
Online Grid Replication Optimizers to Improve System Reliability

Ming Lei ,Susan V. Vrbsky and Zijie,Qi

Department of Computer Science

University of Alabama

Tuscaloosa, AL 35487-0290

{mlei, vrbsky,zqi}@cs.ua.edu

Abstract

In a data intensive Grid system, many data replica

schemes and models have been proposed to improve the

system response time or data consistency, but little

attention has been paid to the system reliability. In this

paper, we investigate how these data replica schemes will

impact the system reliability. We use several metrics of

system reliability we previously proposed (System Bytes

Missing Rate and System File Missing Rate), and we

model the system availability problem assuming limited

replica storage and different sized files. In order to

achieve higher system data availability, in this paper we

propose two new replica optimizers, MinDmr- and

MinDmr- , to minimize the Data Miss Rate (MinDmr). A

comparison of our replica optimizers using a simulation

on the OptorSim demonstrates that by utilizing our

strategy, we can increase the data availability for files

with different sizes.

1. Introduction

Many of today’s scientific applications, such as high

energy physics [16] and the Compact Muon Solenoid

(CMS) Data Grid [14], will generate huge amounts of

data. Millions of files will be generated from these

scientific experiments and researchers around the world

need access to this data. How to make the data more

accessible and available in such a large data set that is

distributed in different geographic locations is very

challenging, and has attracted a great deal of interest.

 Data replication in a Data Grid is the most common

solution to improve file access time and availability.

Earlier work on data replication [1-6] placed most of the

attention on decreasing the data access latency and the

network bandwidth assumption. Other researchers have

proposed some data replica schemes or models for

maintaining the data consistency [17]. In many Data Grid

systems, update operations will not occur often. At the

same time, as bandwidth and computing capacity have

become relatively cheaper due to hardware technology

advances, the data access latency can drop dramatically,

and how to improve the system reliability and availability

become the focus.

The dynamic behavior of a Grid user makes it

difficult to make decisions concerning data replications to

meet the system availability goal [7]. In a Data Grid

system, there are hundreds of clients physically

distributed across the globe who will submit their job

requests. Usually, a Grid job will access multiple files to

do some type of analysis. In data-intensive applications,

when a job accesses a massive-size file, the unavailability

of that file can cause the whole job to hang up and the

potential delay of the job can be unbounded. In large-

scale data-intensive systems, hundreds of nodes will be

involved and any node failure or network outage can

cause potential file unavailability. As a result, there has

been an increase in research focusing on how to maximize

the file availability. Data replication strategies to improve

the data availability have been proposed [7, 8], but have

assumed unlimited storage for replicas.

To the best of our knowledge, the system data

availability metrics, System Bytes Missing Rate and

System File Missing Rate, we presented in [15] are the

only such metrics which have been proposed for Data

Grid Systems, thus far. We briefly describe these two

metrics to measure the data reliability in the Data Grid.

We model the system availability in the system where the

storage space is limited and file size varies. In this paper,

we propose two new greedy replica optimizers, MinDmr-

 and MinDmr- , and we also describe our previously

proposed replica optimizer MinDmr- . For the replica

optimizers, we introduce the file weight and prediction

functions and discuss the details of how and why they

work. In [15] we demonstrated that MinDmr- performed

better than existing optimizers for same sized files for the

System File Missing Rate. In this paper, our test results

using the OptorSim [9] show that our three replica

schemes can increase the data availability for files with

different sizes as measured by the System Bytes Missing

Rate and System File missing Rate.

 The rest of the paper is organized as follows. We

describe related work in Grid systems in Section 2.

Section 3 provides simple introductions of the two

metrics: the system file missing rate and the system bytes

missing rate, and a discussion of the system model. We

1-4244-0910-1/07/$20.00 ©2007 IEEE

present our analytical model and the new dynamic replica

algorithms in Section 4. In Section 5, we describe our

simulation results based on the OptorSim, a simulator

designed by the European Data Grid Project [10]. In

Section 6, we conclude and describe future work.

2. Related Work

Work on data availability in Grid systems initially

focused on decreasing the data access latency and the

network bandwidth assumption. In [1], the six replica

strategies: No Replica, Best Client, Cascading

Replication, Plain Caching, Caching plus Cascading

Replica and Fast Spread are simulated for the three user

access patterns: random access, small temporal locality,

and small geographical and temporal locality. The

simulation results show that the best strategy has

significant savings in latency and bandwidth consumption

if the access patterns contain a moderate amount of

geographical locality. In [2, 3], a replica scheme based on

the economical-model has been proposed. The authors

use an auction protocol to make the replica decision for

long-term optimization. They show the scheme

outperforms other replica strategies with sequential file

access patterns.

In [4], Szymaniak et al. present the HotZone

algorithm to place replicas in a wide-area network, so that

the client-to-replica latency is minimized. They use the

GNP [5] technique to model the Internet as an M-

dimensional space and all nodes are landmarked into

different network regions. Hotzone places replicas on

nodes that, along with their neighboring nodes, generate

the highest load. Sang-Min Park et al. in [6] propose a

dynamic replica replication strategy, called HBR, to

reduce data access time by avoiding networking

congestion in a Data-Grid network. The HBR algorithm

benefits from ‘network-level locality’, which indicates

that the required file is located at the site which has the

broadest bandwidth to the site of the job execution.

More recent work has focused on maximizing file

availability in a Grid system. Schintke and Reinefeld

present an analytical model in [7] for determining the

optimal number of replica servers, catalog servers and

catalog sizes to guarantee a given overall reliability in the

face of unreliable components. In [8], Ranganathan shows

a dynamic model-driven replication approach in which

peers create replicas automatically in a decentralized

fashion. Both [7] and [8] propose algorithms to meet the

data availability goal based on the assumption that the

total system replica storage is large enough to hold all the

data replica copies. Each file will be replicated to the

arbitrary number of copies needed to achieve its

availability goal without any discrimination, even if the

file will be accessed only one time in its entire life span.

3. Data availability

While the previous measures of mean available

bandwidth and percentage of computer usage are

important to the overall functioning of an efficient Grid

system, the Grid user is concerned with completing a job

with correct data. Any data file access failure can lead to

an incorrect result or a job crash. To protect the user from

such risk, the Grid system will be compelled to make the

data availability as high as possible. In our previous work

[15], we introduced two metrics: the System Data Missing

Rate and the System File Missing Rate, to measure how

data-reliable the system is as follows:

System File Missing Rate SFMR- represents the ratio of

the number of files potentially unavailable and the

number of all the files requested by all the jobs.

System Bytes Missing Rate SBMR - represents the ratio

of the number of bytes potentially unavailable and

the total number of bytes requested by all jobs.

These two measurements will be the same when all the

file sizes in the system are the same, but will be different

when the file sizes are unique in the system.

Figure 1. Simulated Data Grid Architecture

Based on the data grid architecture in Figure 1, we

define the SFMR (System File Missing Rate) as:

1 1

1

(1)
S F M R

n k
ji j

n
ii

P

k
 (1)

where n denotes the total number of jobs, each of which

will access k different files (k file access operations). Pj

indicates file fj’s availability, and is defined as

11 (1
k

)j ssP P , where the Ps denotes the file

availability in storage element s, and k is the number of

storage elements where the file is located.

In the same way, we define the SBMR (System Bytes

Missing Rate) as:

1 1

1 1

(1) *
S B M R

n k
j ji j

n k
ji j

P S

S
(2)

where n, k and Pj have the same meaning as in equation

(2) and Sj denotes the size of file fj. From equations (2)

and (3), it is apparent that the values for SFMR and

SBMR will have a fixed relationship if all the accessed

file sizes are the same.

3.1 Problem model

To better model the replica problem, which concerns

each file access rather than an individual job process,

without any loss of generality, we can then model any job

request into multiple file request operations. Suppose

there is a sequence of file requests stream O (r1, r2, r3….,

rN), with no assumptions about whether all of these file

requests are distinct or not. For any file request ri, it will

associate a file fi, with an instant availability of Pi, so it

will contribute to the SFMR and SBMR with (1- Pi) and

(1- Pi) * Si, respectively. Hence,

and .

The best system data availability results from minimizing

the SFMR and SBMR above, subject to

at any time, where w denotes the

number of distinct files stored in the data grid at any

instant, C

SFMR = (1) / | |iP O
i o

SBMR=()/(1) *
i

i i

i

P S S
oo

i

*
1

w
i i

i
C S

i denotes the number of copies of fi , Si denotes

the size of the fi and Z is the total storage available.

We can achieve the optimal solution to minimize the

SFMR and SBMR by some off-line algorithms if we are

aware of the future file request information. However, for

any replica manager at the specified instant T, only the

short term file requests, which are queued in the job

queue, can be observed. For this online optimization

problem, we will introduce some heuristics based on the

file weight, which will be discussed in later sections.

3.2 File Value Vi

For these online optimization problems, the replica

manager can not make any decisions on whether or not to

replicate the current requested file based only on its local

storage element status and the global file catalog, which

record the file distribution information in the Data Grid

system. In order to make a positive decision regarding

long term performance, for every file in the system, we

can predict its future value via the prediction function. For

each file access operation ri, at instant T, we associate it

with an important variable Vi, which will be set to the

number of times this file will be accessed in the future,

i.e. T. Such a value cannot be calculated, but predicted

as we just mentioned.

In this paper, we will try to make such a prediction

via four kinds of prediction functions:

No Prediction: We make no predictions of the

file at instant T, which means the Vi will always

be 1. It is the same strategy as in [8].

Bio Prediction: As in [13], Vi is based on the file

access history to predict the value of the file by a

binomial distribution.

Zipf Prediction: Same as in [13], Vi is based on

the file access history to predict the value of the

file by a Zipf distribution.

Queue Prediction: The current job queue is used

to predict the value of the file. If the queue is

empty, this Queue Prediction function will work

the same as No Prediction.

The value of Vi is dependent on the assumptions made

about future file access. Therefore, we have chosen the

above four functions to represent a range of possibilities

for Vi and will be used to study the effectiveness of our

strategy under varying assumptions.

For the later three prediction functions, the value of

the file will be predicted based on either the access history

or the job queue. Due to the fact that each site has its own

file access history and job queue, in order to predict the

file access times in the future, there are two options that

can be chosen. Either the prediction can only consider the

local file access history and local job queue, or both the

local and remote sites will be taken into account. In

current Grid systems, we cannot assume that there will be

a central control point where all the file accesses or each

sites’ job queue is maintained. The more commonly used

structure is as described in Figure 1, which is used in the

European Data-Grid project [10]. In such an architecture,

when predicting the future access time of one specified

file, we can send the file information to all the sites and

request each site return their prediction back to the

requester. In this way, we can achieve Global Prediction.

We believe that it is a tradeoff to choose local prediction

vs global prediction, as illustrated in the Table 1.

4. Online optimization algorithms

We can restate the online replication problem on each

site in the following way:

At any given time T, given a fixed space Z (sum of the

size of the site’s storage elements SE), for all the files

stored in site F = {f1, f2,,,fn) and for each file fi in the

storage, we associate a size si and vi. Now assume the

new requested file is , which is also associated with

a size and value v . Next we choose a file set =

{f1,f2,..,fk) from the file set {F} + { } to achieve the

maximum or . If is in ,

then we need to replicate the file.

1 *k
i ii P V 1 * *

k
i i ii P S V

The above optimal problem is a classic Knapsack

problem by consideration that we can aggregate each file

replicas storage costs together as the “weight” of the item

i (in our problem, it is fi). In [12], the relationship

between the Knapsack problem and the fractional
knapsack problem in the cache optimization problem is

discussed. Based on the same ideas as those presented in

[12], we can also convert our optimization problem to an

approximate fractional knapsack problem because the

amount of space left after storing the maximum number

of files is negligible compared to the total storage space.

MinDmr- ():

Input: R = {f1, f2,,,fn), C ={c1,c2,..,cn}, and .

Where is the file set stored in the current store

element, C is the size of file , is the total

space of the current store element, is the new
request file.

Output: = yes/no

{ if then
 = yes

 return // file exists in current storage

 if && (-sum(C)) size of() then

 = yes // if free space is large enough to store

 return // the new file, replicate it.
 else

{ Sort the files in by W in ascending order

={}
Repeat

 { If file f is deleteable then
= {f}

 } Until size of sum() size of()

If (value-gained- by replicating file > accumulative

 value-loss- of removing)
 = yes

 else
 = no

// value-gained- = Pincr *V ,

// accumulative value-loss- = *desc i
i

P V

 return }

}

4.1 MinDmr- replica optimizer

We now present three heuristic optimizers to

optimize the system reliability. The first optimizer is

MinDmr- , which makes replica and placement decisions

based on the benefits received from replicating the file in

the long term as the file missing rate is concerned and

first appeared in [15] as MinDmr. In our greedy

algorithm, we introduce the file weight as:

W =(Pj * Vj) /(Cj *S j)

where the P,V,C,S have the same meaning as in the

previous sections. The optimizer will sort the current file

in the storage element based on the file weight in

ascending order, then make the replication decision based

on each file’s value. The algorithm appears in Figure 2.

4.2 MinDmr- replica optimizer

We now propose a new optimizer named MinDmr- ,

which will replicate data based on the file weight:

W =(Pj * Vj * S j)/(Cj *S j) = (Pj * Vj)/Cj

where the P, V, C, S have the same meaning as in the

previous section. The weight is calculated based on: 1)

file availability, 2) number of times of future accesses of

this file, and 3) number of copies of the file. File size is

not a factor. In MinDmr- , the main logic is the same as

Figure 2. MinDrm- algorithm pseudo-code

in MinDmr- , but there are two differences between

them. One is that the file weight used to sort the files in

the storage element is W , the other is that the value-gain

and accumulative value-loss is: value-gain- =Pincr*V *C

and value-loss- = * *incr i ii P V C , respectively.

4.3 MinDmr- replica optimizer

The two optimizers MinDmr- and MinDmr- make

replication decisions based on whether the replication will

result in some gain in value (Pi *Vi and Pi *Vi * Si,

respectively). Therefore, it is straightforward to combine

these two ideas to get one new replica optimizer that

determines whether to replicate the file based on either

the gain in the file missing value or a gain in the bytes

missing value. In a similar way, we define the file weight:

W = W * W

We argue that when ranking the file based on the W , we

can achieve a balance on the file missing and bytes

missing. Therefore, it is straightforward to obtain the

MinDmr- optimizer algorithms by replacing the file

weight as W and basing the replication decision on either

(value-gain- where replicating file > accumulative value-

loss- of removing) or ((value-gain- where replicating

file > accumulative value- loss- removing).

4.4 Discussion of optimizer

We have addressed the three replica optimizers:

MinDmr- , MinDmr- and MinDmr- . In all the three

optimizers, we associate each file with a weight W to

incorporate the important aspects for determining data

availability. For example, in W we consider not only the

availability of the file but also the number of times the file

will be referenced in the future. Similarly, we consider

not only the size of a file, but the number of copies stored.

Since the weight calculation considers Vi, the weight

of the file will be greatly affected by the file’s popularity.

We note that for hot data, Vi will be higher than for cold

data. The files with the smallest weight (cold data) are

considered for deletion first, so the hotter the file, the

more possible it will be replicated.

As shown by the pseudo code for MinDmr- ,

MinDmr- and MinDmr- , the optimizers will take four

steps to conduct the replica decision. First, if the

requested file already exists in the storage element SE, it

will not be replicated again. As mentioned previously,

multiple copies of the file in the same SE cannot improve

the data availability [15]. Instead, it can potentially lessen

the system level data availability because such replication

will waste the storage space in the SE. Second, when the

free storage is large enough to hold the requested file,

then the replication of the file will always be conducted.

Thirdly, when there is not enough storage, the potential

candidates for replacement will be chosen according to

their file weight. This is valuable for long term

consideration, since a less valuable file will be replaced

by a more valuable file. The fourth, and the most

difficult step, is to guarantee the replica gain will be

greater than the replacement loss.

When choosing the potential replacement candidates,

we note there are some files which will be not considered,

and there are two kinds of possibilities. First, the file may

be the master file. The master file is the original file in

the system, which cannot be deleted. Secondly, the file

may be pinned, which means it is being accessed by

another job. There is more than one computing element

CE in the Grid, which may lead some files to be accessed

by multiple jobs instantaneously. The replica candidates

must not only be the least valuable files, to ensure sure

each replica will gain some value, but we must also

eliminate files not under consideration.

The complexity of this algorithm is O(n log n), where

n denotes the number of the files stored in this site, if we

choose a good sorting algorithm to sort the files by their

weight.

5. Performance Results

We evaluate the performance of our MinDmr replica

and replacement strategy using the OptorSim, which was

developed by the EU DataGrid Project [10] to test

dynamic replica schemes. The OptorSim consists of

several parts: the CE components, SE components,

resource brokers and Replica Optimizers. We implement

our replica strategy into the OptorSim by adding the new

strategies to Our Optimizers.

Our simulations are done on the EDG test bed Grid

and the network topology of the EDG test bed as shown

in Figure 3. We assume in our simulation there are a CE

and SE at each site except the CERN site. The

corresponding storage size and the bandwidth between

two sites are marked in Figure 3. Initially, we assume that

all the master files are stored at the CERN site, which has

a huge SE but not a CE. The replica managers at each site

will then decide when and how to make the replications

based on the weighted value for a file. As a result, the

files will eventually be distributed across the Grid.

We assume there are 200 different files in the Grid

and we simulate 10000 jobs in the Grid to measure the

SFMR and SBMR. Each job accesses 3~20 files. As

illustrated in Figure 3, the storage available at an SE

ranges from 100M to 10G. The job scheduler strategy is

based on Queue Access Cost. In the first part of the

experiments, we will simulate where the file size of each

file is the same, at 1G in our setting, and we can say that

the SFMR will be equal to SBMR. In the second part of

the simulation, the file size of these 200 files will vary

from 8M to 2G, which will lead to the unequal SFMR and

SBMR. We completed the simulation on a Dell desktop

with 2.8G CPU and 1G RAM.

5.1 Results for equal size files

 This experiment demonstrates the performance of our

replica optimizers for the metric SFMR when the sizes of

the files are all the same. We compare our MinDmr

optimizer to the existing strategies of the least-frequently-

used LFU strategy and the EcoBio and EcoZipf of the

economic model in the OptorSim [11]. In the economical

model (denoted as Eco), a file is replicated if it results in

maximizing the profit of an SE. Further details of the Eco

evaluator function can be found in [11] and differences

between the Eco optimizer and MinDmr appear in [15].

Figure 3. Grid Topology in the simulation

We compare the three existing replica schemes: LFU,

EcoBio and EcoZipf, with our four replica schemes:

BioMinDmr, ZipfMinDmr, MinDmrNoPred and

MinDmrQueuePred, which utilize the EcoBio Prediction

function, EcoZipf Prediction function, No Prediction

function and Queue Prediction function, respectively. We

have discussed the details of these four prediction

functions in Section 3.2. We do not go deeply into an

analysis of the EcoBio and EcoZipf predictions function

here (details appear in [11]).

The order of the files requested is determined by the

access pattern, and we consider four access patterns:

Random, Random walk Gaussian, Sequential and

Random Walk Zipf.

Figure 4 shows the SFMR using the MinDmr-

optimizer for the seven replica schemes and four access

patterns. As illustrated in Figure 4, our replica schemes

BioMinDmr, ZipfMinDmr, MinDmrNoPred and

MinDmrQueuePred, perform better than the EcoBio and

EcoZipf replica schemes for all access patterns. The

EcoBio has the highest SFMR and the EcoZipf has the

second highest SFMR for all access patterns. The SFMR

for the Eco strategies is up to 200 times greater than the

MinDmr- strategies. In fact, the SFMR values for the

BioMinDmr, MinDmrNoPred and MinDmrQueuePred are

too small to see in Figure 4. LFU has lower rates than the

two Eco strategies but it has a higher SFMR than the four

MinDmr strategies, except for the ZipfMinDmr with a

sequential access pattern. Figure 4 illustrates the

MinDmr- strategy performs better than the Eco and

LRU strategies, even when there is no prediction function.

This indicates the MinDmr is not dependent on the

prediction function used.

The ZipfMinDmr does not have a lower missing

rate for the sequential access pattern when compared to

LFU. The reason lies in that our MinDmr replica

managers decide to make the replica only when the gain

of the value from the replicated file is greater than the loss

of the value of the replaced file. However, the EcoZipf

prediction function is not as accurate for the sequential

access pattern, so it brings some inaccuracy into the

calculation of the file weight. This in turn, will cause the

replica scheme to fail to work as well as the other three

MinDmr replica schemes for the sequential access pattern.

System File Missing Rate

0.000

0.001

0.001

0.002

0.002

0.003

0.003

0.004

0.004

0.005

0.005

LFU

E
co

B
io

E
co

Zip
f

B
io

M
in

D
m

r

Zip
fM

in
D
m

r

M
in

D
m

rN
oPre

d

M
in

D
m

rQ
ue

ueP
re

d

Replica Schemes

S
F

M
R

Sequential

Random

RandomWalk

Gaussian
Random Zipf

Figure 4. The SFMR with varying replica optimizers

 5.2 Non-equal file sizes

In the following experiment, the sizes of the files in

the grid are different and will vary from 8M to 2G. In

this non-equal file size simulation, we only focus on the

four schemes we designed, BioMinDmr, ZipfMinDmr,

MinDmrNoPred and MinDmrQueuePred, and compare

how the optimizers MinDmr- , MinDmr- , MinDmr-

perform. All results for SFMR and SBMR are 0.0000001

per unit and are displayed in table format for readability.

Table 2 demonstrates the results from the different

optimizers for the four replica strategies for a Random

Gaussian access pattern. Table 2, indicates that the

optimizer MinDmr- can help to reduce the SBMR,

which matches the weight and value-gain definition in

MinDmr- , expect for the ZipfMinDmr. We also find

that the MinDmr- works best for both SFMR and SBMR

in almost all the strategies (lowest values are indicated in

bold). In the MinDmrNoPred strategy, the optimizer

MinDmr- achieves the best in both metrics, which gains

almost 45% more than MinDmr- and 10% more than

MinDmr- for both the SFMR and SBMR. The

MinDmrQueuePred with MinDmr- works best in the

random Gaussian access pattern for all the replica

policies. Another fact that should be mentioned is

Table 2. SFMR and SBMR with Random Gaussian access pattern (DIFF = SBMR –SFMR)

Replica Schemes

BioMinDmr ZipfMinDmr MinDmrNoPred MinDmrQueuePredOptimizer

SFMR SBMR DIFF SFMR SBMR DIFF SFMR SBMR DIFF SFMR SBMR DIFF

MinDmr- 22.89 24.10 1.21 276.53 332.56 56.03 35.55 40.84 5.29 22.07 23.28 1.21

MinDmr- 22.89 23.12 0.22 304.28 366.58 62.31 22.86 21.43 -1.43 21.14 21.23 0.09

MinDmr- 21.11 21.58 0.47 225.93 247.57 21.64 27.05 25.18 -1.87 19.68 20.07 0.39

Table 3. SFMR and SBMR with Sequential access pattern (DIFF = SBMR –SFMR)

Replica Scheme

BioMinDmr ZipfMinDmr MinDmrNoPred MinDmrQueuePredOptimizer

SFMR SBMR DIFF SFMR SBMR DIFF SFMR SBMR DIFF SFMR SBMR DIFF

MinDmr- 21.3873 22.18 0.79 774.6 999.4 225 32.39 34.05 1.66 23.07 24.65 1.58

MinDmr- 21.3361 21.52 0.18 913.1 1192 279 25.03 23.74 -1.3 22.72 22.73 0.01

MinDmr- 20.5349 20.69 0.16 728.6 945.3 217 21.64 21.26 -0.4 21.68 22.24 0.55

Table 4. SFMR and SBMR with Random access pattern (DIFF = SBMR –SFMR)

Replica Schemes

BioMinDmr ZipfMinDmr MinDmrNoPred MinDmrQueuePredOptimizer

SFMR SBMR DIFF SFMR SBMR DIFF SFMR SBMR DIFF SFMR SBMR DIFF

MinDmr- 20.65 21.33 0.68 227.83 257.27 29.44 31.70 34.13 2.43 21.25 22.82 1.56

MinDmr- 20.88 20.90 0.02 352.53 437.86 85.34 22.86 21.88 -0.98 21.10 20.89 -0.21

MinDmr- 23.07 24.43 1.36 196.73 226.19 29.46 26.58 25.46 -1.13 21.12 21.59 0.47

Table 5. SFMR and SBMR with Zipf access pattern (DIFF = SBMR –SFMR)

Replica Scheme

BioMinDmr ZipfMinDmr MinDmrNoPred MinDmrQueuePredOptimizer

SFMR SBMR DIFF SFMR SBMR DIFF SFMR SBMR DIFF SFMR SBMR DIFF

MinDmr- 23.2116 24.99 1.78 240.7 314.2 73.5 32.1 35.13 3.03 21.53 22.66 1.13

MinDmr- 24.2965 25.14 0.85 220.1 254.8 34.7 23 22.3 -0.7 21.38 21.24 -0.1

MinDmr- 24.2165 25.28 1.06 170.4 188.7 18.3 20.72 20.69 -0.01 20.68 20.77 0.09

that the difference (DIFF) between the SFMR and SBMR

always exists. This is because all of the replica algorithms

prefer to store small-size files in the replica space, which

will result in the large-size files always being replaced by

smaller ones. This disparity varies with different replica

schemes.

For the strategy ZipfMinDmr, the MinDmr- does not

help decrease the SBMR but instead it increases the both

the SFMR and SBMR. This contradicts the file weight and

value-gain definition in MinDmr- . The reason behind this

is again believed to be the fact that the prediction function

in the ZipfMinDmr does not work as well as other three,

and this directly causes the optimizer to make the wrong

decision. The prediction function is responsible for

outputting the Vi, which is the key input of the file weight

function.

In Table 3, we illustrate the simulation results for the

sequential access pattern. For this pattern, MinDmr-

improves all four replica schemes for both SFMR and

SBMR. BioMinDmr with MinDmr- performs the best

for this access pattern. As noted for the previous table,

the ZipfMinDmr performs the worst for all the replica

schemes and MinDmr- does not help to improve the

SBMR.

In Table 4, we list the results with a random access

pattern. In most of the cases, the SBMR is larger than

SFMR, but MinDmr- can help shorten the DIFF and

even make the SBMR less than SFMR. MinDmr- can

help to reduce the SBMR, which matches the weight and

value-gain definition in MinDmr- , with the exception of

the strategy ZipfMinDmr. MinDmr- can help decrease

both the SFMR and SBMR at the same time, but it

performs worse for the BioMinDmr strategy. The DIFF

is around 1~5% in BioMinDmr, MinDmrNoPred, and

MinDmrQueuePred. However, in the ZipfMinDmr the

SBMR is about 10~40% higher than SFMR.

Table 5 presents the simulation results for the Zipf

access pattern. Compared to the previous three access

patterns, the DIFF is the smallest. The MinDmr- still

performs the best except for in BioMinDmr, where the

MinDmr- results in the smallest decrease in the data

availability. ZipfMinDmr still performs the worst against

the other three replica schemes as in other access patterns.

Both MinDmrNoPred and MinDmrQueuePred with

MinDmr- perform almost the same and are the best of all

the replica policies.

 In summary, MinDmr- and MinDmr- always help

the replica strategies to improve the SFMR and SBMR,

respectively, with the exception of the ZipfMinDmr, due to

its poorly performing prediction function. The MinDmr-

performs the best overall for all the replica policies and for

all access patterns. There always exists a difference

between SFMR and SBMR and, in general, SFMR will

always be smaller than SBMR.

6. Conclusions and future work

We discussed how we model the system availability

problem and how to transfer the data availability to an

approximate fractional knapsack problem, a classic optimal

problem. With the assumption that the Grid storage space

is limited and different file size, we proposed three replica

optimizers to take full advantage of the limited storage

resource to make the data availability as high as possible.

We evaluate how our replica strategies work in the

situation where the data file size is non-equal. We

evaluated our two new replica optimizers for the four

prediction functions and demonstrated that our new

strategies perform well overall in terms of data availability.

Results indicate the performance of MinDmr is better than

others with varying prediction functions, job schedulers

and file access patterns, as far as the data availability is

concerned. The results demonstrate that the optimizer

MinDmr- always helps to improve the SBMR except for

the ZipfMinDmr. The MinDmr- performs the best

overall.

In future work, we plan to move on to the next step to

improve the Quality of Service in a Data Grid with a

service-orientation design. Instead of considering the data

replication policy, we will turn to the job scheduler and

improve the current scheduler to provide QoS to clients.

References

[1] Kavitha Ranganathan and Ian Foster.: Identifying Dynamic

Replication Strategies for a High Performance Data Grid.

International Workshop on Grid Computing, Denver,

November 2001.

[2] William H. Bell, David G. Cameron, Ruben Carvajal-

Schiaffino, A. Paul Millar, Kurt Stockinger, and Floriano

Zini.: Evaluation of an Economy-Based File Replication

Strategy for a Data Grid. In International Workshop on

Agent based Cluster and Grid Computing at CCGrid 2003,

Tokyo, May 2003. IEEE Computer Society Press.

[3] Mark Carman, Floriano Zini, Luciano Serafini, and Kurt

Stockinger.: Towards an Economy-Based Optimisation of

File Access and Replication on a Data Grid. In

International Workshop on Agent based Cluster and Grid

Computing at International Symposium on Cluster

Computing and the Grid (CCGrid'2002), Berlin, Germany,

May 2002. IEEE Computer Society Press.

[4] Michal Szymaniak,Guillaume Pierre and Maarten van

Steen.: Latency-Driven Replica Placement. 2005

Symposium on Applications and the Internet (SAINT'05)

pp. 399-405.

[5] T. E. Ng and H. Zhang. Predicting Internet Network

Distance with Coordinates-Based Approaches. In 21st

IEEE INFOCOM Conference, June 2002.

[6] Sang-Min Park, Jai-Hoon Kim, Young-Bae Ko, and Won-

Sik Yoon, "Dynamic Data Grid Replication Strategy

based on Internet Hierarchy," Second International

Workshop on Grid and CooperativeComputing

(GCC'2003) in Shanghai, China, Dec 2003.

[7] F. Schintke, A. Reinefeld. Modeling Replica Availability

in Large Data Grids. Journal of Grid Computing V1, N2.

2003, Kluwer

[8] Kavitha Ranganathan, Adriana Iamnitchi and Ian Foster,

Improving Data Availability through Dynamic Model-

Driven Replication in Large Peer-to-Peer Communities,

Proceedings of the Workshop on Global and Peer-to-Peer

Computing on Large Scale Distributed Systems, Berlin,

May 2002.

[9] OptorSim – A Replica Optimizer Simulation: http://edg-

wp2.web.cern.ch/edgwp2/optimization/ optorsim.html

[10] EU Data Grid Project: http://www.eu-datagrid.org

[11] William H. Bell, David G. Cameron, Luigi Capozza, A.

Paul Millar, Kurt Stockinger, and Floriano Zini. OptorSim

- A Grid Simulator for Studying Dynamic Data

Replication Strategies. International Journal of High

Performance Computing Applications, 17(4), 2003.

[12] E. Otoo E, A. Shoshani: Accurate modeling of cache

replacement policies in a Data-Grid. Mass Storage

Systems and Technologies, 2003. (MSST 2003).

Proceedings. 20th IEEE/11th NASA Goddard Conference.

[13] David G. Cameron, Ruben Carvajal-Schiaffino, A. Paul

Millar, Caitriana Nicholson, and Kurt Stockinger Floriano

Zini. Evaluating Scheduling and Replica Optimisation

Strategies in OptorSim. In 4th International Workshop on

Grid Computing (Grid2003), Phoenix, Arizona,

November 17, 2003. IEEE Computer Society Press.

[14] GriPhyN: The Grid Physics Network Project

http://www.griphyn.org

[15] Lei, M, S. Vrbsky, X. Hong, “A Dynamic Data Grid

Replication Strategy to Minimize the Data Missed,” 3rd

International Workshop on Networks for Grid

Applications (GridNets 2006), San Jose, CA, Oct. 2006.

[16] PPDG, http://www.ppdg.net

[17] Dullmann, D. Hoschek, W. Jaen-Martinez, J.Segal,

B. Samar, A.Stockinger, H. Stockinger, K. Models

for replica synchronisation and consistency in a data

grid .In High Performance Distributed Computing,

2001. Proceedings. 10th IEEE International

Symposium on.

