
Cosmological Simulations using Grid Middleware

Y. Caniou1, E. Caron1, B. Depardon1, H. Courtois2, and R. Teyssier3

1LIP/ÉNS de Lyon 2CRAL
46 Allée d’Italie Observatoire de Lyon

69364 Lyon Cedex 07, FRANCE 69561 Saint Genis Laval Cedex, FRANCE
{Yves.Caniou,Eddy.Caron}@ens-lyon.fr courtois@IfA.Hawaii.edu

Benjamin.Depardon@ens-lyon.fr

3Service d’Astrophysique
CEA - Saclay, Bâtiment 709

F-91191 Gif-sur-Yvette Cedex, FRANCE
romain.teyssier@cea.fr

Abstract

Large problems ranging from numerical simulation can
now be solved through the Internet using grid middleware.
This paper describes the different steps involved to make
available a service in the DIET grid middleware. The cos-
mological RAMSES application is taken as an example to
detail the implementation. Furthermore, several results are
given in order to show the benefits of using DIET, among
which the transparent usage of numerous clusters and a
low overhead (finding the right resource and submitting the
computing task).

This work was developed with financial support from
the ANR (Agence Nationale de la Recherche) through the
LEGO project referenced ANR-05-CIGC-11.

1 Introduction

One way to access the aggregated power of a collection
of heterogeneous machines is to use a grid middleware, such
as DIET [3], GridSolve [15] or Ninf [6]. It addresses the
problem of monitoring the resources, of handling the sub-
missions of jobs and as an example the inherent transfer of
input and output data, in place of the user.

In this paper we present how to run cosmological simu-
lations using the RAMSES application along with the DIET

middleware. Based on this example, we will present the

1-4244-0910-1/07/$20.00 c©2007 IEEE

basic implementation schemes one must follow in order
to write the corresponding DIET client and server for any
service. The remainder of the paper is organized as fol-
lows: Section 3 presents the DIET middleware. Section 4
describes the RAMSES cosmological software and simula-
tions, and how to interface it with DIET. We show how to
write a client and a server in Section 5. Finally, Section 6
presents the experiments realized on Grid’5000, the French
Research Grid, and we conclude in Section 7.

2 Related Work

Several approaches exist for porting applications to grid
platforms; examples include classic message-passing, batch
processing, web portals, and GridRPC systems [9]. This
last approach implements a grid version of the classic Re-
mote Procedure Call (RPC) model. Clients submit com-
putation requests to a scheduler that locates one or more
servers available on the grid. Scheduling is frequently ap-
plied to balance the work among the servers and a list of
available servers is sent back to the client; the client is then
able to send the data and the request to one of the suggested
servers to solve their problem. To make effective use of to-
day’s scalable resource platforms, it is important to ensure
scalability in the middleware layers.

Different kind of middleware are compliant to GridRPC
paradigm. Among them, NetSolve [2], Ninf [6], Om-
niRPC [8] and DIET (see Section 3) have particularly pur-
sued research involving the GridRPC paradigm. NetSolve,
developed at the University of Tennessee, Knoxville allows

the connection of clients to a centralized agent and requests
are sent to servers. This centralized agent maintains a list
of available servers along with their capabilities. Servers
report information about their status at given intervals, and
scheduling is done based on simple models provided by the
application developers. Some fault tolerance is also pro-
vided at the agent level. Ninf is an NES (Network Enabled
Servers) system developed at the Grid Technology Research
Center, AIST in Tsukuba. Close to NetSolve in its initial
design choices, it has evolved towards several interesting
approaches using either Globus [14] or Web Services [11].
Fault tolerance is also provided using Condor and a check-
pointing library [7]. As compared to the NES systems de-
scribed above, DIET, developed by GRAAL project at ÉNS
Lyon, France is interesting because of the use of distributed
scheduling to provide better scalability, the ability to tune
behavior using several APIs, and the use of CORBA as a
core middleware. Moreover DIET provides plug-in sched-
uler capability, fault tolerance mechanism, a workflow man-
agement support and a batch submission manager [1]. We
plan to use these new features for the cosmological applica-
tion described in Section 4.

3 DIET overview

3.1 DIET architecture

DIET [3] is built upon the client/agent/server paradigm.
A Client is an application that uses DIET to solve problems.
Different kinds of clients should be able to connect to DIET:
from a web page, a PSE such as Scilab1, or from a program
written in C, C++, Java or Fortran. Computations are done
by servers running a Server Daemons (SED). A SED en-
capsulates a computational server. For instance it can be
located on the entry point of a parallel computer. The in-
formation stored by a SED is a list of the data available on
its server, all information concerning its load (for example
available memory and processor) and the list of problems
that it can solve. The latter are declared to its parent agent.
The hierarchy of scheduling agents is made of a Master
Agent (MA) and Local Agents (LA) (see Figure 1).

When a Master Agent receives a computation request
from a client, agents collect computation abilities from
servers (through the hierarchy) and chooses the best one
according to some scheduling heuristics. The MA sends
back a reference to the chosen server. A client can be con-
nected to a MA by a specific name server or by a web page
which stores the various MA locations (and the available
problems). The information stored on an agent is the list of
requests, the number of servers that can solve a given prob-
lem and information about the data distributed in its subtree.

1http://www.scilab.org/

CLIENT

DIET

MA

LA

LALA

LA

LA LA

DIET Client

Client: Application view

High Level Interface

DIET Server
CORBA

Server: Application view

Application Fortran, Java...
C, C++, MPI,

Fortan, Java...

Fortan, Java...
C, C++,

Scilab...
Web page,

CORBA
C++,

C++,

C, C++,

SERVER

Distributed scheduler

Figure 1. Different interaction layers between
DIET core and application view

For performance reasons, the hierachy of agents should be
deployed depending on the underlying network topology.

Finally, on the opposite of GridSolve and Ninf which
rely on a classic socket communication layer (nevertheless
several problems to this approach have been pointed out
such as the lack of portability or the limitation of opened
sockets), DIET uses CORBA. Indeed, distributed object en-
vironments, such as Java, DCOM or CORBA have proven
to be a good base for building applications that manage ac-
cess to distributed services. They provide transparent com-
munications in heterogeneous networks, but they also offer
a framework for the large scale deployment of distributed
applications. Moreover, CORBA systems provide a remote
method invocation facility with a high level of transparency
which does not affect performance [5].

3.2 How to add a new grid application
within DIET?

The main idea is to provide some integrated level for a
grid application. Figure 1 shows these different kinds of
level.

The application server must be written to give to DIET

the ability to use the application. A simple API is available
to easily provide a connection between the DIET server and
the application. The main goals of the DIET server are
to answer to monitoring queries from its responsible Local
Agent and launch the resolution of a service, upon an appli-
cation client request.

The application client is the link between high-level in-
terface and the DIET client, and a simple API is provided to
easily write one. The main goals of the DIET client are to
submit requests to a scheduler (called Master Agent) and to

receive the identity of the chosen server, and final step, to
send the data to the server for the computing phase.

4 RAMSES overview

RAMSES 2 is a typical computational intensive appli-
cation used by astrophysicists to study the formation of
galaxies. RAMSES is used, among other things, to simulate
the evolution of a collisionless, self-gravitating fluid called
“dark matter” through cosmic time (see Figure 2). Indi-
vidual trajectories of macro-particles are integrated using
a state-of-the-art “N body solver”, coupled to a finite vol-
ume Euler solver, based on the Adaptive Mesh Refinement
technics. The computational space is decomposed among
the available processors using a mesh partitionning strategy
based on the Peano–Hilbert cell ordering [12, 13].

Figure 2. Time sequence (from left to right) of
the projected density field in a cosmological
simulation (large scale periodic box).

Cosmological simulations are usually divided into two
main categories. Large scale periodic boxes (see Figure 2)
requiring massively parallel computers are performed on
very long elapsed time (usually several months). The sec-
ond category stands for much faster small scale “zoom
simulations”. One of the particularity of the HORIZON3

project is that it allows the re-simulation of some areas of
interest for astronomers.

For example in Figure 3, a supercluster of galaxies has
been chosen to be re-simulated at a higher resolution (high-
est number of particules) taking the initial information and
the boundary conditions from the larger box (of lower res-
olution). This is the latter category we are interested in.
Performing a zoom simulation requires two steps: the first
step consists of using RAMSES on a low resolution set of
initial conditions i.e., with a small number of particles) to
obtain at the end of the simulation a catalog of “dark matter
halos”, seen in Figure 2 as high-density peaks, containing
each halo position, mass and velocity. A small region is se-
lected around each halo of the catalog, for which we can
start the second step of the “zoom” method. This idea is
to resimulate this specific halo at a much better resolution.
For that, we add in the Lagrangian volume of the chosen
halo a lot more particles, in order to obtain more accurate

2http://www.projet-horizon.fr/

Figure 3. Re-simulation on a supercluster of
galaxies to increase the resolution

results. Similar “zoom simulations” are performed in paral-
lel for each entry of the halo catalog and represent the main
resource consuming part of the project.

RAMSES simulations are started from specific initial
conditions, containing the initial particle masses, positions
and velocities. These initial conditions are read from For-
tran binary files, generated using a modified version of the
GRAFIC3 code. This application generates Gaussian ran-
dom fields at different resolution levels, consistent with
current observational data obtained by the WMAP4 satel-
lite observing the cosmic microwave background radia-
tion. Two types of initial conditions can be generated with
GRAFIC:

• single level: this is the “standard” way of generating
initial conditions. The resulting files are used to per-
form the first, low-resolution simulation, from which
the halo catalog is extracted.

• multiple levels: this initial conditions are used for the
“zoom simulation”. The resulting files consist of mul-
tiple, nested boxes of smaller and smaller dimensions,
as for Russian dolls. The smallest box is centered
around the halo region, for which we have locally a

3http://web.mit.edu/edbert
4http://map.gsfc.nasa.gov

very high accuracy thanks to a much larger number of
particles.

The result of the simulation is a set of “snaphots”. Given
a list of time steps (or expansion factor), RAMSES outputs
the current state of the universe (i.e., the different parame-
ters of each particules) in Fortran binary files.

These files need post-processing with GALICS soft-
wares: HaloMaker, TreeMaker and GalaxyMaker. These
three softwares are meant to be used sequentially, each of
them producing different kinds of information:

• HaloMaker: detects dark matter halos present in RAM-
SES output files, and creates a catalog of halos

• TreeMaker: given the catalog of halos, TreeMaker
builds a merger tree: it follows the position, the mass,
the velocity of the different particules present in the
halos through cosmic time

• GalaxyMaker: applies a semi-analytical model to the
results of TreeMaker to form galaxies, and creates a
catalog of galaxies

Figure 4 shows the sequence of softwares used to realise
a whole simulation.

5 Interfacing RAMSES within DIET

5.1 Architecture of underlying deploy-
ment

The current version of RAMSES requires a NFS work-
ing directory in order to write the output files, hence re-
stricting the possible types of solving architectures. Each
DIET server will be in charge of a set of machines (typi-
cally 32 machines to run a 2563 particules simulation) be-
longing to the same cluster. For each simulation the gener-
ation of the initial conditions files, the processing and the
post-processing are done on the same cluster: the server in
charge of a simulation manages the whole process.

5.2 Server design

The DIET server is a library. So the RAMSES server re-
quires to define the main() function, which contains the
problem profile definition and registration, and the solving
function, whose parameter only consists of the profile and
named after the service name, solve_serviceName.

The RAMSES solving function contains the calls to the
different programs used for the simulation, and which will
manage the MPI environment required by RAMSES. It is
recorded during the profile registration.

1

j+1

Retreiving simulation
parameters
Setting the MPI
environment

RAMSES3d (MPI code)

TreeMaker :
Post−processing
HaloMaker’s outputs GalaxyMaker :

Post−processing
Treemaker’s outputs

2
GRAFIC1: first run
No zoom, no offset

3
rollWhiteNoise : centering
according to the offsets
cx, cy and cz

4 GRAFIC1: second run
with offsets

If nb levels == 0

GRAFIC1...

GRAFIC2...

GRAFIC2...

GRAFIC2...

GRAFIC2

5’ 5" 5"’ 5n

6n

7n

8n

jn

8"’

7"’

6"’6"

7"

6’

HaloMaker
on 1
snapshot
per process

... n

Stopping the environment
Sending the
post−processing to
the client

j+2’ j+2" j+2’’’ j+2

j+3

j+4

j+5

Figure 4. Workflow of a simulation

The SED is launched with a call to diet_SeD() in the
main() function, which will never return (except if some
errors occur). The SED forks the solving function when
requested.

Here is the main structure of a DIET server:

#include "DIET_server.h"

/* Defining the service function */
int solve_service(diet_profile_t *pb)
{ ... }

/* Defining the main function */
int main(int argc, char* argv[])
{

/* Initialize service table with the number of services */

/* Define the services’ profiles */

/* Add the services */

/* Free the profile descriptors */

/* Launch the SeD */
}

5.2.1 Defining services

To match client requests with server services, clients
and servers must use the same problem description.
A unified way to describe problems is to use a
name and define its arguments. The RAMSES ser-
vice is described by a profile description structure called

diet_profile_desc_t. Among its fields, it con-
tains the name of the service, an array which does not
contain data, but their characteristics, and three integers
last_in, last_inout and last_out. The struc-
ture is defined in DIET_server.h.

The array is of size last_out + 1. Arguments can be:

IN: Data are sent to the server. The memory is allocated
by the user.

INOUT: Data, allocated by the user, are sent to the server
and brought back into the same memory zone after the
computation has completed, without any copy. Thus
freeing this memory while the computation is per-
formed on the server would result in a segmentation
fault when data are brought back onto the client.

OUT: Data are created on the server and brought back into
a newly allocated zone on the client. This allocation
is performed by DIET. After the call has returned, the
user can find its result in the zone pointed by the value
field. Of course, DIET cannot guess how long the user
needs these data for, so it lets him/her free the memory
with diet_free_data().

The fields last_in, last_inout and last_out of the structure
respectively point at the indexes in the array of the last IN,
last INOUT and last OUT arguments.

Functions to create and destroy such profiles are defined
with the prototypes below. Note that if a server can solve
multiple services, each profile should be allocated.
diet_profile_desc_t *diet_profile_desc_alloc(const char* path, int last_in,

int last_inout, int last_out);
diet_profile_desc_t *diet_profile_desc_alloc(int last_in, int last_inout,

int last_out);

int diet_profile_desc_free(diet_profile_desc_t *desc);

The cosmological simulation is divided in two services:
ramsesZoom1 and ramsesZoom2, they represent the
two parts of the simulation. The first one is used to de-
termine interesting parts of the universe, while the second
is used to study these parts in details. The ramsesZoom2
service uses nine data. The seven firsts are IN data, and
contain the simulation parameters:

• a file containing parameters for RAMSES

• resolution of the simulation (number of particules)

• size of the initial conditions (in Mpc.h−1)

• center’s coordinates of the initial conditions (3 coordi-
nates: cx, cy and cz)

• number of zoom levels (number of nested boxes)

The last two are integers for error controls, and a file
containing the results obtained from the simulation post-
processed with GALICS. This conducts to the following in-
clusion in the server code (note: the same allocation must be
performed on the client side, with the diet_profile_t
structure):

/* arg.profile is a diet_profile_desc_t * */
arg.profile = diet_profile_desc_alloc("ramsesZoom2", 6, 6, 8);

Every argument of the profile must then be set
with diet_generic_desc_set() defined in
DIET_server.h, like:

diet_generic_desc_set(diet_parameter(pb,0), DIET_FILE, DIET_CHAR);
diet_generic_desc_set(diet_parameter(pb,1), DIET_SCALAR, DIET_INT);

5.2.2 Registering services

Every defined service has to be added in the service table
before the SED is launched. The complete service table
API is defined in DIET_server.h:

typedef int (* diet_solve_t)(diet_profile_t *);

int diet_service_table_init(int max_size);
int diet_service_table_add(diet_profile_desc_t *profile, NULL,

diet_solve_t solve_func);
void diet_print_service_table();

The first parameter, profile, is a pointer on the pro-
file previously described (section 5.2.1). The second pa-
rameter concerns the convertor functionality, but this is
out of scope of this paper and never used for this ap-
plication. The parameter solve_func is the type of the
solve_serviceName() function: a function pointer
used by DIET to launch the computation. Then the pro-
totype is:

int solve_ramsesZoom2(diet_profile_t* pb)
{
/* Set data access */
/* Computation */

}

5.2.3 Data management

The first part of the solve function (called
solve_ramsesZoom2()) is to set data access.
The API provides useful functions to help coding the
solve function e.g., get IN arguments, set OUT ones, with
diet_*_get() functions defined in DIET_data.h.
Do not forget that the necessary memory space for
OUT arguments is allocated by DIET. So the user
should call the diet_*_get() functions to retrieve
the pointer to the zone his/her program should write to.
To set INOUT and OUT arguments, one should use the
diet_*_desc_set() defined in DIET_server.h.
These should be called within “solve” functions only.

diet_file_get(diet_parameter(pb,0), NULL, &arg_size, &nmlPath);
diet_scalar_get(diet_parameter(pb,1), &resol, NULL);
diet_scalar_get(diet_parameter(pb,2), &size, NULL);
diet_scalar_get(diet_parameter(pb,3), &cx, NULL);
diet_scalar_get(diet_parameter(pb,4), &cy, NULL);
diet_scalar_get(diet_parameter(pb,5), &cz, NULL);
diet_scalar_get(diet_parameter(pb,6), &nbBox, NULL);

The results of the simulation are packed into a tarball
file if it succeeded. Thus we need to return this file and
an error code to inform the client whether the file re-
ally contains results or not. In the following code, the
diet_file_set() function associates the DIET param-
eter with the current file. Indeed, the data should be avail-
able for DIET, when it sends the resulting file to the client.

char* tgzfile = NULL;
tgzfile = (char*)malloc(tarfile.length()+1);
strcpy(tgzfile, tarfile.c_str());
diet_file_set(diet_parameter(pb,7), DIET_VOLATILE, tgzfile);

5.3 Client

In the DIET architecture, a client is an application which
uses DIET to request a service. The goal of the client is
to connect to a Master Agent in order to dispose of a SED
which will be able to solve the problem. Then the client
sends input data to the chosen SED and, at the end of com-
putation, retrieve output data from the SED. DIET provides
API functions to easily and transparently access the DIET

platform.

5.3.1 Structure of a client program

Since the client side of DIET is a library, a client program
has to define the main() function: it uses DIET through
function calls. Here is the main structure of a DIET client:

#include "DIET_client.h"

int main(int argc, char *argv[])
{

/* Initialize a DIET session */
diet_initialize(configuration_file, argc, argv);

/* Create the profile */

/* Set profile arguments */

/* Successive DIET calls ... */

/* Retreive data */

/* Free profile */

diet_finalize();

}

The client program must open its DIET session with a
call to diet_initialize(). It parses the configuration
file given as the first argument, to set all options and get a
reference to the DIET Master Agent. The session is closed
with a call to diet_finalize(). It frees all resources,
if any, associated with this session on the client, servers,
and agents, but not the memory allocated for all INOUT
and OUT arguments brought back onto the client during the
session. Hence, the user can still access them (and still has
to free them !).

The client API follows the GridRPC definition [10]: all
diet_ functions are “duplicated” with grpc_ functions.
Both diet_initialize()/grpc_initialize()
and diet_finalize()/grpc_finalize() belong
to the GridRPC API.

A problem is managed through a function_handle, that
associates a server to a service name. The returned func-
tion_handle is associated to the problem description, its
profile, during the call to diet_call().

5.3.2 Data management

The API to the DIET data structures consists of modifier and
accessor functions only: no allocation function is required,
since diet_profile_alloc() allocates all necessary
memory for all argument descriptions. This avoids the
temptation for the user to allocate the memory for these data

structures twice (which would lead to DIET errors while
reading profile arguments).

Moreover, the user should know that arguments of the
_set functions that are passed by pointers are not copied,
in order to save memory. Thus, the user keeps ownership
of the memory zones pointed by these pointers, and he/she
must be very careful not to alter it during a call to DIET. An
example of prototypes:
int diet_scalar_set(diet_arg_t* arg, void* value, diet_persistence_mode_t mode,

diet_base_type_t base_type);
int diet_file_set(diet_arg_t* arg, diet_persistence_mode_t mode, char* path);

Hence arguments used in the ramsesZoom2 simulation
are declared as follows:
// IN parameters
if (diet_file_set(diet_parameter(arg.profile,0), DIET_VOLATILE, namelist))
{

cerr << "diet_file_set error on the <namelist.nml> file" << endl;
return 1;

}
diet_scalar_set(diet_parameter(arg.profile,1),

&resol, DIET_VOLATILE, DIET_INT);
diet_scalar_set(diet_parameter(arg.profile,2),

&size, DIET_VOLATILE, DIET_INT);
diet_scalar_set(diet_parameter(arg.profile,3),

&arg.cx, DIET_VOLATILE, DIET_INT);
diet_scalar_set(diet_parameter(arg.profile,4),

&arg.cy, DIET_VOLATILE, DIET_INT);
diet_scalar_set(diet_parameter(arg.profile,5),

&arg.cz, DIET_VOLATILE, DIET_INT);
diet_scalar_set(diet_parameter(arg.profile,6),

&arg.nbBox, DIET_VOLATILE, DIET_INT);
// OUT parameters
diet_scalar_set(diet_parameter(arg.profile,8), NULL,

DIET_VOLATILE, DIET_INT);
if (diet_file_set(diet_parameter(arg.profile,7), DIET_VOLATILE, NULL))
{

cerr << "diet_file_set error on the OUT file" << endl;
return 1;

}

It is to be noticed that the OUT arguments should be de-
clared even if their values is set to NULL. Their values will
be set by the server that will execute the request.

Once the call to DIET is done, we need to access the
OUT data. The 8th parameter is a file and the 9th is an in-
teger containing the error code of the simulation (0 if the
simulation succeeded):
int* returnedValue;
size_t tgzSize = 0;
char* tgzPath = NULL;
diet_scalar_get(diet_parameter(simusZ2[reqID].profile,8),

&returnedValue, NULL);
if (!*returnedValue) {

diet_file_get(diet_parameter(simusZ2[reqID].profile,7),
NULL, &tgzSize, &tgzPath);

}

6 Experiments

6.1 Experiments description

Grid’50005 is the French Research Grid. It is composed
of 9 sites spread all over France, each with 100 to 1000 PCs,
connected by the RENATER Education and Research Net-
work (1Gb/s or 10Gb/s). For our experiments, we deployed
a DIET platform on 5 sites (6 clusters).

• 1 MA deployed on a single node, along with om-
niORB, the monitoring tools, and the client

• 6 LA: one per cluster (2 in Lyon, and 1 in Lille, Nancy,
Toulouse and Sophia)

5http://www.grid5000.fr

• 11 SEDs: two per cluster (one cluster of Lyon had only
one SED due to reservation restrictions), each control-
ling 16 machines (AMD Opterons 246, 248, 250, 252
and 275)

We studied the possibility of computing a lot of low-
resolution simulations. The client requests a 1283 particles
100Mpc.h−1 simulation (first part). When it receives the
results, it requests simultaneously 100 sub-simulations (sec-
ond part). As each server cannot compute more than one
simulation at the same time, we won’t be able to have more
than 11 parallel computations at the same time.

6.2 Results

The experiment (including both the first and the second
part of the simulation) lasted 16h 18min 43s (1h 15min 11s
for the first part and an average of 1h 24min 1s for the sec-
ond part). After the first part of the simulation, each SED
received 9 requests (one of them received 10 requests) to
compute the second part (see Figure 5, left). As shown in
Figure 5 (right) the total execution time for each SED is
not the same: about 15h for Toulouse and 10h30 for Nancy.
Consequently, the schedule is not optimal. The equal dis-
tribution of the requests does not take into account the ma-
chines processing power. In fact, at the time when DIET re-
ceives the requests (all at the same time) the second part of
the simulation has never been executed, hence DIET doesn’t
know anything on its processing time, the best it can do is
to share the total amount of requests on the available SEDs.
A better makespan could be attained by writing a plug-in
scheduler[4].

The benefit of running the simulation in parallel on dif-
ferent clusters is clearly visible: it would take more than
141h to run the 101 simulation sequentially. Furthermore,
the overhead induced by the use of DIET is extremely low.
Figure 6 shows the time needed to find a suitable SED for
each request, as well as in log scale, the latency (i.e., the
time needed to send the data from the client to the chosen
SED, plus the time needed to initiate the service).

The finding time is low and nearly constant (49.8ms on
average). The latency grows rapidly. Indeed, the client re-
quests 100 sub-simulations simultaneously, and each SED
cannot compute more than one of them at the same time.
Requests cannot be proceeded until the completion of the
precedent one. This waiting time is taken into account in
the latency. Note that the average time for initiating the
service is 20.8ms (taken on the 12 firsts executions). The
average overhead for one simulation is about 70.6ms, in-
ducing a total overhead for the 101 simulations of 7s, which
is neglectible compared to the total processing time of the
simulations.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 3 4 5 6 7 8 9 10

C
om

pu
ta

tio
n

tim
e

(h
)

Requests

Nancy1
Nancy2

Sophia1
Sophia2

Lille1
Lille2

Toulouse1
Toulouse2
Lyon1-cap
Lyon1-sag
Lyon2-sag

Figure 5. Simulation’s distribution over the
SEDs: at the top, the Gantt chart; at the
bottom, the execution time of the 100 sub-
simulations for each SED

7 Conclusion

In this paper, we presented the design of a DIET client
and server based on the example of cosmological simula-
tions. As shown by the experiments, DIET is capable of
handling long cosmological parallel simulations: mapping
them on parallel resources of a grid, executing and process-
ing communication transfers. The overhead induced by the
use of DIET is neglectible compared to the execution time
of the services. Thus DIET permits to explore new research
axes in cosmological simulations (on various low resolu-
tions initial conditions), with transparent access to the ser-
vices and the data.

Currently, two points restrict the ease of use of these sim-
ulations, and their performance: the whole simulation pro-
cess is hard-coded within the server, and the schedule could

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 0 20 40 60 80 100
1

10

100

1000

10000

100000

1e+06

1e+07

1e+08

F
in

di
ng

 ti
m

e
(m

s)

La
te

nc
y

(m
s)

Request number

Find
Latency

Figure 6. Finding time and latency

be greatly improved. A first next step will be to use one of
the latest DIET feature: the workflow management system,
which uses an XML document to represent the nodes and
the data dependancies. The simulation execution sequence
could be represented as a directed acyclic graph, hence be-
ing seen as a workflow. A second step will be to write a
plug-in scheduler, to best map the simulations on the avail-
able resources according to their processing power, to lower
the unbalance observed between the SEDs. Finally, trans-
parence could be added to the deployment of the platform,
by using the DIET batch system. It allows to make trans-
parent reservations of the resources on batch systems like
OAR, and to run the jobs by submitting a script.

References

[1] A. Amar, R. Bolze, A. Bouteiller, P. Chouhan, A. Chis,
Y. Caniou, E. Caron, H. Dail, B. Depardon, F. Desprez, J.-S.
Gay, G. Le Mahec, and A. Su. Diet: New developments and
recent results. In CoreGRID Workshop on Grid Middleware
(in conjunction with EuroPar2006), Dresden, Germany, Au-
gust 28-29 2006.

[2] D. Arnold, S. Agrawal, S. Blackford, J. Dongarra, M. Miller,
K. Sagi, Z. Shi, and S. Vadhiyar. Users’ Guide to NetSolve
V1.4. Computer Science Dept. Technical Report CS-01-467,
University of Tennessee, Knoxville, TN, July 2001.

[3] E. Caron and F. Desprez. Diet: A scalable toolbox to build
network enabled servers on the grid. International Journal
of High Performance Computing Applications, 20(3):335–
352, 2006.

[4] A. Chis, E. Caron, F. Desprez, and A. Su. Plug-in sched-
uler design for a distributed grid environment. In ACM/I-
FIP/USENIX, editor, 4th International Workshop on Mid-
dleware for Grid Computing - MGC 2006, Melbourne, Aus-
tralia, November 27th 2006. To appear. In conjunction with
ACM/IFIP/USENIX 7th International Middleware Confer-
ence 2006.

[5] A. Denis, C. Perez, and T. Priol. Towards high performance
CORBA and MPI middlewares for grid computing. In C. A.
Lee, editor, Proc. of the 2nd International Workshop on Grid
Computing, number 2242 in LNCS, pages 14–25, Denver,
Colorado, USA, Nov. 2001. Springer-Verlag.

[6] H. Nakada, M. Sato, and S. Sekiguchi. Design and imple-
mentations of ninf: towards a global computing infrastruc-
ture. Future Generation Computing Systems, Metacomput-
ing Issue, 15:649–658, 1999.

[7] H. Nakada, Y. Tanaka, S. Matsuoka, and S. Sekiguchi. The
Design and Implementation of a Fault-Tolerant RPC Sys-
tem: Ninf-C. In Proceeding of HPC Asia 2004, pages 9–18,
2004.

[8] M. Sato, T. Boku, and D. Takahasi. OmniRPC: a Grid RPC
System for Parallel Programming in Cluster and Grid Envi-
ronment. In Proceedings of CCGrid2003, pages 206–213,
Tokyo, May 2003.

[9] K. Seymour, C. Lee, F. Desprez, H. Nakada, and Y. Tanaka.
The End-User and Middleware APIs for GridRPC. In Work-
shop on Grid Application Programming Interfaces, In con-
junction with GGF12, Brussels, Belgium, Sept. 2004.

[10] K. Seymour, H. Nakada, S. Matsuoka, J. Dongarra, C. Lee,
and H. Casanova. Overview of GridRPC: A Remote Pro-
cedure Call API for Grid Computing. In Grid Computing -
Grid 2002, LNCS 2536, pages 274–278, November 2002.

[11] S. Shirasuna, H. Nakada, S. Matsuoka, and S. Sekiguchi.
Evaluating Web Services Based Implementations of
GridRPC. In Proceedings of the 11th IEEE International
Symposium on High Performance Distributed Computing
(HPDC-11 2002), pages 237–245, July 2002.

[12] R. Teyssier. Cosmological hydrodynamics with adaptive
mesh refinement. A new high resolution code called RAM-
SES. Astronomy and Astrophysics, 385:337–364, 2002.

[13] R. Teyssier, S. Fromang, and E. Dormy. Kinematic dy-
namos using constrained transport with high order Godunov
schemes and adaptive mesh refinement. Journal of Compu-
tational Physics, 218:44–67, Oct. 2006.

[14] Y. Tanaka and H. Takemiya and H. Nakada and S. Sekiguchi.
Design, Implementation and Performance Evaluation of
GridRPC Programming Middleware for a Large-Scale Com-
putational Grid. In Proceedings of 5th IEEE/ACM Interna-
tional Workshop on Grid Computing, pages 298–305, 2005.

[15] A. YarKhan, K. Seymour, K. Sagi, Z. Shi, and J. Dongarra.
Recent developments in gridsolve. In Y. Robert, editor, In-
ternational Journal of High Performance Computing Appli-
cations (Special Issue: Scheduling for Large-Scale Hetero-
geneous Platforms), volume 20. Sage Science Press, spring
2006.

