(edge = p)) with 0 ≤ p ≤ 1 contains all graphs with 
nodes (servers) M in which the edges are chosen 
independently and with a probability p. The pure random 
topologies were obtained with p = {0.4, 0.5, 0.6, 0.7, 
0.8}. In each of these topologies the distance between two 
serves was reversed mapped to the communication cost of 
transmitting a 1kB of data and the latency on a link was 
assumed to be 2.8×10-8 m/s (copper wire).  

To evaluate the replica allocation methods under 
realistic traffic patterns, we used the access logs collected 
at the Soccer World Cup 1998 web server  [2]. Each 
experimental setup was evaluated thirteen times, i.e., only 
the Friday (24 hours) logs from May 1, 1998 to July 24, 
1998. (The Friday logs have the heaviest traffic compared 
to any other day of the week.) To process the logs, we 
wrote a script that returned: only those objects which 
were present in all the logs (25,000 in our case), the total 
number of requests from a particular client for an object, 
the average and the variance of the object size. From this 
log we chose the top five hundred clients (maximum 
experimental setup). A random mapping was then 
performed of the clients to the nodes of the topologies. 
Note that this mapping is not 1-1, rather 1-M. This gave 
us enough skewed workload to mimic real world 
scenarios. It is also worthwhile to mention that the total 
amount of requests entertained for each problem instance 
was in the range of 1-2 million. The primary replicas’ 
original server was mimicked by choosing random 
locations. The capacities of the servers C% were 
generated randomly with range from Total Primary 
Object Sizes/2 to 1.5×Total Primary Object Sizes. The 
variance in the object size collected from the access logs 
helped to instill enough miscellanies to benchmark object 
updates. The updates were randomly pushed onto 
different servers, and the total system update load was 
measured in terms of the percentage update requests U% 
compared that to the initial network with no updates. 

Since the access logs are of the year 1998, we first 
use Inet  [5] topology generator to estimate the number of 
nodes in the network. This number came up to be 3718, 
i.e., there were 3718 AS-level nodes in the Internet at the 
time when the Soccer World Cup 1998 was being played. 
Therefore, we set the upper bound on the number of 
servers in the system at M = 3718.  

Comparative algorithms: For comparison, we 
selected five various types of replica placement 
techniques. To provide a fair comparison, the 
assumptions and system parameters were kept the same in 
all the approaches. For fine-grained replication, the 

algorithms proposed in  [15],  [16],  [19],  [21], and  [26] are 
the only ones that address the problem domain similar to 
ours. We select from  [26] the greedy approach (Greedy) 
for comparison because it is shown to be the best 
compared with 4 other approaches (including the 
proposed technique in  [19]); thus, we indirectly compare 
with 4 additional approaches as well. Algorithms reported 
in  [16] (the efficient branch and bound based technique 
Aε-Star),  [15] (Dutch (DA) and English auctions (EA)) 
and  [21] (Genetic based algorithm (GRA)) are also 
among the chosen techniques for comparisons. 
Unfortunately, space limitations do no permit us to 
provide the detailed workings of these algorithms; 
however, we encourage the readers to obtain an insight on 
the comparative techniques from the referenced papers.  

Performance metric: The solution quality was 
measured in terms of network communication cost (OTC 
percentage) that was saved under the replica scheme 
found by the replica allocation methods, compared to the 
initial one, i.e., when only primary copies exists.  

Comparative analysis: We observe the effects of 
increase in storage capacity. An increase in the storage 
capacity means that a large number of objects can be 
replicated. Replicating an object that is already 
extensively replicated, is unlikely to result in significant 
traffic savings as only a small portion of the servers will 
be affected overall. Moreover, since objects are not 
equally read intensive, increase in the storage capacity 
would have a great impact at the beginning (initial 
increase in capacity), but has little effect after a certain 
point, where the most beneficial ones are already 
replicated. This is observable in Figure 3, which shows 
the performance of the algorithms. GRA once again 
performed the worst. The gap between all other 
approaches was reduced to within 15% of each other. 
AGT-RAM and Greedy showed an immediate initial 
increase (the point after which further replicating objects 
is inefficient) in its OTC savings, but afterward showed a 
near constant performance. GRA although performed the 
worst, but observably gained the most OTC savings 
(49%) followed by Greedy with 44%. Further 
experiments with various update ratios (5%, 10%, and 
20%) showed similar plot trends. It is also noteworthy 
(plots not shown in this paper due to space restrictions) 
that the increase in capacity from 10% to 18%, resulted in 
4 times (on average) more replicas for all the algorithms.  

Next, we observe the effects of increase in the read 
and write frequencies. Since these two parameters are 
complementary to each other, we describe them together. 
To observe the system utilization with varying read/write 
frequencies, we kept the number of servers and objects 
constant. Increase in the number of reads in the system 
would mean that there is a need to replicate as many 
object as possible (closer to the users). However, the 
increase in the number of updates in the system requires



 

 
the replicas be placed as close as to the primary server as 
possible (to reduce the update broadcast). This 
phenomenon is also interrelated with the system capacity, 
as the update ratio sets an upper bound on the possible 
traffic reduction through replication. Thus, if we consider 
a system with unlimited capacity, the “replicate 
everywhere anything” policy is strictly inadequate. The 
read and update parameters indeed help in drawing a line 
between good and marginal algorithms. The plot in 
Figure 4 shows the results of read/write ratio against the 
OTC savings. A clear classification can be made between 
the algorithms. AGT-RAM and Greedy incorporate the 

increase in the number of reads by replicating more 
objects and thus savings increased up to 88%, while GRA 
gained the least of the OTC savings of up to 42%. To 
understand why there is such a gap in the performance 
between the algorithms, we should recall that GRA 
specifically depends on the initial selection of gene 
population (for details see  [21]). Moreover, GRA 
maintains a localized network perception. Increase in 
updates result in objects having decreased local 
significance (unless the vicinity is in close proximity to 
the primary location). On the other hand, AGT-RAM, 
DA, EA, Aε-Star and Greedy never tend to deviate from 
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Figure 3: OTC savings versus server capacity. Figure 4: OTC savings versus read/write ratio. 
 
 
 

Table 1: Running time of the replica placement methods in seconds [C=45%, R/W=0.85]. 
Problem Size Greedy GRA Aε-Star AGT-RAM DA EA Improvement brought by AGT-RAM (%)

M=2500, N=15,000 310.14 491.00 399.63 186.12 345.14 356.44 39.98     [=((310.14-186.12)/310.14)×100] 
M=2500, N=20,000 330.75 563.25 442.66 202.85 354.94 368.94 38.67     [=((330.75-202.85)/330.75)×100] 
M=2500, N=25,000 357.74 570.02 465.52 242.23 368.43 394.57 32.29     [=((357.74-242.23)/357.74)×100] 
M=3000, N=15,000 452.22 671.68 494.60 285.43 475.60 489.76 36.88     [=((452.22-285.43)/452.22)×100] 
M=3000, N=20,000 467.65 726.75 498.66 286.75 492.69 531.45 38.68     [=((467.65-286.75)/467.65)×100] 
M=3000, N=25,000 469.86 791.26 537.56 305.64 501.51 543.08 34.95     [=((469.86-305.64)/469.86)×100] 
M=3718, N=15,000 613.27 883.71 753.87 370.43 668.25 678.61 39.59     [=((613.27-370.43)/613.27)×100] 
M=3718, N=20,000 630.39 904.20 774.31 398.87 694.68 702.15 36.72     [=((630.39-398.87)/630.39)×100] 
M=3718, N=25,000 646.98 932.38 882.43 405.76 715.02 745.92 37.28     [=((646.98-405.76)/646.98)×100] 

 
 

 
Table 2: Average OTC (%) savings under some randomly chosen problem instances. 

Problem Size Greedy GRA Aε-Star AGT-RAM DA EA Improvement brought by AGT-RAM (%)
M=100, N=1000 [C=20%,R/W=0.75] 71.46 85.77 86.28 88.12 73.14 77.56 2.08     [=((88.12-86.28)/88.12)×100] 
M=200, N=2000 [C=20%, R/W=0.80] 84.29 78.30 79.02 84.95 73.56 76.15 0.78     [=((84.95-84.29)/84.95)×100] 
M=500, N=3000 [C=25%, R/W=0.95] 68.50 70.97 67.53 72.15 70.15 68.14 1.64     [=((72.15-70.97)/72.15)×100] 

M=1000, N=5000 [C=35%, R/W=0.95] 88.09 67.56 78.24 88.21 70.86 66.80 0.14     [=((88.21-88.09)/88.21)×100] 
M=1500, N=10,000 [C=25%, R/W=0.75] 89.34 52.93 76.11 90.25 62.48 74.13 1.01     [=((90.25-89.34)/90.25)×100] 
M=2000, N=15,000 [C=30%, R/W=0.65] 67.93 51.02 52.42 73.25 66.19 63.84 7.26     [=((73.25-67.93)/73.25)×100] 
M=2500, N=15,000 [C=25%, R/W=0.85] 77.35 71.75 73.59 83.21 70.36 72.01 7.04     [=((83.21-77.35)/83.21)×100] 
M=3000, N=20,000 [C=25%, R/W=0.65] 76.22 65.89 73.04 83.01 72.16 70.53 8.18     [=((83.01-76.22)/83.01)×100] 
M=3500, N=25,000 [C=35%, R/W=0.50] 66.04 59.04 67.01 72.15 62.20 63.57 7.12     [=((72.15-67.01)/72.15)×100] 
M=3718, N=25,000 [C=10%, R/W=0.40] 76.34 63.19 76.02 77.12 75.91 76.10 1.01     [=((77.12-76.34)/77.12)×100] 

 



 

their global (or social) view of the problem. 
Lastly, we compare the termination time of the 

algorithms. Various problem instances were recorded 
with C=45% and R/W=0.85. The entries in Table 1 made 
bold represent the fastest time recorded over the problem 
instance. It is observable that AGT-RAM terminated 
faster than all the other techniques, followed by Greedy, 
DA, EA, Aε-Star, and GRA.   

Table 2 shows the quality of the solution in terms of 
OTC percentage for 10 problem instances (randomly 
chosen), each being a combination of various numbers of 
server and objects, with varying storage capacity and 
update ratio. For each row, the best result is indicated in 
bold. The proposed AGT-RAM steals the show in the 
context of solution quality, but Greedy and Aε-Star do 
indeed give a good competition. 

In summary, based on the solution quality alone, the 
replica allocation methods can be classified into four 
categories: 1) High performance: AGT-RAM; 2) 
Medium-High performance: Greedy; 3) Medium 
performance: Aε-Star and DA; 5) Low performance: EA 
and GRA. Considering the execution time, AGT-RAM 
and Greedy did extremely well, followed by DA, EA, Aε-
Star and GRA. 

 
6. Related Work 

 
The data replication problem is an extension of the 

classical file allocation problem (FAP). Chu  [6] studied 
the file allocation problem with respect to multiple files in 
a multiprocessor system. Casey  [3] extended this work by 
distinguishing between updates and read file requests. 
Eswaran  [8] proved that Casey’s formulation was NP-
complete. In  [21] Mahmoud et al. provide an iterative 
approach that achieves good solution quality when 
solving the FAP for infinite server capacities.  

Recently, game theory has emerged as a popular tool 
to tackle optimization problems especially in the field of 
distributed computing. However, in the context of data 
replication it has not received much attention. We are 
aware of only three major works which directly or 
indirectly deal with the data replication problem using 
game theoretical techniques. The first work  [8] is mainly 
on caching and uses an empirical model to derive Nash 
equilibrium. The second work  [17] focuses on mechanism 
design issues and derives an incentive compatible auction 
for replicating data on the Web. The third work  [18] deals 
with identifying Nash strategies derived from synthetic 
utility functions. Our work differs from all the game 
theoretical techniques in: 1) identifying a non-cooperative 
non-priced based replica allocation method to tackle the 
data replication problem, 2) using game theoretical 
techniques to study an environment where the agents 
behave in a self-interested manner, and 3) deriving pure 
Nash equilibrium and pure strategies for the agents.   

Readers are encouraged to see  [20] for a 
comprehensive survey on the conventional replica 
placement techniques.  

 
7. Conclusions 
 

This paper proposed a semi-distributed axiomatic 
game theoretical replica allocation mechanism (AGT-
RAM) for object based data replication in large 
distributed computing systems such as the Internet. AGT-
RAM is a protocol for automatic replication and 
migration of objects in response to demand changes. It 
aims to place objects in the proximity of a majority of 
requests while ensuring that no hosts become overloaded. 

The infrastructure of AGT-RAM was designed such 
that, each server was required to present a list of data 
objects that if replicated onto that server would bring the 
communication cost to its minimum. These lists were 
reviewed at the central decision body which gave the final 
decision as to what object are to be replicated onto what 
servers. This semi-distributed infrastructure takes away 
all the heavy processing from the central decision making 
body and gives it to the individual servers. For each 
object, the central body is only required to make a binary 
decision: (0) not to replicate or (1) to replicate.  

To compliment our theoretical results, we compared 
AGT-RAM with five conventional replica allocation 
methods namely: (1) branch and bound, (2) greedy, (3) 
genetic, (4) English, and (5) Dutch auctions. The 
experimental setups were designed in such a fashion that 
they resembled real world scenarios. We employed GT-
ITM and Inet to gather various Internet topologies and 
used the traffic logs collected at the Soccer World Cup 
1998 website for mimicking user access requests. The 
experimental study revealed that the proposed AGT-RAM 
technique improved the performance relative to other 
conventional methods in four ways. First, the number of 
replicas in a system was controlled to reflect the ratio of 
read versus write access. To maintain concurrency 
control, when an object is updated, all of its replicas need 
to be updated simultaneously. If the write access rate is 
high, there should be few replicas to reduce the update 
overhead. If the read access rate is overwhelming, there 
should be a high number of replicas to satisfy local 
accesses. Second, performance was improved by 
replicating objects to the servers based on locality of 
reference. This increases the probability that requests can 
be satisfied either locally or within a desirable amount of 
time from a neighboring server. Third, replica allocations 
were made in a fast algorithmic turn-around time. Fourth, 
the complexity of the data replication problem was 
decreased by multifold. AGT-RAM limits the complexity 
by partitioning the complex global problem of replica 
allocation, into a set of simple independent sub problems. 
This approach is well suited to the large distributed 



 

computing systems that are composed of autonomous 
agents which do not necessarily cooperate to improve the 
system wide goals. All the above improvements were 
achieved by a simple, semi-distributed, and autonomous 
AGT-RAM. 

As future work, we would extend the semi-
distributed model to regional autonomous, self-governed 
and self-repairing mechanisms. That is, the current system 
model would be broadened to incorporate regional or 
hierarchical mechanisms. This would enable the system to 
be less vulnerable to the failures of a single mechanism, 
and in turn would open the realms of devising 
hierarchical games, where in each level either a 
cooperative or non-cooperative game could be played to 
replicate data objects.   
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