
Topaz: Extending Firefox to Accommodate the GridFTP Protocol

Richard Zamudio1, Daniel Catarino1, Michela Taufer1,
Brent Stearn2, Karan Bhatia2

1University of Texas at El Paso 2San Diego Supercomputer Center
Dept. of Computer Science University of California San Diego

El Paso, TX 79968 USA La Jolla, CA 92093 USA
{rzamudio, dcatarino1, mtaufer}@utep.edu {flujul, karan}@sdsc.edu

Abstract

As grid infrastructures mature, an increasing challenge
is to provide end-user scientists with intuitive interfaces to
computational services, data management capabilities, and
visualization tools. One novel approach, being successfully
applied in the domain of Computational Chemistry, is to
leverage the capabilities of the Mozilla framework to pro-
vide rich end-user tools that seamlessly integrate with re-
mote resources such as web/grid services and data reposi-
tories. The Mozilla framework provides much of the infras-
tructure to build rich end-user applications, but lacks the
capability to integrate with Grid protocols and APIs.

In this paper we present the design and evaluation of
Topaz, a Mozilla-based component that provides GridFTP
functionality to the popular Firefox browser. Topaz pro-
vides end-user scientists with a familiar and user-friendly
interface with which to access arbitrary GridFTP servers
by providing upload and download functionalities as well
as by obtaining and managing users’ grid certificates.

1. Introduction

As grid infrastructures mature, an increasing challenge
is to provide end-user scientists with intuitive interfaces to
access computational services, data management capabili-
ties, and visualization tools [9]. While grid infrastructure
tools are typically designed and deployed on server-class
systems running a version of Unix, end-users typically have
less powerful desktop or laptop computers running a desk-
top OS for their day-to-day work. Therefore, end-users can-
not easily access the server resources because their desktops
and laptops are not integrated into the grid. Furthermore,

1-4244-0910-1/07/$20.00 c©2007 IEEE.

users lack a unified environment with which to access the
wide range of services. Some services are accessed by web
portals, others by commandline tools, still others with cus-
tom tools with little commonality. The grid user community
has been driving the development of user-friendly tools that
resemble familiar environments such as browsers, hence the
interest in web portal frameworks [15]. While these web
portals do provide a browser-based access mechanism for
a variety of grid services, they do not sufficiently integrate
the capability of the end-users’ desktop or laptop machine.
So, for example, a web portal may provide an interface for
GridFTP, but the GridFTP protocol is used only between the
web server and the GridFTP server: so called ”last-mile”
communication to the end user uses standard web-based
uploading. In contrast to web-portals, our previous work
with Gemstone [2, 13] suggests and supports our general
idea presented in [6] of extending the Mozilla core frame-
work with grid computing capabilities in order to provide
scientists with a truly integrated environment, from desk-
top or laptop to the backend grid services and applications.
The Mozilla framework, being developed as an open-source
project by the Mozilla Foundation, provides much of the
necessary infrastructure to build rich end-user applications
across a very wide range of platforms. The Firefox browser,
Thunderbird email client, and Sunbird desktop calendar ap-
plications are just three examples of applications built on
top of the Mozilla framework. Key to its success is its abil-
ity to develop additional capabilities through new XPCOM
components written in C/C++ or Java, JavaScript, Perl,
Python, and Ruby, through an XPCOM language binding.
Using this, grid computing APIs can be easily integrated
into the framework in order to build rich desktop applica-
tions that integrate with back-end grid services. In this pa-
per we present the design and evaluation of one component
of our integrated environment that we call Topaz. Topaz
is a web browser extension that allows end-users to ac-
cess GridFTP servers directly from their desktop machine.

The extension works with the Mozilla Firefox browser and
can potentially support all platforms that Firefox supports
(our current version supports Linux and Mac OS X envi-
ronments). With the Topaz extension, the Firefox browser
directly supports the GridFTP protocol allowing the end-
user to specify a gsiftp URL (i.e., ”gsiftp://server/file”) and
provides file upload and download capabilities. In addition,
Topaz supports GSI-based user authentication.

The rest of this paper is organized as follows: Section 2
gives an overview of our approach and discusses our goals
of implementing a general, integrated environment based
on Mozilla for accessing a wide range of application, grid,
resource, and security services. Section 3 presents the de-
sign and implementation of one component of this envi-
ronment: Topaz, a Firefox protocol extension for GridFTP.
Section 4 looks at the overhead due to the integration of
Topaz into Mozilla. Section 5 discusses critical aspects
related to Topaz and introduces future work. Section 6
presents some important related work and Section 7 con-
cludes this paper.

2. An Environment to Access Services

2.1. Overview of the unified environment

Three of the current challenges with respect to end-user
accessibility to grid computing resources are: (1) the need
for cross-platform end-user tools; (2) the lack of integration
between the end-users’ day-to-day computing environment
and the grid fabric; and (3) the extreme heterogeneity of
end-user tools for accessing different types of services and
APIs.

Regarding the first challenge, today’s end-users run a va-
riety of laptop and desktop operating systems, including
various versions of Microsoft Windows, Mac OS X, and
Linux. Developing tools that not only execute on all these
platforms, but also provide a simple installation procedure
and automatic updates without interfering with other appli-
cations or requiring multiple dependent libraries or tools is
a significant software engineering challenge. Regarding the
second challenge, grid computing was originally designed
for server-class hardware running server operating systems
and while many approaches have been taken to include
desktop systems [7, 1, 4], they all have their shortcomings.
Nevertheless, the fact remains that desktops and laptops are
users’ primary computers, providing the most effective ca-
pabilities for visualization and data management. Regard-
ing the third challenge, as defined by Foster et al. in [9],
the grid architecture is a layered collection of services ac-
cessed through the proper APIs and SDKs. Foster et al.
define four general classes of services: application, grid, re-
source, and security services. Different services define their
own particular protocols or APIs with which users can in-

resource service

Mozilla framework

grid service

 grid
protocols

application service

application
protocols

resource
protocols

USER

security service

 security
protocols

Figure 1. Our proposed environment that in-
tegrates service protocols into the Mozilla
framework.

teract. For example, users employ the UberFTP command-
line tool and the GridFTP protocol to communicate with a
GridFTP data service in the resource class; and security ser-
vices are accessed using GSI-based tools such as GAMA [5]
and MyProxy [3].

These three challenges are the key motivation of our ef-
fort towards building the rich, user-friendly environment
shown in Figure 1. In our approach, the Mozilla framework
serves as the unified environment for end-users to interact
with the many different APIs and protocols. The advan-
tages of this approach include: (1) Cross platform support,
(2) Familiar user abstractions, (3) High level of interactivity,
and (4) Integration of local desktop or laptop resources.

Currently our environment includes Gemstone [11] (a
component that provides an end-user with the capability to
access grid application services in the domain of computa-
tional chemistry including access to computational clusters
and the Protein Databank public datasets) and Topaz (the
GridFTP extension presented in this paper that allows users
to access GridFTP servers) [6]. Both Topaz and Gemstone
include support to access standard grid security services.

The choice of Mozilla rather than other tools such as
.Net, web portals, or java applications is based on the fol-
lowing analysis: In contrast to .Net, the Mozilla framework
is supported on a large number of platforms and provides
a cross-platform mechanism for building user interfaces as
well as packaging and deploying of applications. Mozilla
indeed leverages Javascript, XUL, and XPCOM interfaces
to implement cross platform support. This is related to our
first challenge of having an a cross-platform environment.
In contrast to web portals that run on the server, the Mozilla
core framework provides end-users with a common desktop
or laptop environment truly integrated into the grid. This is
related to our second challenge of having end-users’ day-to-
day computing environments integrated into the grid archi-
tecture. In contrast to Java applications, Mozilla provides
us with a single tool that accesses different types of relevant
application, grid, resources, and security protocols rather
than different tools for different protocols. This is related to
our third challenge of having a homogenous environment at
the end-user level.

2.2. The Mozilla Framework

The Mozilla project (http://www.mozilla.org/) was cre-
ated when Netscape made its Communicator product open-
source. The Mozilla Foundation continues its development
and provides a suite of open-source applications including
the Firefox browser, Thunderbird email client, and Sun-
bird calendar, all of which are built on a common core
called Mozilla. From the start, the Mozilla core frame-
work was designed to work on all modern platforms and to
be highly modular in its architecture. Two key technolo-
gies used in the framework are XPCOM and XUL. XP-
COM (http://developer.mozilla.org/en/docs/XPCOM/) is
similar to CORBA and provides most of the functionality in
Mozilla. Components can be written in C/C++, Python, and
Javascript and are grouped into libraries that handle every-
thing from filesystem manipulation, to security, XSLT, and
rendering. XPCOM components are all cross-platform and
new components can be added with a minimum of effort.
XUL (http://www.xulplanet.com/) is used to create GUIs
in Mozilla. XUL is HTML-like in its simplicity yet Java
Swing-like in its power; it can be combined seamlessly with
Cascading Style Sheets, Scalable Vector Graphics, Java ap-
plets and can access virtually any XPCOM component via
a thin layer of Javascript. The ease of XUL and the robust,
cross-platform nature of XPCOM combine to make Mozilla
an ideal framework for rapid application development. In-
deed, recent years have seen a proliferation of third-party
applications like ActiveState’s Komodo IDE that have been
built using the Mozilla framework.

2.3. The GridFTP Protocol

The Globus Toolkit has evolved into the standard
for building grid systems, i.e., distributed systems that
span multiple organizations incorporating heterogeneous
resources while providing common security, job schedul-
ing, data management facilities, information services, and
a common runtime environment. It is the basis for a num-
ber of large-scale government sponsored scientific projects
including TeraGrid, Biological Informatics Research Net-
work (BIRN), and many others. GridFTP is one major com-
ponent of the Globus Toolkit and provides file transfer ca-
pabilities from one grid node to another. It forms the basis
for higher-level services such as the Globus Reliable File
Transfer service (RFT) and the Data Replication Service
(DRS).

GridFTP is a protocol defined by Global Grid Forum
Recommendation GFD.020, RFC 959, RFC 2228, RFC
2389, and a draft before the IETF FTP working group. The
GridFTP protocol provides for the secure, robust, fast, and
efficient transfer of (bulk) data. GridFTP, similar to the File
Transfer Protocol (FTP), provides a client/server implemen-

Figure 2. Level 0 DFD for download

Figure 3. Level 0 DFD for upload

tation for uploading and downloading files. The GridFTP
protocol supports authentication using the Grid Security In-
frastructure (GSI), authorization using gridmap files as well
as SAML-based tools such as the CAS, and provides high
performance through support for data striping across mul-
tiple server instances and support for parallel streams for
data transfer. The Globus Toolkit provides a server imple-
mentation along with a few client programs for accessing
the server. The client programs include a command-line
tool: ”globus-url-copy url1 url2” that takes a gsiftp url1
of the form ”gsiftp://server/path/to/file” and copies it to the
server addressed by url2. The Globus toolkit also includes
UberFTP (http://dims.ncsa.uiuc.edu/set/uberftp/), an inter-
active shell application that allows users to authenticate and
upload/download files interactively. Both GridFTP clients,
globus-url-copy, and UberFTP, require the Globus toolkit to
be installed and hence are primarily server-based tools that
can not directly be used by most end-users. Instead, many
grid projects provide web-based portals through which end-
users can access GridFTP repositories from their desktops
or laptops. The principle advantage of such an approach is
that users need only a simple web browser installed on their
local machine to access the file servers. However in this
case the GridFTP protocol is used only between the portal
server and the GridFTP server. The connection from the
portal to the user’s local machine uses HTTP and hence few
of the advantages of GridFTP (restart, parallel file transfers,
striping, etc.) are available.

3. Topaz Design and Implementation

3.1. Data Flow Diagrams

In our engineering effort, rigorous software engineer-
ing tools such as Data Flow Diagrams (DFDs) are used to
design, implement, and analyse the software components
of Topaz. A Data Flow Diagram (DFD) is a graphical

tool in software engineering used for modeling information-
processing systems. Typically DFDs are built using a com-
bination of four components: processes, data flows, data
stores, and terminators [10, 14]. A process is normally rep-
resented with a circle; it represents the transformation of
inputs, e.g., packets of information or chunks of data, into
outputs. Arrows that go in or come out of a process repre-
sent a data flow. A data store is drawn in a DFD using two
parallel lines and represents a storage location from which
we can retrieve or store data into, such as hard drives. A
rectangle is used to represent a terminator, which is used to
identify external entities. Traditionally, external entities are
those that interact with the system by either providing or re-
ceiving data. In addition, each component has a label that
describes its scope. Note that DFDs differ from flowcharts
because they emphasize the flow of data through the system
rather than control and decision-making. A system can be
represented at different levels of abstraction by organizing
the DFDs in a series of levels: each DFD level captures a
different level of the system abstraction. The highest DFD
level (usually called Level 0) represents the overall view of
the whole system, where the system is normally represented
by a single process and the major inputs and outputs are
given by external entities. As we increase the DFD levels,
we increase the level of detail for representing the system
or some of its components.

3.2. Topaz Design

The goal of the Topaz project is to extend Firefox with
the following functionalities: (1) Download (i.e., list as reg-
ular ftp, get file by clicking on name, drag and drop to desk-
top); (2) Upload (i.e., put file by selecting from browser
menu option, drag and drop to server); and (3) Remote
upload-download (i.e., third-party transfer based on stripe
transfer).

Currently our protocol extension supports download and
upload functionalities. Remote upload-download is work in
progress and is not covered in this paper. Figures 2 and 3
provide the highest DFD levels (Level 0) of the two ma-
jor functionalities: download and upload respectively. The
same functionalities are presented at a lower level of the
DFDs (Level 1) in Figures 4 and 5. Figure 4 presents the
DFD Level 1 of the download functionality in which the
end-user provides a gsiftp URL and user information (i.e.,
username and password) to Firefox (if this information was
not already provided in previous downloads). Firefox then
forwards the user information and the URL to Topaz. If
the user does not have a valid proxy credential, Topaz ob-
tains one from an appropriate certificate authority using the
end-user’s certificate (how Topaz handles proxy credentials
is addressed in Section 3.4). Once a valid proxy has been
obtained, Topaz uses the Globus FTP client API to estab-

Figure 4. Level 1 DFD for download

Figure 5. Level 1 DFD for upload

lish a GridFTP control connection to the GridFTP server
and authenticates the user. Only once the authentication has
been completed successfully, Topaz determines whether the
gsiftp URL represents a directory or a file and issues the cor-
responding request to establish a data connection to down-
load the content. Globus fetches raw data from the GridFTP
server and forwards it to Topaz that formats the data appro-
priately for the request and forwards the formatted data to
Firefox. For list requests, Firefox converts the formatted
list data to HTML and displays the listing in the browser
window (see Section 3.4). For file requests, Firefox dis-
plays the raw data in the browser window or saves it to a
local file if ”Save Link As ..” is selected from the pop-up
menu. In case of failure, Topaz instructs Firefox to display
a proper message. Figure 5 presents the DFD Level 1 of the
upload functionality in which the end-user selects the file
to upload through the Firefox file dialog. The file object
and current gsiftp URL from the location bar are passed
to Topaz. Topaz establishes a control connection, authen-
ticates the user, and opens a data connection for upload.
Topaz also opens the file and sends the data over the data
connection to the GridFTP server.

While the version of Topaz presented in this paper is
used exclusively through the Firefox browser, it can also be
packaged as a standalone commandline tool, a standalone
application GUI, or as part of any other Mozilla based ap-
plication.

3.3. Software Components

The Mozilla framework is modular in nature and open to
modifications and additions. Firefox retains this flexibility
by enabling extensions, like Topaz, to enhance its core func-
tionality as shown in Figure 4 and Figure 5. Extensions are
packaged for distribution into a special zip file called an XPI

that contains compiled binaries and/or Javascript, GUI files,
and extension metadata. Topaz is installed from the website
with a single click via the Firefox Extension Manager that
downloads the XPI and configures the browser to make use
of the new protocol extension. Topaz comprises five soft-
ware components: the protocol handler, the login manager,
the upload manager, the channel, and the stream. The pro-
tocol handler is responsible for processing gsiftp URLs in
Firefox and is used only for downloads. The stream han-
dles data transfer from GridFTP servers (download), or to
GridFTP servers (upload). For downloads, the channel han-
dles data flow between the browser and the stream; the lo-
gin manager manages the users’ proxy credential. For up-
loads, the upload manager creates a stream and provides it
with the current URL. Figures 6 and 7 show Level 2 of the
data flow within the Topaz module for download and up-
load respectively. For each functionality, a different data
flow takes place among the software components. An in-
depth description of the data flow for the download and the
upload is presented in Section 3.4 and Section 3.5 respec-
tively.

3.4. Download Functionality

The detailed DFD of the download functionality in
Topaz is shown in Figure 6. Once Firefox creates the Topaz
module, it passes the gsiftp URL to the protocol handler.
The protocol handler creates an nsIURL object from the
URL string. This is an XPCOM object that contains the
URL information and the appropriate methods to parse it.
The protocol handler creates a channel for the transfer and
passes it the URL object. The channel creates a login man-
ager to verify that the user has a valid proxy credential. If
a valid proxy does not exist, the login manager presents the
user with a dialog box to enter a username and password and
to select a certificate authority in order to obtain a proxy.
Possible authentication servers are: GAMA servers [5] and
MyProxy servers. Once the proxy is obtained, it is stored
in a standard location, i.e., the user’s Firefox profile direc-
tory. Additionally, if a valid proxy was already available
to the user through another authentication method, it can
be specified using the Topaz extension preferences from the
Extension Manager. After the login manager returns suc-
cessfully, the channel calls nsIURL methods to parse the
GridFTP server name and the path of the file or directory
being requested. The channel creates a stream and passes it
the host and path information. Like FTP, GridFTP uses sep-
arate connections for transmitting control information and
data. Contrary to FTP, it provides additional security by al-
lowing these connections to be encrypted. By default, the
control connection is encrypted and the data connection is
not. The control connection is established by the stream us-
ing the Globus function globus ftp control connect(). The

Figure 6. Level 2 DFD for download

Figure 7. Level 2 DFD for upload

stream then calls globus ftp control authenticate() to au-
thenticate the user on the GridFTP server using the proxy
in the user’s Firefox profile. At this point, the stream ob-
tains the size of the content being downloaded using the
globus ftp client size() call. In order to determine whether
the content is a file or directory listing, the stream issues the
globus ftp client get() call to open a data connection and
globus ftp register read() to get a portion of the content. If
this first call returns data then the URL corresponds to a file
and the download can continue. This data is passed to the
channel and then to Firefox. On the contrary, if the read call
does not return any data the URL corresponds to a directory.
In this case, the stream calls globus ftp client list() in order
to begin a directory listing download. The directory data is
retrieved using the globus ftp register read() function. The
data is passed to the channel, along with a flag indicating
that this is a directory listing. When this flag is detected, the
channel creates an XPCOM nsIStreamConverterService to
convert the directory listing into HTTP-index format. This
format is designed to provide a machine-readable directory
listing. The data is then passed to Firefox that displays it as
a web page.

3.5. Upload Functionality

The DFD Level 2 of the upload functionality is shown
in Figure 7. In the upload, the check for a valid proxy
is done a-priori by doing a directory listing on a GridFTP
server using Topaz as described in Section 3.4. A file up-
load is initiated when a user selects ”Upload File” from
the ”File Menu”. This menu item is added to the ex-

isting Firefox ”File Menu” using a XUL overlay. The
Topaz module creates an upload manager to process the
request. The upload manager gets the current URL string
from the location bar of the current browser window. It
then creates a stream and passes it the URL string. At
this point, the stream creates an XPCOM nsIFilePicker
to prompt the user for the file to upload. If a valid file
is given, it is opened for reading. The stream then cre-
ates an nsIURL object from the URL string and parses
the GridFTP server name and path where to upload the
file. The stream uses the globus ftp control connect() call
to open a control connection to the specified server. The
end-user is authenticated on the GridFTP server with the
globus ftp control authenticate() call using the proxy in the
users Firefox profile. If the authenticate request is suc-
cessful, the stream issues a globus ftp client put() call to
establish a data connection to the GridFTP server; oth-
erwise a proper error message is generated. The data is
read from the file and sent to the GridFTP server using the
globus ftp client register write() call.

4. Overhead Evaluation

Since Topaz is built on top of Globus libraries and is inte-
grated into the Firefox browser, we introduce an additional
layer of abstraction in the communication. We should ex-
pect that any overhead due to this layer does not affect the
data exchange between the user and the GridFTP server. To
address this requirement, we compared the transfer times
in seconds for uploading (i.e., put) and downloading (i.e.,
get) data between a client at the University of Texas at El
Paso and a GridFTP server at the San Diego Supercom-
puter Center using different transmission tools: Topaz, the
globus-url-copy command in Globus 4.0.1, UberFTP 1.13,
LFTP version 3.2.1-2, and the Secure Copy Protocol com-
mand scp. We used a set of files with different sizes (i.e.,
32KB, 256KB, 2MB, 16MB, 128MB, and 1024MB) and
we ran the different upload and download experiments three
times for each protocol and each file size. The numbers re-
ported in this section are the average values of those mea-
surements. For each tool, we measured the time from when
the command is issued by the user until the completion of
the transfer. In particular, for Topaz, we measured the time
from when the channel is created until the stream is fin-
ished with the transfer for downloads (Figure 8) and from
when the stream receives the filename until it is finished
with the transfer for uploads (Figure 9). For globus-url-
copy we measured the time from when the command is is-
sued until its completion. UberFTP, LFTP, and scp give the
transfer time after each operation and this is the time re-
ported in this paper. While running our performance mea-
surements, we used default configurations for the several
tools and no optimization has been applied: this is because

we wanted to emulate the usage conditions for most sci-
entists that normally have neither the needed expertise nor
the time to configure these tools with high levels of opti-
mization. Since Topaz deploys GridFTP, it can benefit from
the several optimizations available for this protocol, e.g.,
multi-streaming, buffer size tuning. This paper focuses on
the additional overhead that our extension can cause rather
than its and other protocols’ optimizations. The results of
our comparisons for the download and upload transfer times
are presented in Figures 8 and 9 respectively. In particular,
Figure 8 shows the average transfer time (y-axis, in loga-
rithmic scale) measured for downloading files with different
sizes (x-axis) and Figure 9 presents the same measurement,
the transfer time, for the upload of files with different sizes.
Both of the figures show that although Topaz is character-
ized by an initial transfer time that is larger than the other
tools, in both cases, for the download and the upload, this
gap tends to decrease as the size of the file increases and
for files larger than 16MB the time becomes the same due
to the saturation of the network bandwidth. For small files,
less than 2MB, the time gap between globus-url-copy com-
mand and Topaz is constant. The difference for the down-
load times is equal to 1.8 seconds. The time gap between
upload times is smaller and equal to 0.7 seconds. The rea-
son for the additional overheads in the Topaz functionalities
can be found in Figures 4 and 5 that show the additional
layer of abstraction of Topaz on top of the Globus libraries.
The DFDs in Figures 6 and 6 depict the reason for a larger
overhead in the download functionality. Note in these fig-
ures how the download functionality has a more complex
transfer structure than the upload functionality. Indeed the
download requires the generation of a channel by the proto-
col handler as well as the generation of the login manager
and the stream by the channel. On the contrary, for uploads,
the upload manager generates only the stream.

5. Discussion and Future Work

There are several advantages in using Firefox to create
a general environment to access services such as those pro-
vided by a GridFTP client. The browser provides end-users
with an easy to use interface that most scientists are already
familiar with. Firefox provides a number of features that
are available to the protocol such as drag and drop support
and dialog boxes for saving files and providing passwords.
Since Firefox handles the user interface, it makes it eas-
ier and faster to develop a GridFTP client across multiple
platforms. Firefox also provides standard means to package
and deploy extensions as well as an update notification sys-
tem to upgrade software when new versions are available.
There are also some challenges in integrating Topaz into the
Mozilla framework. Mozilla is still largely under develop-
ment and has a number of unfrozen interfaces that may be

Figure 8. Transfer rate of download (get)

Figure 9. Transfer rate of upload (put)

changed in future releases. Because of this, interface refer-
ences within Topaz will need to be maintained. Moreover,
the dynamic nature of Mozilla can make it challenging to
find good documentation.

Topaz is an in-progress, open-source project. In order
for end-users to take full advantage of the GridFTP pro-
tocol, several additional advanced features of the protocol
need to be integrated into Topaz. Among these features
are: implementation of third party transfers (i.e., to con-
nect to two GridFTP servers simultaneously and initiate,
from the end-user desktop, a direct file transfer between
GridFTP servers), parallel data transfers (i.e., to allow mul-
tiple TCP streams to be used for data transfers between
a GridFTP server and a desktop, as well as between two
GridFTP servers), and partial file transfers (i.e., to allow
an arbitrary portion of a file to be specified for transfer);
a portability extension to support Windows PCs (currently

Topaz supports the Mac and Linux platforms); an authen-
tication extension to include a wider range of grid authen-
tication methods (including the MyProxy tool for creating
and managing X.509 credentials on the server and client).

6. Related Work

So far, efforts have been focused on single APIs or SDKs
tailored to access single application, grid, resource, or se-
curity services but little attention has been paid to build
integrated environments that allow end-users to access a
wide range of services. One approach taken in [8] is to de-
velop compatible grid protocols for desktop operating sys-
tems such as Windows so that these desktop resources be-
come first class grid resources. The work in [8] is based
on a new implementation of the GridFTP protocol based
on the Microsoft .NET framework for Windows. It in-
cludes a GridFTP client with an interactive mode. The
.NET GridFTP implementation is designed to be compat-
ible with the Globus Toolkit 4 [12] implementation, except
that it does not currently support data channel authentica-
tion and the striped data transfer implementation does not
interoperate with GT4. An alternative approach is to de-
velop lightweight portable tools that will extend the grid
onto the desktop fully under the control of the end-user.
This latter approach may be advantageous, as it does not
require the full grid stack to be developed and maintains
control of the machine for the end-user. One general chal-
lenge to build an integrated environment is the integration
of data management capabilities across the desktop to the
server: the data that an end-user employs is typically on his
or her own local machine and used in day-to-day work such
as email, writing reports, basic analysis using spreadsheets,
or other desktop software. Within the grid, this data can be
accessed using high-performance and secure grid protocols
such as GridFTP [15]. However, from the desktop (which
is outside of the formal grid) the end-user must employ dif-
ferent protocols to upload the data to a repository. After the
grid calculation, again the grid infrastructure uses one pro-
tocol to move the data to a repository and another protocol
for downloading it to the desktop.

7. Conclusion

Scientists have a need for user-friendly environments
that allow them to access a wider range of application, grid,
resource, and security services. To address the scientists’
need we have extended the grid infrastructure to the desk-
top environment through the use of a lightweight, cross plat-
form framework such as the Mozilla framework. In previ-
ous work we have built Gemstone on top of the Mozilla
framework to provide end-user scientists with access to a

set of biomedical applications [6]. In this paper, we present
Topaz, a Firefox protocol extension for GridFTP, that pro-
vides end-users with a simple and secure access to grid
technology. Rigorous software engineering tools such as
Data Flow Diagrams guided its design and implementation.
Topaz allows end-users to easily upload and download files
from GridFTP servers guaranteeing the required security
through the use of security infrastructures such as GAMA.
The overhead due to the additional layer of abstraction in-
troduced by Topaz becomes insignificant as the size of the
transferred files increases, i.e., above 16MB. This makes
Topaz a well-suited, user-friendly, and secure tool for large
file transfers.

Acknowledgements

This work was supported in part by the National Science
Foundation under Grants #SCI-0438430, SCI: NMI Development:
The Computational Chemistry Prototyping Environment; #EIA-
0080940, MII: Graduate Education for Minority Students in Com-
puter Science and Engineering: Extending the Pipeline; and #SCI-
0506429, DAPLDS - a Dynamically Adaptive Protein-Ligand
Docking System based on multi-scale modeling.

References

[1] D. P. Anderson. Boinc: A system for public-resource com-
puting and storage. In Proceedings of GRID’04, 2004.

[2] K. Baldridge, J. Greenberg, W. Sudholt, K. Bhatia, S. Mock,
C. Amoreira, Y. Potier, and M. Taufer. The computational
chemistry prototyping environment. Proceedings of the
IEEE Special Issue on Grid Computing, 93(3):510 – 512,
2005.

[3] J. Basney. Myproxy protocol, 2005.
[4] K. Bhatia. Peer-to-peer requirements on the ogsa framework,

2005.
[5] K. Bhatia, S. Chandra, and K. Mueller. Gama: Grid account

management architecture. In Proceedings of e-Science’05,
2005.

[6] K. Bhatia, B. Stearn, M. Taufer, R. Zamudio, and
D. Catarino. Extending grid protocols onto the desktop using
the mozilla framework. In Proceedings of GCE’06, 2006.

[7] A. Chien, B. Calder, S. Elbert, and K. Bhatia. Entropia: ar-
chitecture and performance of an enterprise desktop grid sys-
tem. J. of Parallel and Distributed Computing, 63(5):597–
610, 2003.

[8] J. Feng, L. Cui, G. Wasson, and M. Humphrey. Toward
seamless grid data access: Design and implementation of
gridftp on .net. In Proceedings of GRID’05, 2005.

[9] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the
Grid: Enabling scalable virtual organizations. Int. J. Super-
computer Applications, 15(3), 2001.

[10] C. Gane and T. Sarson. Structured System Analysis. Prentice
Hall, 1978.

[11] Gemstone - grid enabled molecular science through
online networked environments. http://grid-
devel.sdsc.edu/gemstone/.

[12] Globus - an open-source software toolkit used for building
grid systems and applications. http://www.globus.org/.

[13] J. P. Greenberg, S. Mock, K. Bhatia, M. Katz, G. Bruno,
F. Sacerdoti, P. Papadopoulos, and K. K. Baldridge. Incor-
poration of middleware and grid technologies to enhance us-
ability in computational chemistry applications. Future Gen-
eration Computer Systems, 21(1):3–10, 2005.

[14] J. Herard and et al. Validation of communication in safety
critical control system. Technical Report 543, Nordtest,
2003.

[15] S. Krishnan, K. K. Baldridge, J. Greenberg, B. Stearn, and
K. Bhatia. An end-to-end web services-based infrastructure
for biomedical applications. In Proceedings of GRID’06,
2005.

