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Abstract— Modern CPUs operate at GHz frequencies, but the
latencies of memory accesses are still relatively large, in the
order of hundreds of cycles. Deeper cache hierarchies with
larger cache sizes can mask these latencies for codes with
good data locality and reuse, such as structured dense matrix
computations. However, cache hierarchies do not necessarily
benefit sparse scientific computing codes, which tend to have
limited data locality and reuse. We therefore propose a new
memory architecture with a Load Miss Predictor (LMP), which
includes a data bypass cache and a predictor table, to reduce
access latencies by determining whether a load should bypass the
main cache hierarchy and issue an early load to main memory.
Our architecture uses the L2 (and lower caches) as a victim
cache for data removed from our bypass cache. We use cycle-
accurate simulations, with SimpleScalar and Wattch to show
that our LMP improves the performance of sparse codes, our
application domain of interest, on average by 14%, with a 13.6%
increase in power. When the LMP is used with dynamic voltage
and frequency scaling (DVFS), performance can be improved by
8.7% with system power savings of 7.3% and energy reduction
of 17.3% at 1800MHz relative to the base system at 2000MHz.
Alternatively our LMP can be used to improve the performance
of SPEC benchmarks by an average of 2.9% at the cost of 7.1%
increase in average power.

I. INTRODUCTION

Modern processors operate in the Gigahertz frequency

range, are highly pipelined, with several levels of caches, and

have the ability to issue multiple instructions in the same

cycle. Such designs benefit scientific computing codes by

enabling faster floating point computation rates, but only when

there is data locality and reuse. However, in many sparse

scientific codes representing scalable modeling and simulation

applications [1], [2], the latency of memory accesses [3]

presents a serious performance bottleneck. Such codes have

limited data locality and reuse, and typically do not benefit

from deep cache hierarchies and high clock frequencies. In

this paper, we develop a unique memory architecture with a

Load Miss Predictor (LMP) for improving the performance of

such sparse applications by reducing effective load latencies.

We also demonstrate how such an LMP can be designed

to benefit sparse application without adversely impacting the

performance of applications with significant data reuse and

locality. Finally, we show how our LMP can be combined

with Dynamic Voltage and Frequency Scaling (DVFS) [4]

to reduce power while improving the performance of sparse

scientific applications yielding significant reductions in energy

consumption.

A large variety of scientific computing codes operate on

either dense or sparse matrices [5]. An N ×N dense matrix,

stored in a traditional two dimensional data structure, has

N
2 nonzero elements. On the other hand, an N × N sparse

matrix typically has only cN nonzero elements, where c is

a small constant in the range of 2 − 20, and N can be on

the order of 10
9. In such matrices, only nonzero elements are

stored (with their corresponding index positions) in several

one-dimensional arrays whose elements are typically accessed

consecutively. Such sparse schemes lead to scalable formu-

lations for many modeling and simulation applications [1],

where large matrix sizes are required to capture the details

occurring at micro-scale and calculate their effect on macro-

scale events. Problem sizes are limited only by the available

computational resources.

Multiprocessor systems are typically used to solve larger

and more refined models. This in turn translates to a scaling

of problem size with the number of processors; the single

processor workload is selected to be the largest problem size

that can fit in physical memory. This allows better efficiency

to be maintained upon scaling to multiple processors where

network latencies can dominate. Consequently, optimizing

single processor performance is of considerable significance

in high performance scientific computing.

Dense matrix operations, such as those in LINPACK [6],

inherently have higher levels of data-locality and data-reuse,

resulting in a relatively large-number of floating-point oper-

ations that can be performed per memory-access [7]. Such

codes, for example in ATLAS [7], have optimized data access

and reuse patterns to utilize deep cache hierarchies, multiple

data paths and floating-point units, and high clock frequencies

to achieve near peak execution rates [6]. However, sparse

computations differ intrinsically from dense computations in

these respects as discussed in Section II. As a consequence,

they utilize only a fraction of the computing power of modern

microprocessors despite sophisticated attempts at performance

tuning [2], [8].

Technology scaling for microprocessor design has resulted

in more and faster transistors on a chip. Thus, performance has

increased, but at the cost of increasing chip power densities to
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the point where power is the real limiter for future scaling [9].

As chips approach their packaging thermal limits and cooling

costs become prohibitive, power-aware design is starting to

receive considerable attention in the high performance com-

puting community [10], [11]. Sparse computations present

interesting opportunities for power-aware high performance

scientific computing [12] because, although they represent

scalable formulations, they can achieve only a fraction of

peak performance (despite extensive tuning). We conjecture

that both performance and power improvements are possible

by considering the co-evolution of architectural optimizations

and tuned sparse matrix computations.

The remainder of this paper is organized as follows. Sec-

tion II contains a brief overview of sparse applications and

codes. Sections III, IV and V contain our main contributions.

We develop our LMP architecture and discuss its implemen-

tation in Section III; in the last part, i.e. in Section VI, we

discuss similarities and differences with earlier approaches.

We present our methodology and empirical results respectively

in Sections IV and V. We end with concluding remarks in

Section VII.

II. SPARSE SCIENTIFIC COMPUTING APPLICATIONS

Computational modeling and simulation is now widely

used in research and industry to study problems in science

and engineering and in industrial manufacturing and design.

Examples of modeling applications include astrophysics [13],

climate modeling [14], fluid flows [15], and many others.

Many of these applications involve a model described by

nonlinear Partial Differential Equations (PDEs) discretized in

space and potentially evolving over time. These are solved

using fully implicit Newton-Krylov schemes as well as semi-

implicit approaches [5] which offer the advantage of faster

convergence and numerical stability. The underlying com-

putations are primarily sparse, i.e., involving large, often

unstructured matrices with relatively few nonzero elements.

A key feature common to these applications is that a given

simulation includes many linear solutions involving sparse

matrices, and the application time is dominated by the time to

compute the sparse linear solution. In view of the important

role of sparse applications, considerable research in scientific

computing has been expended to improve the performance of

sparse matrix operations [2], [8].

In this paper we consider the following representative sparse

codes to evaluate our LMP. We use the NAS benchmarks MG

and CG with a “W” type workload [16]. Both benchmarks use

a matrix vector multiplication routine that accounts for more

than 90% of their execution time. Therefore, in our tests we

additionally use a sparse matrix vector multiplication kernel

from Sparsity (SMV) [2]. In our experiments, we consider

two versions of SMV, an unoptimized form with no blocking

(SMV-U) typical of many scientific codes and an optimized

form with 2x1 blocking and loop unrolling (SMV-O) which

decreases loads at the expense of a slight increase in floating

point operations [2]. We report on the performance of SMV-

U and SMV-O on the following four representative sparse

matrices from structured mechanics: bcsstk31, fdm2,

qa8fm, msc23052. The matrix properties including the

name, dimension (×10
3), number of nonzeros (×10

6) and the

percentage of nonzeroes relative to a dense matrix of the same

dimension are: bcsstk31, 35.6, 1.2, .09%; fdm2, 32.1,.16,

.01%; qa8fm, 66.1, 1.6, .03%; and msc23052, 23.0, 1.1,

.21%. These matrices had been reordered using the Reverse

Cuthill McKee [17] scheme to improve the locality of access in

the source vector [12] as is commonly done for tuned scientific

codes.

III. DESIGNING A LMP

Fig. 1. LMP design.

Modern CPUs have deep cache hierarchies to mask the

large latencies of accessing the main memory for codes with

data reuse. However, when there is poor data reuse, as is the

case in many sparse scientific codes, these elaborate cache

systems actually add to the access latency as the caches

are inevitably and unproductively accessed before each main

memory access. As an example, for level 1 cache, level 2

cache, and main memory latencies of 1, 19 and 122 cycles

respectively, bypassing the L2 cache on a miss could save 16%

of the total latency. This effect will be further magnified with

deeper cache hierarchies, especially with NUCA [18] caches

where the longest bank miss latency can be significantly

greater than the average cache latency. The rest of this section

presents the design and implementation of our Load Miss

Predictor to decrease penalties of such inevitable load misses.

A. LMP design and operation

Figure 1 shows our proposed design, where the 32KB level-

1 data cache (L1) is split into two portions, labeled regular and

bypass. The regular portion is a low latency, highly associative

cache typical of modern processors, 16KB in size, with a 32

byte long cache line. This portion of the L1 data cache has a

direct connection to the level-2 (L2) cache. The bypass portion

of the data L1 is also 16KB, and is directly connected to

both the L2 cache and to the memory controller. We call it
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the Bypass L1 cache. Data is provided to the bypass cache

from the main memory directly, and the L2 cache serves as

its victim cache. The Bypass L1 cache has a cache line width

of 128 bytes, which is the cache-line width of the L2 cache

as well as the amount of data transferred from the memory

in one request. The cache-line width is based on the 128-bit

wide memory bus and SDRAM transfer protocol [19], [20].

A prediction mechanism is added to this structure (the LMP

Table in Figure 1). A detailed discussion and experimental

justification for these design choices is presented in Section V.

When a load instruction is executed, its data request is sent

to both the Regular L1 and Bypass L1 caches. When both

caches miss the LMP table is consulted. The PC address of

the load instruction is looked up in the LMP table much as

in branch prediction technology. The LMP then determines

whether the load should bypass (predicted miss), or proceed

through the main cache hierarchy (predicted hit). When there

is insufficient history for prediction, such as in newly encoun-

tered loads, they are directed through the main cache hierarchy,

i.e., are predicted hits. Our predictor tracks only the history

of loads that miss in both Regular L1 and Bypass L1.

On predicted hits the load proceeds through the normal

cache hierarchy. If the data is not found, the predictor encodes

an incorrect prediction (predicted hit, cache miss) in the table.

Otherwise, the predictor encodes a correct prediction in the

table (predicted hit, cache hit). As long as the data is found

anywhere in the cache hierarchy it will not be brought into

the Bypass L1.

When data requested by a load instruction at a particular PC

address is repeatedly not found in the regular cache hierarchy,

that load instruction will be marked as suitable for cache

bypassing (predicted miss). On a predicted miss, a parallel

request for an early load will be issued to the main memory

by the Bypass L1 and to the L2 cache by the Regular L1. If the

L2 cache responds with data before the main memory does,

the memory access will be canceled, the load will be marked

as (predicted miss, cache hit), and the data will be stored in

the Regular L1 cache. Any data returned by the main memory

as a result of the early load will be ignored. On the other hand,

if the L2 does not respond with data, the main memory read

access will be already underway, thus reducing the memory

latency. The corresponding data will be stored in the Bypass

L1 cache, and the load will be marked as (predicted miss,

cache miss). Both portions of L1 cache are checked for data

on a store instruction to ensure cache consistency. As a result,

a store will always proceed through the path used for loading

the corresponding address.

Additional modifications to the processor are required to

add the LMP table and bypass cache. Each load instruction

has to be accompanied by either the complete PC address or a

unique identifier in order to correctly map it into the predictor

table. The bus connecting the L1 cache to L2 cache requires

additional wires to communicate hits and misses to the load

predictor. An additional wire is also required to control the tag

and data look-up schemes in the cache hierarchy. In addition

we need a mechanism such that during bypassed loads only

cache tags are accessed, and data arrays are accessed only

upon a hit. Finally, an additional bus is required to connect

the Bypass L1 to the main memory controller to initiate an

early load.

Ideally, the prediction mechanism should be 100% accurate.

However, in practice the design of the LMP must reflect a

trade-off between accuracy, speed and hardware complexity.

We therefore utilize a small 2-level predictor (L2H8) tracking

1024 independent load instructions, with an 8 bit hit/miss

history per instruction (requiring 256 entries in the second

level table). We believe this configuration offers a good trade-

off between accuracy and hardware costs.

An important question is what to do with data displaced

from the Bypass L1 cache. We considered many replacement

policies for data displaced from Bypass L1 and chose a policy,

where all cache lines that are displaced from the Bypass L1 are

written to the L2 cache whether clean or dirty (“all replaced

victim”). Other possible policies are to write displaced dirty

data directly to main memory (“no victim”), or to place

only dirty displaced cache lines in the victim cache (“only

dirty victim”). LMP design tradeoffs are discussed further in

Section V.

We expect that our LMP design will have no negative

impacts on clock cycle time, because our modifications to the

CPU pipeline only require carrying additional bits, and thus

a wider instruction. Our LMP could possibly introduce a 1

cycle penalty to L1 cache misses followed by access to L2 or

main memory. However, we do not consider this penalty to be

significant given the long latencies of main memory access.

IV. METHODOLOGY

In this section, we describe our methodology for obtain-

ing cycle accurate performance and power numbers through

simulation.

We utilize SimpleScalar3.0d [21] and Wattch1.02d [22] with

modifications to model power consumption and performance

impacts of the LMP. Additionally, we developed an accurate

model for the power and performance of DRAM type main

memory by using data from Micron [19], [20] to simulate the

DDR2 DRAM memory behavior and power consumption at a

333MHz bus clock frequency.

We start with a base processor architecture (henceforth

referred to as B) that is similar to the processor and memory

subsystem in one node of a modern superscalar cluster. Table I

shows the configuration of our SimpleScalar processor. This is

representative of modern processors, in particular RISC type

processors like the PowerPC which are typically capable of

issuing 4 instructions per cycle.

We model our processor power consumption in 130

nanometer technology. We obtain the 130 nanometer tech-

nology numbers by scaling [23] the power numbers already

present in Wattch. We assumed a DVFS processor running

in the frequency range of 1300–2000MHz with Vdd between

1.07 – 1.5 Volts. The L1 cache latency is 1 cycle, L2 cache

latency is 19 cycles, and memory latency is based on Micron,

Inc. datasheets, and varies with CPU frequency [19], [20]. We
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-fetch:ifqsize 4 -cache:dl1 128:32:8:l

-fetch:mplat 3 -cache:dl1lat 1

-fetch:speed 1 -cache:dl2 1024:128:4:l

-bpred bimod -cache:dl2lat 19

-bpred:bimod 2048 -cache:il1 128:32:8:l

-decode:width 4 -cache:il1lat 1

-issue:width 4 -tlb:itlb 16:4096:4:l

-issue:inorder false -tlb:dtlb 32:4096:4:l

-issue:wrongpath true tlb:lat 30

-commit:width 4 -res:ialu 3

-ruu:size 32 -res:imult 3

-lsq:size 8 -res:memport 1

-res:fpalu 3 -res:fpmult 3

TABLE I

WATTCH CONFIGURATION FOR BASE SYSTEM

modified Wattch to accommodate the additional functionality

required by our architecture.

We use both PISA and Alpha configurations of Sim-

pleScalar to enable the study of a larger set of codes. We

use the Alpha configuration to evaluate the performance of

SPEC benchmarks and PISA for the NAS benchmarks and

sparse codes discussed in Section II. We ran all pre-compiled

benchmarks from SPEC [24], for which we had a compiler and

whose code ran on SimpleScalar. We also used SimPoints [25]

to reduce the execution time of these simulations. The NAS

benchmarks and SMV kernels were executed until completion,

after being fast-forwarded past the initialization stage.

V. EXPERIMENTAL RESULTS

In this section, we first discuss the LMP design trade-

offs, and their impacts on performance, power and energy

consumption for the SPEC 2000 and sparse benchmarks. We

then consider the impact on performance and power of using

our final LMP design on the SPEC 2000 benchmarks. We

next consider these metrics in greater detail for the sparse

codes described earlier in Section II. Unless otherwise stated,

we report values of time, power and energy for each code

relative to the base configuration B running at 2000MHz with

a 512KB L2 cache. Values at the base configuration B are set

to 1. Thus, for configurations with LMP (denoted as B+LMP),

values that are less than 1 indicate relative improvements while

values greater than 1 indicate degradations.

A. LMP design trade-offs

Key trade-offs during the LMP design stage included the

sizes of the Regular L1 and Bypass L1 caches, the L2 cache

size, the predictor mechanism type and size, and the Bypass

L1 data replacement policy.

To address the Bypass L1 data replacement policy trade-offs

we created an “ideal” predictor. Our “ideal” predictor was a

2-level predictor, with 1024 16-bit hit/miss history entries in

the first table. The second table consisted of 65536 bimodal

counters. Instead of splitting the 32KB L1 data cache of the

base configuration in two 16KB halves (half for the Bypass

L1 and half for the Regular L1), in our “ideal” LMP predictor

we made both parts 32KB in size. As mentioned in Section III

we considered three options for replaced data movement: “no

victim”, “only dirty victim” and “all dirty victim”. The “all

replaced victim” policy showed no performance degradations

for SPEC 2000 benchmarks, as shown in Figure 2, and was

chosen as the data replacement policy for our LMP design.

The “ideal” predictor described earlier has a significant

hardware footprint, large power consumption, and it would

add a significant delay to the memory subsystem. We consid-

ered the performance of simpler predictor designs, including

the “bimodal” predictor consisting of a 2048-entry table of

bimodal counter, and the “L2H8” predictor. Our experiments

indicate that both designs consume less power than the “ideal”

predictor (figures omitted for brevity). Their performance

is compared against the “ideal” predictor in Figure 3. The

“L2H8” predictor closely follows the performance of the

“ideal” predictor at much lower design complexity and it is

thus our choice for the LMP.

Changing the Bypass L1 and Regular L1 cache sizes from

32KB to 16KB, so that the total number of data cache bytes

(Bypass L1 + Regular L1) is equal to the base configuration,

does not have a significant impact on the average performance

of the SPEC 2000 benchmarks. The geometric mean of perfor-

mance improvements, as shown in Figure 4, ranged between

2.5% to 4% for 32-1 (32KB regular, 1KB bypass) and 32-

32 (32KB regular, 32KB bypass) cache configurations respec-

tively, with the smaller cache configurations consuming less

power and energy. For example, the 16-16 cache configuration

consumes 7% less power and 5% less energy, than the 32-32

configuration, relative to a base configuration (figure omitted

for space).

The observed performance fluctuations for the mgrid,

crafty and gzip benchmarks were investigated further. The

crafty and gzip benchmarks are cache bound codes, and de-

creasing the amount of Regular L1 available resulted in more

L1 cache misses. The SPEC mgrid code follows the same

algorithm as the NAS MG benchmark, which is investigated

together with our sparse codes in the following paragraphs.

The change in the LMP cache configuration has a varied

impact on performance of our selected sparse codes. Results

in Figure 5 (top subfigure) show that NAS MG is very

sensitive to the cache size of the Bypass L1 cache. As the size

decreases from 32KB to 16KB the performance improvement

reduces from 18.3% to 13.1%. Further reduction of Bypass

L1 cache size to 4KB and 1KB results in significantly smaller

performance gains. The CG and SMV kernels are not as

affected by the Bypass L1 cache size changes (less than 2%).

The average power consumption for the sparse codes is shown

in Figure 5 (bottom subfigure). The 32-32 cache configuration

consumes nearly 5% more power on average than the 16-16

configuration, and 2% more energy on average, thus making

the 16-16 configuration a good compromise for both SPEC

and sparse applications (figures omitted to save space).

Figure 6 shows the impacts of our final LMP configuration
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Fig. 2. Impact of LMP bypass cache replacement policy on SPEC2000 performance with “Ideal” LMP. “No victim” (left bar), “Only dirty victim” (middle)
and “All replaced victim” (right). Values are relative to base configuration B at 2000MHz set to 1.

Fig. 3. Impact of “ideal” (left bar), “bimodal” (middle bar) and “2 level 8 bit (L2H8)”(right bar) predictors on execution time of SPEC 2000 benchmark
suite at 2000MHz. Values are relative to base configuration B at 2000MHz set to 1.

(“L2H8” predictor, 16-16 cache configuration, “all replaced

victim” replacement policy) on performance (left), power

(middle) and energy (right) consumption of SPEC 2000 bench-

marks. Relative values are shown for (B + LMP) compared

to base B at 2000MHz. The addition of the LMP increases

the performance by an average of 2.9%. Mgrid, which is

representative our sparse matrix application domain, benefits

at significantly higher level of 12%.

The gains in performance come at the expense of increased

hardware cost and thus system power. Observe that adding the

LMP results in a 5% increase in energy and 7% increase in

average system power. These increases are the result of more

frequent memory accesses, the addition of the 16KB Bypass

L1 cache, prediction hardware, concurrent accesses to both

Bypass L1 and Regular L1 caches, and concurrent accesses to

L2 cache tag arrays during early memory reads.

Figure 7 shows the impact of using LMP on performance,

power and energy for the NAS CG, MG codes and SMV-

U, SMV-O. Observe that SMV-U benefits most with a 16.7%

reduction in time, with SMV-O a close second with 15.6%.

These improvements in execution time are primarily from

decreases in the average load latencies (labeled as LSQ lat.)

by 14.2%. On average, the performance of these four codes

improves by 14%. However, power increases substantially by

13.6% on average, while the energy decreases slightly by an

average of 2.3%, due to shortened running time but higher

power consumption.

B. Co-optimizing performance, power and energy for scien-

tific computing

We now consider in detail how our final LMP can be used to

improve the performance of sparse scientific codes, and how

power can be reduced by using dynamic voltage and frequency

scaling (DVFS) [4] with the LMP. Use of DVFS with the base
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Fig. 4. Impact of the Regular L1 and Bypass L1 data cache sizes on execution of spec2000 benchmarks. 16-16KB means 16KB Regular L1 and 16KB
Bypass L1. Values are relative to unoptimized base configuration B at 2000MHz set to 1.

Fig. 6. Impact of our final LMP configuration on execution time, average power and energy consumption of SPEC 2000 benchmark suite at 2000MHz.
Values are relative to base configuration B at 2000MHz set to 1.

architecture alone results in reduced performance at significant

system power and energy savings. The latter can be used to

potentially offset the power and energy increases when the

LMP is added while retaining its performance benefits.

In Figure 8, we show relative values for time, power and

energy for our four sparse benchmarks. The LMP offsets the

performance degradation from frequency scaling down to the

extent that even at 1600MHz show performance improve-

ments. Corresponding power and energy savings are in excess

of 20%. At 1400MHz performance improvements for SMV-U

and SMV-O are in the range 5 to 10% with power reductions

over 35% and energy reductions of over 40%. We summarize

these power performance tradeoffs in Figure 9 indicating the

mean relative values of time, power and energy for the base

configuration B with DVFS and the enhanced configuration

with LMP with DVFS (denoted by B+LMP) .

These plots clearly indicate that without the LMP, it is

not possible to save power without degrading performance.

Observe that B+LMP configuration at 1800MHz reflects

nearly equal improvements in performance and power for over

15% improvements in energy. Without the LMP, performance

degrades by nearly 7% at equivalent energy levels.

VI. RELATED RESEARCH

The importance of reducing memory access latencies is re-

flected in a rich set of earlier results towards faster loads [26]–

[29].

Tyson [26] et al. considered techniques for improving effec-

tive cache hit rates by using static and dynamic techniques to

determine whether data should be cached or not, thus reducing

cache pollution. This work is similar to our approach in the

sense that they use prediction mechanisms to avoid caching

data that is not being reused. A key difference is that we use

the prediction technology to lower the effective load latency
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Fig. 5. Impact of Regular L1 and Bypass L1 cache size on performance (top
subplot) and power (bottom subplot) of sparse benchmarks. X axis labels can
be decoded in the following way: 16-16 means 16KB Regular L1 and 16KB
Bypass L1. Values are relative to base configuration B at 2000MHz set to 1.

by bypassing the cache, however the bypassed data can stay

resident in the Bypass L1 cache for future reuse.

Memik, et al. [27] propose schemes to predict quickly if data

at a given address is already stored in cache or not. Thus, they

provide a faster but possibly less accurate look-up mechanism

at every cache level. If the data is determined to not exist at

a particular level a full access is avoided at that level. Thus

they can reduce latencies by bypassing some cache levels. Our

approach is different in that it is not data address centric, but

rather instruction centric to predict a complete bypass of the

cache hierarchy based on past hit/miss history.

Yehia, et al. [28] present a scheme which is similar in the

sense that they use branch prediction for load instructions.

However they focus on pairs of load instructions representing

indirect memory references. Upon detection of such a pair and

a miss prediction, they replace (through hardware) the second

load by a new “load squared” instruction in which indirect

address resolution is performed by memory-side logic. Such

an approach may not be effective for the sparse scientific codes
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SMV-O, SMV-U, MG, and CG. Results are shown relative to values observed
for each code at the base configuration B at 2000MHz set to 1.
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of interest to us. This is primarily because such codes avoid

indirect memory references and most loads are performed to

consecutive memory locations as discussed in Section I.

Our work is also peripherally related to the following. Soft-

ware cache bypassing schemes were discussed by Chi [29].

Energy savings for scientific applications were considered by

Choi, et al. [4] and Freeh, et al. [30]. Additionally, prefetching

techniques were discussed by Lin, et al. [31]. Effects of

prefetchers on performance and power of sparse applications

were investigated by authors in [12].

VII. CONCLUSIONS

We have developed a Load Miss Predictor (LMP) hardware

addition which is effective at reducing memory access laten-
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Fig. 9. Relative average time, power and energy, using DVFS with (solid
lines) and without (dashed lines) LMP for 1300MHz to 2000MHz The average
is taken over the results for SMV-U, SMV-O, MG and CG). Results are shown
relative to the base configuration B at 2000MHz.

cies for sparse applications which have limited data locality

and reuse. On average, execution time is reduced by 14% when

this feature is utilized with a 13.6% increase in system power.

A fraction of the improvements in time can be traded off for

substantial power and energy savings by using DVFS. For ex-

ample, on decreasing frequency to 1800MHz from 2000MHz

system power is reduced by approximately 7.3% and energy

is reduced by 17.3%, while maintaining 8.7% improvements

in time. These results are promising and they indicate the

potential for power-aware design optimizations suitable for

high performance scientific computing. A natural extension

of this work would be to evaluate the impact of combining

our LMP with other static and dynamic schemes [26], [27].
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