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Università degli studi di Salerno

via Ponte don Melillo - 84084 - Fisciano (SA), Italy.
E-mail: {cordasco,alberto,sala,vitsca}@dia.unisa.it

Abstract

We define a proximity overlay network (PON) which al-
low to realize DHT systems whose aim is to combine routing
efficiency – i.e. an optimal degree/diameter tradeoff – and
proximity awareness.

The proposed systems is parameterized with a positive
integer s which measures the amount of flexibility offered
by the network. Varying the value of s the system goes from
a quite rigid network (s = 2) which offer an optimal de-
gree/diameter tradeoff. Increasing s to relatively low values
allows to increase the flexibility of the network and conse-
quently improves the stretch, that is, the ratio between the
latency of two nodes on the overlay network and the unicast
latency between those nodes.

We are able to reconcile the conflict between the load
balancing and proximity relationship by proving the effi-
ciency of the main performance metrics. In particular we
analytically prove that our system can result in lookup la-
tencies proportional to the maximum latency of the under-
lying physical network, provided that the physical network
has a power law latency expansion.

1 Introduction

Over the last six years, peer-to-peer (P2P) paradigm
has generated a tremendous interest worldwide. Indeed,
the phenomenon of file-sharing continues its sensational
growth and seems to remain an important feature of the
Internet for the immediate future. Furthermore, different
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instances of P2P architecture exist and offer services from
Grid Computing to Distributed and Redundant File Storage,
from Instant Messaging systems to Collaboration systems.

Traditional P2P networks, which exploit consistent hash-
ing [8], are strongly based on an important abstraction: the
homogeneity of nodes. Each node, in fact, is considered as
being equally provided of computational capabilities, con-
nection to other nodes, authentication required, bandwidth
capability and so on. Furthermore for the sake of scalabil-
ity, P2P systems [5, 14, 15, 20] are usually based on Dis-
tributed Hashing Tables (DHTs), which allows to identify
and find resources in the system. DHTs naturally build up a
homogeneous-structured overlay network, ignoring the het-
erogeneity nature of peers and connections.

On the other hand, in the “real world”, nodes that join
peer-to-peer networks are characterized by different prop-
erties, such as computing power and bandwidth as well as
storage capacity. In this paper we propose a new peer-to-
peer overlay network that, besides the traditional distributed
protocols for lookup/join operation, is able to leverage on
the nodes’ heterogeneity in order to take advantage on the
efficiency.

Our objective is to design a P2P overlay network which
is able to work efficiently even in the (realistic) assump-
tion that peers do not share the same capabilities, provided
that they can be, somewhat, clustered so that the cost of a
generic operation within a cluster (group) is smaller with
respect the corresponding one outside groups. In this case,
we say that the peers exhibit a group property. Several ex-
amples of group properties can be given, the first being, of
course, the latency on the physical network that we will ex-
plicitly discuss in this paper: it is clear that communicat-
ing with a peer that is closer (in terms of latency) is less
costly than communicating with distant peers. Bandwidth
constraints could also represent a group property. This pa-



per, for sake of explanation, consider nodes’ proximity in
terms of their latency. Proximity represents, here, a generic
cost function that defines how much should be charged for a
communication — in the real physical network — between
2 nodes. Anyway, any similar property can be used.

Our work aims in designing a peer-to-peer network
where nodes have a logical structure to the chosen property.
In particular we exploit a landmarks technique [13] estab-
lishing some proximity property among peers. Peers with
similar distances to some landmarks are considered close
among them.

In general a DHT-based P2P system defines an Over-
lay Network, i.e., a virtual network of nodes and logical
links, where each logical link correspond to multiple physi-
cal links. In this paper we design a Proximity Overlay Net-
work (PON) which allows to keep logical links congruent
to the underlying physical path, with no harm to the opera-
tional efficiency (e.g., load balancing, fault tolerance, scal-
ability) of the considered Overlay Network.

Typically DHT schemes are based on consistent hash-
ing [8] which allows to obtain several good properties, such
as load balancing. Load balancing is critical to support
high scalability, availability, accessibility, and throughput
but, actually, each strategy that perfectly balance the load,
looses on proximity awareness. As a matter of fact, consis-
tent hashing is based on the randomization of the keys, so
any proximity relation among peers is missed.

Our scheme is based on two different logical structure:

Topological ring: Each peer belongs to a ring built using
a consistent hashing function, which allows to achieve
the load balancing requirement;

Proximity space: Each peer lies on an auxiliary 1-
dimensional space which preserves proximity relation
among peers.

Thereafter, in order to speed up, the traditional
lookup/join operations, some chordal links are added to the
Topological ring accordingly with several information pro-
vided by the Proximity space.

We will measure the performance of our systems analyz-
ing different metrics:

• the degree and diameter of the augmented topologi-
cal ring. Indeed, each overlay network should have a
small number of connections (small nodes’ degree), so
that only a limited amount of work need to be done
for each alteration in the network. On the other hand,
the system should provide a high connectivity, in order
to be efficient and fault-tolerant. We will show that,
while preserving proximity features, our scheme does
not pay in terms of degree and diameter with respect
several well known DHT-based schemes;

• the stretch of the system, which is the ratio between the
latency of two nodes on the overlay path and the uni-
cast latency between those nodes. We will show that
the system uses the latencies of the underlying network
to construct the topology so that the stretch will be op-
timal (i.e., constant.)

The remainder of this paper is organized as follows. Sec-
tion 2 reviews some related work. Section 3 explains the
idea at the basis of this paper. Section 4 reports a formal
description of our proposal and presents theoretical results
with respect to the degree/diameter tradeoff and the stretch.
Section 5 shortly describes how to handle with nodes join,
leave and fail. Finally, in Section 6 we conclude the paper
with some final remarks.

2 Related Work

Earlier works [5, 14, 15, 20] have formed the main char-
acteristics of DHT-based P2P networks: Peers have iden-
tifiers, taken from the same space as the keys (i.e., same
number of digits). Each peer maintains a routing table con-
sisting of a small subset of peers in the system. When a
peer receives a query for a key t, the peer routes the query
to its “closer” neighbor to t (i.e., the peer that makes the
most progress towards resolving the query). The notion
of closer differs from algorithm to algorithm, but in gen-
eral, it depends on the distance metric function used in the
system. These systems are also robust to frequent peers
arrivals, departures and fails. Unfortunately, while these
approaches guarantee a small number of overlay hops for
lookup queries –generally polylogarithmic in the number of
nodes in the systems– indeed, the network latency incurred
for that queries can be quite high.

In order to reduce the stretch of that systems, some ad-
justments have been proposed. The key idea in [4] is to
make the topology less rigid by introducing more than one
choices for every link that is established. Unfortunately, the
nodes that are examined to put in the routing tables repre-
sent only a small set of candidates, and therefore, it slowly
converges to an optimal nodes’ selection. In [13] the entire
coordinate space is partitioned into equal size partitions, in
such a way that peers close in terms of latency are assigned
to the same partition. A consequence of the above tech-
nique is that the coordinate space is no longer uniformly dis-
tributed. Some other systems have been proposed: Tulip [1]
and LAND [2] achieve provably low stretches, but lack the
stability property, that is, those systems are not robust to fre-
quent peer arrivals, departures and fails; eQuus [10] builds
a overlay that comprises both provable fault-tolerance and
provable locality-awareness. However, this system lacks
load balancing property when the underlying network re-
sults clustered in unbalanced manner; [16] and [18] propose



similar strategies for taking advantage of the inherent het-
erogeneity of the underlying physical network and conse-
quently speed up routing. Unfortunately, these systems lack
strategy to handle high churn rate.
The main contribution of our work is to combine the overall
goal described above. Indeed, our system keeps the prop-
erty of rigid networks: efficiency, load balancing, stability
and fault-tolerance; moreover, it exhibits provable locality-
awareness.

3 System overview

In a sense, our system resembles Chord [4] DHT sys-
tems, since PON is based on a ring of n nodes lying on a
ring of 2m identifiers – labeled from 0 to 2m − 1 in clock-
wise order. Node and key (resource) identifiers are obtained
using consistent hashing [8]. Each node x has an m bit iden-
tifier (topological ID) and is connected with its predecessor
p(x) and its successor s(x) on the ring. Consistent hashing
assigns keys to nodes as follows. Key k is assigned to the
first node whose identifier is equal to, or follows k on the
ring.

Moreover, in order to maintain proximity information,
each node lies over another auxiliary 1-dimensional space
and, hence, has another m bit identifier (proximity ID)
which reflects its physical position in the underlying net-
work. The proximity ID is obtained using spacing filling
curve [3] and a landmarks clustering technique [13]:

• A generic node x measures its latency to k well known
landmark nodes that are randomly scattered in the un-
derlying network;

• Let `i(x) the latency between the node x and the i-th
landmark (for i = 1, . . . , k). Position the node x into
a k-dimensional space using 〈`1(x), `2(x), . . . , `k(x)〉
as its coordinate. (Observe that we could use this space
as proximity space, but, unfortunately, the closeness
among peers is not easy to compute on a high dimen-
sional space);

• Use a standard algorithm to convert a higher dimen-
sional space into a 1-dimensional one, which preserves
the proximity relations among peers as shown in [21].
In particular we use a spacing filling curve [3] which
allows to assign an m-bit proximity ID to each node in
the network, in such a way that peers close in the un-
derlying network are also close in terms of difference
between their proximity ID.

Using the information maintained by the proximity space
we are able to augment the topological ring in an efficient
way, that is, we will design an overlay network (the aug-
mented ring) which offer provable properties in terms of
both degree, diameter and stretch.

Given an integer 0 < b < 2m − 1, we assume here
that each peer x is able to identify/estimate the set (a.k.a.
ball) Bb(x) which contains the b peers closest to it. This
assumption idealizes the hope that knowing the expansion
of the network –by monitoring peers’ past behaviors– can
allow each node to estimate ball’s diameter.

Let b0, b1, . . . , br−1 an increasing set of integers (i.e.
0 < b0 < b1 < . . . < br−1 < 2m − 1) the topological
ring is augmented picking, for each node x, a set of s nodes
from each set Bbi(x) where i goes from 0 to r − 1.

Consequently each node x has a routing table with r ×
s entries (r rows/levels and s columns). By construction,
the elements in the first levels provide small latencies and
are used in the first steps of the routing process while the
elements in the last levels could also connect peers that are
far away in terms of latency and are usually used in the last
routing steps (cfr. Figure 1).

We use a standard greedy routing strategy where, at each
step, the routing query is forwarded to the neighbor which
is the closer (non overshooting), in terms of distance on the
topological ring, to the target key1.

Figure 1. Each node x clusters the underlying
network into r sets of concentric balls.

4 Routing scheme and performance metrics

The effectiveness of our proximity routing scheme de-
pends on the size of the routing table used by each peer.
Moreover, another important factor that influences the rout-
ing performance is the flexibility of the overlay network.
Namely, algorithms – where routing table entries can be se-
lected from a large set of candidates – are able to achieve

1The distance of a node, with topological ID x, to a target key t, with
topological ID t is (t − x) mod 2m (the whole arithmetic on the ring is
done mod 2m.)



better performances, in terms of latency, than those that im-
pose more constraints on routing table entries. On the other
hand, flexible overlay networks are usually less efficient in
terms of the degree/diameter tradeoff [7]. Our algorithm has
a tuning parameter s which measures the overlay network’s
degree of flexibility.

As described in the Section 3 each node has two ID: A
topological ID which is obtained using a consistent hash-
ing function and guarantees a uniformly distribution of the
nodes on the ring; A proximity ID which reflects the prox-
imity relation among peers. Namely, peers close in terms of
proximity ID are also close in terms of latency. Neverthe-
less, in order to improve system scalability, each node, ac-
cording to several proximity information, builds up a rout-
ing table of up to r × s items.

The routing table of a generic node x is organized in r
levels in such a way that connections to peers at level i are
generally faster than connections to peers at level greater
than i. Indeed, connections at level i consider only the bi
closest peers, while connections at a level greater than i
could be slower since they consider a bigger ball around
the node x.

Of course, the growing of the sequence b0, b1, . . . , br−1
had to be done carefully; it does not make sense to increase
disproportionately the size of one ball with respect the oth-
ers. Moreover, the size of each ball must be big enough,
in order to guarantee the presence of high number of can-
didate nodes (cfr. Lemma 1). In order to keep low the size
of the routing table we choose a sequence b0, b1, . . . , br−1
which grows exponentially and cover quite uniformly the
whole ring ([0, 2m − 1]). Therefore, in our system, the size
of the i-th ball Bbi(x) (i.e. the candidates’ set size to make
a connection at level i) is

bi = 2s
i+1 lnn.

Observe that the number of rows r is function of s. In
particular the value of r is the minimum integer i such that
the ball Bbi(x) cover all the nodes in the systems, that is
r = min{i ∈ N | bi > n}. Therefore, by choosing the value
of s, we are fixing the routing table size (r× s). Hence, the
degree of our system (that is, the amount of memory used)
depends only from the parameter s.

The smallest value of the parameter s is 2 which allow
to design a quite-rigid overlay network that provides good
performance with respect the degree-diameter tradeoff and
a moderate improvements in terms of stretch. Indeed in this
case we will show that both the degree and the diameter
of the network are O(log n). Moreover, in order to obtain
a more flexible network, we can also increase the value of
s up to log n. Bigger value of the parameter s provides a
better improvements in terms of latency at the expense of a
slightly bigger routing table.

Now we are ready to show the construction of the routing

table for a node x. The first row of x’s routing table keeps
connection only with nodes lying in the smallest ball around
x (i.e. nodes in Bb0(x)). The whole network is partitioned
into s intervals large 2m/s, such that w.h.p.2 each of those
s intervals contains at last one node yj ∈ Bb0(x) for j =
0, . . . , s − 1. Therefore the first row of x’s routing table
contains the peers yj for j = 0, . . . , s− 1.

Successively each subsequent row i is obtained as fol-
lows:

• Partition, the first interval considered at level i−1, into
s subintervals large 2m/si+1;

• Pick a node, from each subinterval of size 2m/si+1,
considering only nodes in Bbi(x) as candidate.

Obviously, this process is halted when the remaining inter-
val does not contains any node. That is when 2m/sr+1 <
s(x)− x. Since the expected distance between two succes-
sive node is 2m/n, we have that the expected number of
row is r = logs n. Moreover, since the distance between
two successive nodes is w.h.p. greater than 2m/n2, we have
that the number of row is, w.h.p., at most 2 logs n. Conse-
quently, in our scheme, each node holds a routing table of
O(s logs n) peers.

Formally, the routing table of a generic node x maintains,
for each position (i, j), where 0 ≤ i ≤ r − 1 and 0 ≤ j ≤
s− 1, a connection to a node y where

y ∈ Ix(i, j)
def
=

[

x+ j
2m

si+1
, x+ (j + 1)

2m

si+1

[

and
y ∈ Bbi(x).

Accordingly the level i of x’s routing table covers the in-
terval

[

x, x+ 2m

si

[

and connects with peers at a bounded
latency (i.e. every connection at level i belongs to Bbi(x)).

The following Lemma shows that the routing table out-
lined above is well defined, that is, for each item in the rout-
ing table of a generic node x, w.h.p. there is at least one
candidate connection.

Lemma 1 Let x be a generic node in the system, then for
each range Ix(i, j), w.h.p. there is at least a node y such
that y ∈ Bbi(x).

Proof. By definition the interval Ix(i, j) has size 2m/si+1.
Since the bi nodes in Bbi(x) are scattered uniformly on the
ring, we can analyze the problem as a set of bi independent
Bernoulli trials X1, X2, . . . Xbi , such that

Xi =







1, if the i-th element of Bbi(x) belongs
to Ix(i, j)
0, otherwise

2Throughout this paper the term with high probability (w.h.p.) has been
used to mean with probability at least 1− c

n
for some c > 0.



so let p = Pr[Xi = 1] =
|Ix(i,j)|
2m = 1

si+1 .

Let X =
∑bi

i=1Xi, we have that the expected number of
nodes which belongs to Bbi and lies in the interval Ix(i, j)
is µ = E[X] = E

[

∑bi
i=1Xi

]

= bi
si+1 =

2si+1 lnn
si+1 =

2 lnn. Furthermore in the following we will show that with
probability at least 1 − e

n there is at least one node in Bbi

which lies in Ix(i, j).
According to Chernoff Bound [11] we know that:

Pr[X < (1− ρ)µ] <

(

e−
µρ2

2

)

.

Hence, choosing ρ = 1− 1
µ we have:

Pr[X < 1] <

(

e−
µ(1− 1

µ )
2

2

)

=

(

e−
(µ−1)2

2µ

)

< e−(µ/2)+1 =
e

n
.

The following Theorem shows that the diameter of our
schemes is 2r.

Lemma 2 For any value of s > 2, the diameter of our
scheme with n = 2m nodes is at most 2r.

Proof. We can prove, by induction, that after performing
2i routing hops, the search interval is reduced to 2m/si. In
fact if i = 0 the search interval is bounded by 2m. Con-
sider the situation after 2(k − 1) routing steps and let x
the current node. By the inductive hypothesis we have that
the search interval is at most 2m/sk−1. Hence, since the
level (k − 1)-th level of x’s routing table cover the interval
[x, x + 2m/sk−1[, using the greedy strategy, and in partic-
ular choosing a connection from the (k − 1)-th level of x’s
routing table, in one hop, we are able to restrict the search
interval3 to 2m+1/sk − 1. Thereafter, using one more con-
nection (from level k−1 or k) – that is, after 2k routing hops
– the search interval is reduced to 2m/sk. For i = r, i.e., af-
ter at most 2r routing steps, the remaining interval is thus
reduced to 2m/sr. Hence by observing that r = logs2

m,
we have 2m/sr = 1 and the search ends.

We can also generalize the results to hold in a ring where
not all nodes are present. Due to consistent hashing con-
straints [9] the n nodes can be assumed to be uniformly dis-
tributed. Therefore we can state the following.

3Observe that the distance between two consecutive nodes which be-
longs to a generic level i of a routing table is at most 2× 2m/si+1 − 1.

Theorem 1 For any value of 2 < s ≤ log n, the diameter
of our scheme with n < 2m nodes is O(r).

Proof. Consider a source that wants to send a message
at distance d. From Lemma 2 it follows that diminish-
ing the distance to size 2m/n takes O(r) hops. Left is
to prove that the number of node alive in an interval I
of size 2m/n is small. The expected number of nodes
alive in the interval is 1. Furthermore, with probability
larger than 1 − 1/n2, the number of nodes that lies in
the same interval is O(log n/ log log n), see example 4.4
in [11]. Therefore the maximum number of routing steps is
O(r + log n/ log log n) = O(r) when s ≤ log n.

Using the same argument of Lemma 2 it is easy to show
that the average path length provided by our scheme is
approximatively s−1

s logs n.

The last step to complete the argumentation for the
routing performance is to show the value of the stretch.
Let x1 be a lookup starting point, and let xk be the tar-
get traversed in the lookup route. Then the stretch is
l(x1,x2)+...+l(xk−1,xk)

l(x1,xk)
where l(x, y) is a cost function that

measures the unicast latency between x and y.
Before proceeding, we need to introduce the concept of

d-powerlaw latency expansion: Let Nδ(x) denote the num-
ber of nodes in the network that are within latency δ of x.
Informally, for d ≥ 1, a family of graphs has a d-powerlaw
latency expansion if Nδ(x) grows (i.e. “expands”) propor-
tionally to δd, for all nodes x. Some simple examples of
graph families with power-law latency expansion are rings
(d = 1), lines (d = 1), and meshes (d = 2).

Theorem 2 Assuming that our scheme is drawn from a
family of graphs with a d-powerlaw latency expansion, the
expected stretch of our scheme, with s ≥ 2d, is smaller than
4.

Proof. Let ∆ be the maximum physical connection cost
between each couple of nodes in the network. According to
our strategy each node clusters the physical network into r
balls. Afterwards the node is able to set up its routing table,
particularly each routing table level is built considering only
nodes in the corresponding ball. By Lemma 1 we know that,
in the worst case, each lookup is composed of at most 2 hops
for each routing table level. Since for each i = 1, . . . , r− 1
we have that bi−1 = bi/s and the considered underlying
network follows a d-powerlaw latency expansion, we have
that the the latency between a generic node and a node in
the i-th level of its routing table is at most ∆

s(r−i−1)/d which
is smaller than ∆

2(r−i−1) when s ≥ 2d.
Thus, the maximum latency for a routing path is smaller

than

2

r−1
∑

i=0

∆

2(r−i−1)
= 2

r−1
∑

i=0

∆

2i
< 4∆



Average Routing Diameter Bounded Stretch (cfr. Th. 2)
s Table Size (d-power-law expansion)

n ≈ 220 n ≈ 220 n ≈ 220

2 2 log n ≈ 40 2 log n ≈ 40 d ≤ 1 d ≤ 1

log log n logn log log n
log log logn ≈ 41 2 logn

log log logn ≈ 19 d ≤ log log log n d ≤ 2.11

log n log2 n
log logn ≈ 92 2 logn

log logn ≈ 9 d ≤ log log n d ≤ 4.3

Table 1. Performances of PON with respect to degree, diameter and stretch.

Consequently the value of the stretch is:
l(x1,x2)+l(x2,x3)+...+l(x2r−1,x2r)

l(x1,x2r)
< 4∆

∆ and so the stretch is
smaller than 4.

5 Node bootstrap and churn environment

The last step to complete the description of our work is to
show that our protocol is stable and efficient even in a high
churn rate environment. Theoretical analysis proves that
our system works well assuming the correctness of routing
table (cfr. Section 4). Moreover, using the same arguments
showed in [4], is possible to prove that the routing perfor-
mances degrade gracefully even if a significative amount of
the routing table entry is incorrect.

When a node join the network, it needs to set up its rout-
ing table. Our systems exploits a fast bootstrap strategy: the
new node asks several neighbor about their topological and
proximity ID, in order to select a node that is quite close
to it with respect to both its ID. Then it uses the routing
table of the selected node as a starting point to build an up-
dated routing table. Afterwards, the routing table is kept
up to date by piggybacking on lookup operation. As shown
in [19] this strategy converges quickly to an optimal config-
uration of the routing table entries.

6 Conclusions

We have described a Proximity Overlay Network de-
sign technique for DHT systems based on geometric rout-
ing. Our protocol shows as main contribution the capabil-
ity to combine load-balancing, locality-awareness and fault-
tolerance: our system is based on an overlay network, i.e.,
a virtual network of nodes and logical links, built using
consistent hashing, in order to guarantees several proper-
ties such as load-balancing and fault–tolerance; on the other
hand, our system exploits a proximity space to keep logical
links congruent to the underlying physical path, and conse-
quently, shows improved lookup latencies.

Our scheme provides a tuning parameter s which deter-
mines the degree of flexibility of the overlay network in the
sense of [7]. Varying the value of s the system goes from
a quite rigid network (s = 2) which offer an optimal de-
gree/diameter tradeoff. Increasing s to relatively low values
allows to increase the flexibility of the network and conse-
quently improves the stretch. We have analytically shown
that on graphs with d-power-law latency expansion, our sys-
tem – with parameter s ≥ 2d – can result in an average
lookup latency that is proportional to the maximum unicast
latency. Table 1 shows the performances of our system, con-
sidering three values of the parameter s. Moreover, in order
to give an idea of the system’s scalability, we report also
the performances that could be obtained in large networks.
Indeed, each table entry presents also the value of the cor-
responding metric when the number of nodes alive in the
network is approximatively 220.
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