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Abstract

Virtual machines are a promising technology to over-

come some of the problems found in current Grid infras-

tructures, like heterogeneity, performance partitioning or

application isolation. In this work, we present an straight-

forward deployment of virtual machines in Globus Grids.

This solution is based on standard services and does not re-

quire additional middleware to be installed. Also, we assess

the suitability of this deployment in the execution of a high

throughput scientific application, the XMM-Newton Scien-

tific Analysis System.

1 Introduction

Since the late 1990s, we have witnessed an extraordinary

development of Grid technologies. Nowadays, different

Grids are being deployed within the context of a growing

number of national and transnational research projects (e.g.

EGEE1, TeraGrid2 or OSG3). These projects have achieved

unseen levels of resource sharing, offering a dramatic in-

crease in the number of processing and storage resources

that can be delivered to applications.

However, a growing heterogeneity on the organizations

that joins these projects hinders the development of large

scale Grid infrastructures. Grid resources do not only dif-

fer in their hardware but also in their software configura-

tions (operating systems, libraries, and applications). This

heterogeneity increases the cost and length of the applica-

tion development cycle, as they have to be tested in a great

variety of environments where the developers have limited
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configuration capabilities. Therefore, some of the users are

only able to use a small fraction of the Grid. Other projects,

like EGEE, limit heterogeneity somewhat by imposing a

fixed configuration for Grid resources.

Moreover, most of the Grid infrastructures do not allow

administrators to isolate and partition the performance of

the resources they devote to the Grid. In this way, the appli-

cations of a grid user can affect the execution of other grid

or local users. This limits the quality of service and relia-

bility of actual platforms, preventing a wide adoption of the

Grid paradigm.

Among other solutions, the use of virtual machines in

computational Grids are being explored to solve the previ-

ous problems. Virtual machines add a new abstraction layer

that allows partitioning and isolating the physical hardware

resources [6]. They also offer a natural way to face a highly

heterogeneous environment. In this context, a step forward

was made by K. Keathy et al. [13]: the virtual workspaces,

which provides an abstraction of a whole execution environ-

ment. Virtual workspaces can be implemented using virtual

machines, and can be grouped in complex virtual architec-

tures like clusters [16].

In this work, we present an straightforward deployment

of virtual machines in a Globus Grid, which overcomes

some of the problems of current virtualization solutions,

that are described in Section 2. In particular, we will con-

sider the execution of a high throughput scientific applica-

tion: the XMM-Newton Scientific Analysis System. The

target application and the benefits of its execution within

a virtual machine are briefly described in Section 3. The

main characteristics of the proposed deployment strategy

are then presented in Section 4. Following this, in Section 5

we discuss some implementations details on a experimental

testbed. Then, we give some performance results in Sec-

tion 6. The paper ends with some conclusions and hints of

future work in Section 7.



2 Related Work

In the last years, the processors’ performance has in-

creased enough to renew the interest in the virtual machines

technology. These technologies include operating system

partitioning (e.g. Solaris Containers [1]), complete hard-

ware emulation (e.g. VMWare [2]), or para-virtualization

(e.g. Xen [5]). Virtual machines presents attractive benefits

like server consolidation, virtual machines isolation, perfor-

mance partitioning or legacy applications execution among

others [6].

Recent works have also made an important effort to in-

tegrate these virtualization technologies in Grid infrastruc-

tures. However, not all of these projects embrace the Grid

philosophy. This philosophy, proposed by Foster [7], de-

fines a Grid as a system (i) not subject to a centralized con-

trol, (ii) based on standard, open and general-purpose inter-

faces and protocols; that (iii) provides some level of qual-

ity of service. This third requirement is largely satisfied by

these projects.

The integration of virtual machines in Grid environments

was initially explored by the In-VIGO project [4]. The In-

VIGO infrastructure adds some virtualization layers to the

classical Grid model. The first layer builds sets of virtual

Grid resources upon which standard grid middleware (e.g.

Globus) can be deployed.

The XenoServers [9] aims to develop a network of glob-

ally distributed servers to deploy distributed services in ex-

change for money.

Other approach, more in line with the Grid philosophy,

is the Virtual Workspace Project [13], which provides an

abstraction of an execution environment that can be dynam-

ically deployed. However, it requires a thorough knowledge

of the remote cluster architecture and the access to the de-

ployed workspace is not straightforward, as is not integrated

with other Globus services like GRAM. We would like to

note that these problems are currently being tackled, see for

example [8].

3 XMM-Newton Science Analysis Software

(SAS)

XMM-Newton is the most sensitive X-ray satellite ever

built and the largest satellite ever launched by ESA. It has

been operating as an open observatory since the beginning

of 2000, providing X-ray scientific data through three imag-

ing cameras and two spectrometers, as well as visible and

UV images through an optical telescope. The large amount

of data collected by XMM-Newton is due to its unprece-

dented effective area in the X-ray domain in combination

with the simultaneous operation of all its instruments. All

the data taken by this satellite are kept in the XMM-Newton

Science Archive (XSA).

The large amount of data available makes necessary to

optimize the management of hardware resources to prevent

a data processing slow down. In this context, Grid tech-

nology offers the capability of managing not only the user

queries retrieving data from the archive, but also the online

processing of that data.

The Scientific Analysis System (SAS) [3] is a software

suite for the interactive analysis of all the XMM-Newton

data, making possible the tailoring of the data reduction

to the scientific goal. In addition it makes possible a re-

calibration of the data whenever new calibration files have

been released. Although SAS is considered a fully mature

package, a large number of people are still working to im-

prove it, and periodically new versions of SAS are released.

The execution of the SAS software in a Grid has been

successfully studied in [11]. However, the deployment of

the new versions of the SAS software in the ESA sites is

not trivial, and requires an important effort from the system

administrators. This problem can be easily solved by dis-

tributing virtual images with the latest release of the soft-

ware. Note also that this will improve the robustness of the

software as is always executed and developed in the same

environment.

4 Execution Management of Virtual

Workspaces

In this section we describe the deployment and execu-

tion management of single virtual machines in a Grid in-

frastructure. The approach presented in this work consists

in encapsulating a virtual workspace in a grid job. It also

incorporates the functionality offered by a general purpose

meta-scheduling system. So, the genuine characteristics of

a Grid infrastructure (i.e. dynamism, high fault rate, hetero-

geneity) are naturally considered in the proposed solution.

This strategy does not require additional middleware to

be deployed, as it is based on well-tested procedures and

standard services. Moreover, it is not tied to a given virtual-

ization technology. However, it presents some drawbacks:

• The underlying local resource management system is

not aware of the nature of the job itself. Therefore,

some of the potential benefits offered by the virtual-

ization technology (e.g. server consolidation) are not

fully exploited.

• This approach is only suitable for single process batch

jobs, which naturally arise in High Throughput Com-

puting problems, or workflow computations. However
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Figure 1. GridWay architecture, and interac-

tion with Grid Services

this use case represents a small fraction of the applica-

tions that can potentially benefit from the virtualization

technology in a Grid.

4.1 Virtual Workspace Scheduling

The deployment of the virtual workspaces is managed

by the GridWay4 meta-scheduling system [10]. GridWay

allows unattended, reliable, and efficient execution of jobs

on heterogeneous and dynamic Grids. It performs, transpar-

ently to the end user, all the job scheduling and submission

steps [15], namely: resource discovery and selection, and

job preparation, submission, monitoring, migration and ter-

mination.

Job execution is performed in three steps: prolog, for

creating the remote experiment directory and transferring

the executable and input files; wrapper for executing the

actual job and obtaining its exit code; and epilog for trans-

ferring back output files and cleaning tasks. The prolog

and epilog phases are done by interacting with the Grid file

transfer services (GridFTP in this work), while the wrapper

step interfaces the Grid execution services (WS-GRAM in

our case). The architecture of GridWay and the interaction

with the Grid services of the target infrastructure are shown

in Figure 1.

The description of the grid job must include all the re-

quirements of the virtual machine within. So, the job tem-

plate used by GridWay must specify the Xen Hypervisor

version (that must be compatible with the Linux kernel

needed by the the virtual machines), and other hardware re-

quirements (e.g. free memory or CPU load).

4www.gridway.org
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Figure 2. Schematic representation of SAS
execution within a virtual machine, in a Grid

environment

GridWay schedules a grid job as follows: the Informa-

tion Manager (see Figure 1) holds a list with the available

resources in the Grid, and their characteristics. This list is

periodically updated by querying the information services

to monitor and discover grid hosts. The Dispatch Manager

filters out those resources that do not have free slots, or do

not meet the job requirements. Then it sorts the remaining

hosts according to an user-supplied rank expression. The

highest ranked resource is used to dispatch the job.

4.2 Deployment of the Virtual Workspace

In the following experiments, the virtual machine images

are already available at the remote resource. In general, the

images could be downloaded, as any other input file, in the

prolog state, from the client or from an image repository,

using GridFTP or the Reliable File Transfer (RFT) service.

Additionally, GridWay allows the definition of an op-

tional pre-wrapper phase to perform advanced job configu-

ration routines. This phase consists in an user defined pro-

gram that is executed on the cluster front-end. In our case,

this program may check the availability of a given image,

and transfers it from a GridFTP repository if needed. Note

also that higher level data services, like the Replica Loca-

tion Service (RLS), could be used.

Then, the Execution Manager interfaces the WS-GRAM

service to submit the wrapper program, which performs the

following actions:

• It checks the availability of the requested virtual ma-

chine image in the cluster node.

• The virtual machine is started or restored with an

unique identification and MAC address. Then, the



Table 1. Summary of characteristics of the testbed resources.
Host CPU Memory OS Service Configuration

ursa PIV HT 3.2GHz 512MB Fedora Core 4 GT4, GridWay

draco PIV HT 3.2GHz 512MB Debian Etch GT4, PBS, NIS, NFS, DHCP

draco WN PIV HT 3.2GHz 2GB Debian Etch Xen3.0 testing

wrapper waits for the virtual machine activation by pe-

riodically probing its services.

• The wrapper copies all the input files needed by the

experiment to the virtual machine, and it executes the

XMM-Newton analysis program.

• The output files are transferred back to the physical

cluster file system to be copied to the client host in the

epilog phase.

• Finally it shuts down (or suspends to disk) the virtual

machine.

The previous process is depicted in Figure 2.

5 Experimental Infrastructure

5.1 Testbed Description

The behavior of the previous deployment strategy will be

analyzed on a research testbed based on the Globus Toolkit

4.0.1 and GridWay 4.7. The testbed consists of two re-

sources: a client host, and a PBS cluster for processing

purposes. The main characteristics of these machines are

described in Table 1. These hosts are connected by a Fast

Ethernet campus network.

The client host is ursa, which runs an instance of the

GridWay meta-scheduler and holds the input dataset (∼22

MB) with the observation data and the current calibration

file to be analyzed. It also receives the analysis output

files (∼13 MB) with the observation events to perform post-

processing tasks. The SAS tasks are scheduled to the draco

cluster, with two Xen-capable worker nodes (WN). Note

that no virtual machines are started in the cluster front-end.

5.2 Implementation Details

In the following experiments, the OS images are stored

in the front-end and are accessed in the cluster nodes via

NFS. Although this configuration could impose significant

overheads, they have not been experienced because of the

small size of the cluster used in this work.

The disk images have been obtained from a typical clus-

ter worker-node installation with the Fedora Core 4 operat-

ing system and the XMM-Newton SAS software. The in-

stallation is then tailored by deactivating all the services not

needed by the SAS software, e.g. PBS-mon. In addition,

the virtual machine includes a RSH server for executing the

remote commands requested by the wrapper program. Fi-

nally, this disk image is split in three different files to save

storage space and ease its deployment (see Table 2):

• The root file system, with read-write permissions to

modify the virtual machine configuration files at boot

time. Two copies of this disk image are available to be

simultaneously used by the two cluster worker-nodes.

• The usr file system, with the standard Linux applica-

tions and libraries. This disk image is read-only and

shared by all the cluster nodes.

• The opt file system, with the XMM-Newton SAS in-

stallation. This disk image is also read-only and shared

by all the cluster nodes.

Additionally, a local disk image has been created in each

worker-node. The virtual machine mounts this image in the

scratch directory, where the SAS program stores tempo-

ral files and data. So, the input/output operations performed

by analysis software are always made in the local hard disk.

Table 2. Disk layout of the Virtual Machines.
Mount point Size Contents

/ 500MB Fedora Core 4 base system

/usr 650MB Standard Linux applications

/opt 600MB SAS 6.5.0

/scratch 2GB Ext3 disk image

The virtual machines are configured with 512MB of

main memory and one virtual CPU. The virtual machines

network is configured with a DHCP server, which dynami-

cally assigns IP addresses from a private network, different

from the physical cluster network.

6 Results

In this section we study the performance obtained with

several configurations of the virtual workspace, and the

overhead induced by the virtualization in each case. Also

we introduce application level metrics to analyze the results



from the user point of view. Each experiment consists in

performing 100 times the analysis of the same observation

from the XMM-Newton satellite. Also, caching of the ob-

servation data is avoided.
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6.1 Execution without Virtualization
(Test1)

The first experiment submits 100 jobs through the Grid-

Way meta-scheduler with the standard wrapper program,

i.e. without virtualization. To this end, the worker nodes

have been also installed with a Fedora Core 4 operating sys-

tem, and with the same configuration as the virtual images

described in Section 5. In this way, we obtain a performance

upper-bound, that will be used to study the virtualization al-

ternatives below. The average execution time of a SAS job

with this configuration is 148 seconds.

6.2 Persistent Virtual Machines (Test2)

In some situations, when a virtual workspace is fre-

quently used, it could be more efficient to kept it active to

reduce boot and shut-down overheads. This situation may

naturally arise for high throughput computing applications

like the one considered in this work. This experiment mea-

sures the inherent cost of virtualization, which is roughly

20% increment in execution time, as can be seen in Fig-

ure 3.

6.3 Saving and Restoring the Virtual Ma-
chine State (Test3)

The state of a virtual machine includes, in addition to

disk images and Xen configuration files, a representation of

its main memory, and the CPU registers of all its virtual pro-

cessors. When the context of a virtual machine is saved, it

can be later restored, keeping its configuration and resum-

ing the execution of its processes.

This feature, which is efficiently implemented by Xen,

can be used to keep in the virtual machine memory the sys-

tem services, the SAS program and related shared libraries,

without keeping it active and so saving system resources. In

this case, when the execution of the SAS task finishes, the

wrapper program saves the context of the virtual machine,

which is restored before executing another SAS task in that

worker-node.

As expected, the execution time is similar to that ob-

tained in the previous experiment (Test2), see Figure 3. The

additional overhead is mainly due to saving the state of the

virtual machine, and implies an overall increment of 77%

in execution time compared to Test1.

6.4 Stopping and Starting the Virtual
Machines (Test4)

Stopping the virtual machine after the execution of

each SAS task (and starting a new one before execut-

ing it) allows an straightforward deployment of the virtual

workspaces. However, it adds an additional overhead to the

boot/shutdown process of the virtual machines. In partic-

ular, the average execution time is roughly twice that ob-

tained in Test1 (see Figure 3).

The problem size of the astronomical observations used

in the above experiments has been deliberately chosen small

to ease the measurement process. However, in general

it will be considerably larger, increasing the total execu-

tion time to several hours. As the boot/shutdown and

save/restore times are independent of the problem sizes, the

additional overhead of Test4 and Test3 will be negligible.

Therefore, the overall virtualization overhead will tend to

that obtained in Test2.

It is interesting to analyze the system behavior from the

application point of view. The performance obtained in the

execution of a high throughput computing application, can

be studied using the system throughput P (n), defined as

usual:

P (n) =
n

T
(1)

where T is the execution time of n SAS tasks. Note that the

execution time includes file transfer times (29 seconds on

average) and Globus overhead.



Figure 4 shows the system throughput in the execution of

the previous tests. The overhead induced by the virtualiza-

tion can be clearly seen in the difference in the asymptotic

throughput. In this case, the overall system performance is

reduced 13% (from 0.011 jobs/second in Test1 to 0.0095

jobs/second in Test2). Also, it is interesting to note that

in all cases the system needs the same number of tasks to

achieve half of the peak performance (see [14]).

7 Conclusions and Future Work

In this work we have presented a straightforward deploy-

ment of virtual machines in a Grid infrastructure. This strat-

egy does not require additional middleware to be installed

and it is not bounded to a virtualization technology. The

overall overhead induced by the virtualization technology

decreases the application performance by 13%. However,

it presents attractive benefits, like increasing software ro-

bustness or saving administration efforts, so improving the

quality of life in the Grid [12].

This solution presents several drawbacks like a limited

use of the potential benefits offered by the virtualization

technology (e.g. server consolidation), or a limited appli-

cation range (HTC and workflow computations).

The results presented here should be seen as a first step to

incorporate virtual machines in a production environment.

We intend to solve the above problems by integrating the

current solution with the Virtual Workspaces Service.
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