
kP2PADM: An In-kernel Gateway Architecture for Managing P2P Traffic

Ying-Dar Lin1, Po-Ching Lin1, Meng-Fu Tsai1, Tsao-Jiang Chang1,
and Yuan-Cheng Lai2

1National Chiao Tung University 2National Taiwan Univ. of Science and Technology
Dept. of Computer Science Dept. of Information Management

Hsinchu, Taiwan 300 Taipei, Taiwan 106
{ydlin, pclin, mftsai, tjchang}@cis.nctu.edu.tw laiyc@cs.ntust.edu.tw

Abstract

This work presents an in-kernel gateway architecture on
Linux, namely kP2PADM, for managing P2P traffic on dy-
namic ports. This design can effectively eliminate redun-
dant data passing between the kernel space and the user
space. The management functions include (1) classifying
and filtering P2P traffic, (2) scanning viruses on shared
files, (3) auditing chatting messages and transferred files,
and (4) bandwidth control. Practical implementation is-
sues and techniques in the system design are discussed
herein. This design proposes a dual-queue architecture to
handle packet reassembly and resolve head-of-line block-
ing. A connection cache accelerates handling the reconnec-
tion requests from the peers. The throughput can achieve
up to 185.73 Mbps even with content filtering, and re-
mains around 79.09 Mbps when virus scanning is enabled.
The impacts of each management function and out-of-order
packets on performance are also analyzed through the in-
ternal benchmarks.

1 Introduction

Over the past few years, peer-to-peer (P2P) applications
have grown astonishingly to dominate the Internet traffic
[5, 7]. Like other types of Internet traffic, P2P traffic should
be also properly managed. For example, a company would
not allow the workers to share files via P2P applications in
working hours. Therefore, central management of P2P traf-
fic on the gateway is a promising solution. The management
typically includes the following functions: (1) classifying
and filtering P2P traffic, (2) scanning viruses on shared files,
(3) auditing chatting messages and transferred files, and (4)

1-4244-0910-1/07/$20.00 c©2007 IEEE.

bandwidth control. Conventional approaches that classify
Internet traffic according to fixed port numbers, such as
those on firewalls, no longer work because most P2P appli-
cations tend to hide themselves by encrypting the messages
or running on dynamic ports [3]. P2P traffic can be detected
by either examining packet payloads [6, 8] or analyzing the
connection pattern at the transport layer [4], but managing
P2P traffic on a transparent gateway is more complicated
than detection. Efficiently handling the packet flow is es-
sential to handle a large number of P2P connections on a
gateway.

This work designs an in-kernel architecture, namely
kP2PADM, to transparently manage P2P traffic on a gate-
way. This design is implemented in the kernel space of
Linux to avoid the overheads of passing data between the
kernel space and the user space. The L7-filter (http://
l7-filter.sourceforge.net) acts as a connection
classifier that identifies P2P signatures in the application-
layer messages. After the classification, the packets in a P2P
connection are redirected to a kernel module that performs
functions such as packet reassembly and content filtering.
Because raw packets may be out-of-order, lost or dupli-
cated, the module implements the TCP reassembly function
to handle these situations. Such time-consuming process-
ing may cause head-of-line blocking in the kernel queue,
in which the packets in the other connections are blocked
behind those under examination. This work proposes a
dual-queue mechanism to handle this situation. A modified
queue handler, ip queue, manages the packets in the dual
queues of the kernel. The kernel module is multi-threaded.
A main thread handles packet arrival, and the others han-
dle specific application protocols and perform the desired
content filtering.

This work also addresses two factors that could reduce
the performance: useless reconnection requests from P2P
applications and out-of-order packets. The reconnection re-
quests may occur because some users or P2P applications

themselves will persistently attempt to reconnect to their
peers in a short period of time when the gateway blocks
their connection establishment. Handling these requests in
the same classification process as that in their first attempt
is wasteful. They should be blocked again soon. Besides,
out-of-order packets also result in redundant packet retrans-
mission because the gateway must queue these packets to
maintain the order. The sender may consider this case as
packet loss if its TCP retransmission timer expires or it re-
ceives three duplicated TCP ACKs due to the queueing, and
thus it retransmits the packets unnecessarily. For the former
issue, this architecture designs a connection cache to handle
the packets for reconnection. For the latter, this design du-
plicates a copy of each packet in the kernel for ordering and
reassembly, and then passes out-of-order packets immedi-
ately. We call this strategy fast pass.

This work discusses the practical issues of designing an
efficient P2P gateway, and proposes several strategies to re-
solve the problems. The rest of this work is organized as
follows. Section 2 overviews typical P2P applications and
surveys related packages in this work. Section 3 presents
the key ideas of the design and the system architecture. The
implementation will be also detailed in this section. Section
4 presents the performance evaluation of this system and
analyzes the result. The study is concluded in Section 5.

2 Survey of Related Works

2.1 Overview of P2P Applications

Table 1 summarizes the characteristics of popular P2P
applications: BitTorrent (http://www.bittorrent.
com), eMule (http://www.emule-project.net),
FastTrack (http://www.slyck.com/ft.php) and
Gnutella (http://www.gnutella.com). Besides,
chatting and file transfer in instant messengers (IM),
such as MSN (http://messenger.msn.com) and
Skype (http://www.skype.com), also work in the
P2P mode. Most P2P applications can run on dynamic ports
to circumvent the filtering of firewalls. The port numbers
have default values chosen by the applications, but they can
be either configured by the users or changed by the appli-
cations later. Some applications, say Skype, can choose the
ports of HTTP and HTTPS in case of connection failure [1],
and thus it is impossible to tell which application is being
used from only the port number. Therefore, deep packet
inspection to identify the P2P applications is necessary.

These P2P applications may transfer files in two ap-
proaches: one is sequential transfer, in which a peer re-
ceives a file sequentially from another peer, and the other
is segmented transfer, in which the segments of a file can
be received in an out-of-order manner. If a file is either
encrypted or transferred in out-of-order segments, perform-

applications ST EN DP FV DFP
FastTrack Yes No Yes Maybe 1214

eMule No No Yes No 4661-4665
BitTorrent No No Yes Yes 6881-6889
Gnutella Yes No No Yes 6346,6347

MSN N/A No Yes Yes 1863
MSNFTP† Yes No Yes No No default

Skype Yes Yes Yes No No default

Table 1. The characteristics of P2P and IM ap-
plications.
(†MSNFTP is a file transfer protocol of MSN.)
ST=sequential transfer, EN=with encryption,
DE=data encryption, DP=dynamic port,
FV=filename visibility, DFP=default ports.

applications CF FT VS AU BC
FastTrack Yes No No Yes Maybe

eMule No No No Yes No
BitTorrent No No No Yes Yes
Gnutella Yes No No No Yes

MSN N/A No No Yes Yes
MSNFTP Yes No No Yes No

Skype Yes Yes Yes Yes No

Table 2. Feasibility of management functions
for each P2P protocol.
CF=classification, FT=filtering,
VS=virus scanning,
AU=auditing, BC=bandwidth control

ing virus scanning and auditing becomes very difficult. For
example, a user may download a file with a laptop in two
different locations. The downloaded content is composed
of random fragments to the gateway in either location, and
thus the content can only be reassembled by the laptop it-
self. We do not implement both functions for such appli-
cations that encrypt data or transfer data in an out-of-order
manner. If the file name is visible, filtering can refer to the
file name that contains specific keywords. Enterprises may
not want employees to leak out confidential information via
a chatting system such as instant messengers. Filtering sen-
sitive keywords or recording the message is also needed.
The kP2PADM architecture is designed to implement feasi-
ble management functions summarized in Table 2.

2.2 Related Packages in the Architecture

Although some commercial P2P detection tools exists,
say p2pwatchdog (http://www.p2pwatchdog.com),
open-source packages are preferred to be integrated into

2

this work. Several packages, such as L7-filter and IPP2P
(http://www.ipp2p.org), can be used to identify
P2P traffic. They are both classifiers that inspect the
packet payload in the Linux Netfilter subsystem (http:
//www.netfilter.org). The L7-filter uses Netfilter’s
connection-tracking module and checks only the content in
the first eight packets of the application data after a con-
nection is established. If the application data matches one
of the signatures, it marks the entire connection as iden-
tified by the module. IPP2P checks every packet because
it does not have a connection-tracking module. The signa-
tures of IPP2P are hard-coded in its code, while the L7-filter
loads signatures from the files. Because the L7-filter in-
spects fewer packets and dynamically loads signatures, it
has higher performance and better flexibility than IPP2P.
This work therefore chooses to integrate the L7-filter as the
classifier in the proposed architecture.

3 Design of System Architecture

Because P2P connection classification involves examin-
ing application messages, a TCP connection between two
peers must be established first. After the connection has
been established, redirecting the connection from the ker-
nel to the kernel module to perform content filtering is per-
formed in the following steps. (1) The L7-filter performs
connection classification and marking. (2)The packets are
queued in the kernel and wait the verdict from the kernel
module. (3) The kernel module handles packet reassembly
and decides the verdict by content inspection according to
the management objectives. (4) The head-of-line blocking
and segmentation of virus signatures are handled.

3.1 Main Ideas of the Design

3.1.1 Connection Classification and Marking

The L7-filter collects at most the first eight packets to re-
assemble application messages and does signature match-
ing. If the connection is identified as P2P traffic, it will be
marked by a predefined protocol number that indicates the
type of P2P traffic. The kernel can then filter undesirable
traffic and control the available bandwidth of P2P traffic ac-
cording to this number. Before the L7-filter finishes signa-
ture matching, the packets that contain important informa-
tion such as the file name or size might have been already
passed to the peer, but the kernel module may still need such
information to take certain actions. To solve this problem,
a special packet is created inside the kernel and the appli-
cation data collected by the L7-filter are packed into this
packet after successful matching. This packet is internally
passed only to the kernel module for extracting the applica-
tion data and further processing.

L7-Filter

Queue 1

Queue 2

Kernel module

Kernel

ACCEPT

2 3

Q
U

E
U

E DROP

2. Copy packet

1

3. Set verdict

4

4
4

1. Queue identified packets

Packet Processed packet

5

Con. 1

Con. 2

Con. n

Con. Connection

Figure 1. Packet queueing and redirecting
mechanism.

3.1.2 Packet Queueing and Redirecting

Two packet queues Q1 and Q2 are created in the kernel to
manage P2P traffic. All packets identified by the L7-filter
are queued in Q1, while those unidentified packets are just
passed through the gateway. The queued packets are passed
to the kernel module and wait for the verdict from the mod-
ule, which processes these packets in Q1 and sets the verdict
for them sequentially. The verdict can be ACCEPT, DROP
or QUEUE. ACCEPT means passing a packet to the peer,
while DROP means dropping a packet. If the packet cannot
be decided to be passed or dropped at that time, the verdict
QUEUE will be set, and the packet will be moved from Q1
to Q2 to wait temporarily. How the kernel module makes
the verdict will be described in later subsections. Figure 1
illustrates this mechanism.

3.1.3 Packet Preprocessing

When the kernel module gets a packet from Q1, three tasks
must be done before handling the P2P protocol. (1) The
packet checksum is examined. If the checksum is incorrect,
the module will not process the packet, but tell the kernel to
pass it rather than drop it. The connection reliability is left
to the two peers. (2) Packet classification identifies which
connection the packet belongs to. (3) The correct sequence
of the packet is handled before reassembly.

Because the kernel uses only a single queue to queue the
packets of all marked connections, packets should be fur-
ther classified based on the five tuples, i.e., source IP ad-
dress, source port, destination IP address, destination port
and protocol identifier. The packets may be out-of-order
because the redirected packets do not pass through the TCP
stack that can reorder the packets in the correct sequence.
The kernel module therefore calculates the correct next se-
quence number, and checks the sequence number of the
handled packet. If the sequence number of the packet is
less than the correct one, this packet is a duplicated one
and should be passed without further processing. If the se-
quence number of the packet is larger than the correct one,

3

this packet should wait until the appearances of all the pack-
ets with the sequence numbers less than this one. The kernel
is instructed to move this packet temporarily from Q1 to Q2.
If the sequence number of the packet is correct, this packet
is processed and the out-of-order packets in Q2, if any, will
be moved back to Q1. These packets are then reassembled
by the kernel module.

3.1.4 P2P Protocol Processing

The P2P protocol is recognized according to the protocol
number in the kernel, and handled after packet reassembly.
The management functions are performed in this stage. A
connection may be in one of the three states when the data
are being transferred: (1) initial state: waiting for the re-
quest and response of data transfer, (2) receiving state: re-
ceiving the transferred data, and (3) processing state: per-
forming virus scanning or content filtering on the received
data.

The packets are checked based on the corresponding ap-
plication protocol to examine whether the chatting message
or the request of file transfer contains specific keywords. If
a specific keyword is found, the kernel module instructs the
kernel to drop the packet as well as the subsequent packets
in the same connection, and then sends an RST packet to the
source peer to tear down the connection; otherwise the ker-
nel is instructed to pass this packet and record the chatting
messages or file name if auditing is enabled. If the packet
should not be blocked, the connection is marked to be in the
receiving state. The following transferred data segments are
reassembled as a file and virus scanning is performed until
the file transfer is completed.

3.1.5 Virus Scanning for Shared File

A buffer is allocated for each connection. When the kernel
module receives a packet, it first checks whether the buffer
is full and whether the packet is the last one in the trans-
ferred file. If neither happens, the data segment is kept in
the buffer and the module instructs the kernel to pass this
packet; otherwise, the proxy performs virus scanning on the
buffer. If a virus is found, the proxy tells the kernel to drop
these packets, and send an RST packet to the peer to tear
down the connection. Dropping these packets can destroy
the file. If no virus found, the buffer is cleaned and the pack-
ets are passed. This method may still suffer two problems:
the head-of-line blocking and the segmentation of virus sig-
natures.

The head-of-line blocking occurs due to the time-
consuming virus scanning. The subsequent packets queued
in Q1 cannot be handled until virus scanning on the buffer
is finished. This will constrain the throughput of the en-
tire system. To solve this problem, when virus scanning
is needed, the connection is marked to be in the processing

Get

packet i
kernel

kernel

module

Process

Packet i Set

verdict

Time

Get

packet i

kernel

kernel

module

Process

Packet i

Virus Scan

Set

verdict

Time

Get

packet

i+1

Get

packet

i+1

Process

Packet i+1

another

thread

(a) With head-of-line blocking

(b) Without head-of-line blocking

Set

verdict

Virus Scan

Connection A

Connection A Connection B

Connection B

Figure 2. Comparison of the packet process-
ing with and without handling the head-of-
line blocking.

state, and another thread is called to perform virus scanning.
The proxy tells the kernel to move subsequent packets of the
same connection from Q1 to Q2. Therefore, the packets in
other connections can be immediately handled. If a virus is
found, all queued packets of this connection in Q2 will be
dropped; otherwise, theses queued packets are moved back
from Q2 to Q1. Figure 2 compares the packet processing
time with and without handling the head-of-line blocking.

It is possible that a virus signature may be segmented
into two contiguous data buffers. To avoid missing a match,
when the virus scanning finishes, the tail data of s characters
will be moved to the prefix of the buffer, where s is the
maximum length of virus signatures. The subsequent data
segments are appended to this segment in the buffer. A virus
signature over two consecutive segments can therefore be
detected.

3.1.6 Reconnection Problems

A connection cache is designed to identify a reconnection
by keeping the information of a blocked connection, and
to block this reconnection. Initially, the packets in all con-
nections can pass through the connection cache and be pro-
cessed by kP2PADM because no connections have been
marked as denied ones. If a connection is blocked, its source
IP address, source port number, destination IP address, des-
tination port number and protocol identifier will be stored
into the connection cache. The packets having the same
source IP address, destination IP address, destination port
number and protocol identifier are viewed as in the recon-
nection, even though their source port numbers may be dif-
ferent. A P2P application, say BitTorrent, can switch to
different source port numbers if a connection is blocked, so
a connection with only a different source port is considered

4

Main Thread

Get a packet from Q1 in

the kernel

Pass packet

Drop packet

 Is checksum correct?

Packet classification

No

Yes

Packet sequence #

< correct sequence #

Yes

Connection is in

processing state

NO

Yes

Packet sequence is rightNo

NO

If Q2 has out-of-order packets,

inform kernel to move them to Q1

YES

Signal application thread &

wait verdict

According to verdictt

Inform kernel to move

packet to Q2

Pass packet

QUEUE

ACCEPT DROP

Figure 3. The flow chart of the main thread.

as a reconnection. A reconnection of a denied connection
can be immediately dropped by the connection cache and
thus the performance is enhanced.

3.1.7 Out-of-order Packets

If a receiver sends three duplicated ACKs to its peer due
to receiving out-of-order packets, the peer will assume
packet loss and retransmit what appears to be a missing
packet without waiting the timeout of the TCP retransmis-
sion timer. However, the retransmission will be redundant
if it is not due to packet loss, but due to the queueing of out-
of-order packets inside the gateway for packet reassembly
and virus scanning. The redundant retransmission will de-
crease the throughput. This design duplicates out-of-order
packets in the gateway and passes them immediately so that
the receiver can respond ACKs as usual. Therefore, the re-
dundant retransmission can be reduced.

3.2 System Implementation

The architecture design is based on the aforementioned
ideas. The main thread in the kernel module gets pack-
ets from Q1 in the kernel and performs the pre-processing
tasks. Because Q1 contains the packets from various con-
nections, the kernel module uses the application number
to identify the P2P protocol, and the main thread invokes
an application thread to handle each connection related to
that protocol. Figure 3 illustrates the entire flow of the
main thread. After performing the pre-processing tasks, the
main thread checks the connection state. If the connection
is in the processing state, the main thread needs to handle
the head-of-line blocking problem; otherwise, it signals the
specific application thread to handle the packets.

Application Thread

Connection is in

receiving state
No

Wait signal of

main thread

Yes

Handle application protocol

Find specific keywords

Set verdict DROP

Yes

Set verdict ACCEPT

Buffer is full or

is last packet

Set verdict QUEUE

Yes

Perform virus scan

Inform kernel to move

queued packets in Q2

to Q1

Has virus

No

Inform kernel to

drop queued

packets in Q2 and

send RST Packet

Yes

No

Copy

transferred

data to buffer

No

Set verdict ACCEPT

Is file transfer

request
NO

Mark connection in

receiving state

Mark connection to

processing state

Mark connection to

receiving state

Figure 4. The flow chart of an application
thread.

Figure 4 illustrates the entire flow of an application
thread, which handles a specific application protocol and
decides to pass or drop the packets. If it needs to perform
time-consuming content filtering or virus scanning, it marks
this connection to be in the processing state and sets the ver-
dict to QUEUE, and then the main thread can start to process
subsequent packets. This approach can resolve head-of-line
blocking.

Figure 5 illustrates and summarizes the operation of the
proposed architecture, namely kP2PADM. The letter ‘k’ in
the prefix of kP2PADM denotes the implementation in the
kernel space. kP2PADM must occasionally call the sched-
ule function in the Linux kernel to surrender the CPU con-
trol to other processes to avoid starvation. The CPU control
will come back to kP2PADM if no other processes demand
the CPU.

4 Performance Evaluation

4.1 Benchmarking Environment

We perform various benchmarks on kP2PADM installed
on a PC with Pentium III 1 GHz CPU and 512 MB SDRAM.
Two HTTP clients and three Web servers are in the test
bed. Each client creates 100 threads for each server, and
each thread downloads a 2 MB file from these three Web
servers. Although the file size is small compared with some
shared files, say movie files in real P2P applications, this

5

Figure 5. The operation of the kP2PADM architecture.

size is large enough to make file data dominate the P2P
traffic, just like the case in real situations. We also imple-
ment a variant of this design in which the kernel module in
kP2PADM is implemented as a daemon in the user space,
namely P2PADM, to observe the performance gain of the
in-kernel design compared with that of the in-daemon de-
sign.

We use HTTP traffic instead of real P2P traffic to bench-
mark kP2PADM for two reasons. (1) No such benchmark
tools to date as we know generate P2P traffic for stress test-
ing, and thus it is difficult to emulate a large amount of P2P
traffic in a test bed. (2) Many P2P protocols, such as Fast-
Track and Gnutella, use HTTP-like protocol to transfer files.
Although using HTTP traffic instead of P2P traffic is not the
best choice, it is an acceptable choice given no appropriate
tools available. The emulation can be similar to the case
of file sharing because both contain mostly long packets.
However, it is deviated from the cases of instant messages
or queries for the location of files. For the latter cases, more
studies should be conducted as future work.

4.2 Comparison with a Daemon Solution
in the User Space

4.2.1 Throughput and CPU Utilization of kP2PADM

Throughput and CPU utilization are two important perfor-
mance metrics of a gateway system. The following con-
figurations are used to compare the impact of each func-
tion on performance. We use ‘P2P proxy’ as a generic term
to mean the daemon in P2PADM and the kernel module in
kP2PADM herein.

1. Pure NAT: the pure NAT function that only translates
between private IP addresses and public IP addresses.

2. NAT+packet queueing: Besides NAT, every
packet is queued in the kernel. kP2PADM just instructs
the kernel to pass the packets without any further pro-
cessing.

3. NAT+packet queueing+L7: Besides NAT plus
packet queueing, the L7-filter is enabled with 20 rules.
This process is similar to the former two, except that
only HTTP is processed. This configuration is used to
assess the performance impact from the L7-filter.

4. P2P proxy+filtering: All functions of P2P
management are enabled except virus scanning and au-
diting. This configuration enables filtering transferred
files according to the file name.

5. P2P proxy+auditing: The P2P proxy plus the
auditing function on transferred files. It records the
transferred files into the file system.

6. P2P proxy+virus scanning: The P2P proxy
plus virus scanning on the transferred files.

7. P2P proxy+filtering+auditing+virus
scanning: The P2P proxy plus all the above
functions are enabled.

Figure 6 and 7 present the throughput and CPU utiliza-
tion of both P2PADM and kP2PADM in each of the con-
figurations.1 Figure 7 presents not only the total CPU uti-
lization but also the CPU utilization for the kernel. Pure

1We still encounter a bug of programming virus scanning in the kernel
at the time of paper submission. The results related to virus scanning are
estimated based on the amount of performance degradation in P2PADM.

6

Figure 6. Throughput of P2PADM and
kP2PADM.

NAT can reach the throughput about 266.13 Mbps on both
P2PADM and kP2PADM. NAT+packet queueing re-
duces the throughput of P2PADM to 155.24 Mbps, but it
reduces the throughput only slightly to 223.71 Mbps on
kP2PADM. The latter is fast because the packets do not en-
ter into the user space.

Figure 7. CPU utilization of P2PADM and
kP2PADM.

If the L7-filter is enabled, the throughput decreases sig-
nificantly to 89.25 Mbps on P2PADM and to 178.1 Mbps
on kP2PADM. The influence on the throughput is mod-
erate because the HTTP protocol is simple, but for more
complex application protocols that need more processing,
such as BASE64 encoding and decoding, we believe that
the influence will be more significant. The influence of
the auditing functions is also light. The throughput of
P2P proxy+auditing on P2PADM is 69.98 Mbps and
133.17 Mbps on kP2PADM. kP2PADM always dominates

Figure 8. Throughput of kP2PADM plus the
connection cache.

about 100% of CPU utilization while the P2P proxy is en-
abled. It is because kP2PADM is implemented in the ker-
nel space and kP2PADM always occupies the CPU. If there
are other processes to run, such an architecture should pay
attention to surrendering the CPU to them in time, or the
kernel will be blocked by kP2PADM for a long time.

4.3 Evaluation of the Connection Cache
and Fast Pass

Figure 8 presents the throughput on kP2PADM as the
connection cache is turned on. In the experiment, we set
a policy on kP2PADM to block all packets from one of the
two clients. This policy forces the blocked client to keep
sending reconnection requests. The connection cache can
increase the throughput by about 21 – 34 Mbps in the latter
three configurations in Figure 8.

To emulate packet loss and out-of-order packets, we in-
stall a WAN emulator called NIST Net from National In-
stitute of Standards and Technology (NIST) [2] on Linux.
NIST Net allows a single Linux PC to act as a gateway
to emulate a wide variety of network conditions, such as
packet loss, out-of-order packets, transmission delay and so
on. The traffic between peers passes through the NIST em-
ulator besides the kP2PADM gateway to experience the em-
ulated packet loss and delay. A 300 MB file is transmitted
from one peer to the other in this benchmark.

Figure 9 presents the transfer time with and without fast
pass for different packet loss rates. The packet loss rates
range from 0% to 5% to emulate the cases in a real environ-
ment [9]. Fast pass can shorten the transfer time between
two peers. Two observations are in the experimental results:
(1) the higher the packet loss rate is, the more the transfer
time can be shortened with fast pass, and (2) the longer the

7

Figure 9. Transfer time with and without fast
pass for different packet loss rates.

delay is, the more the transfer time can be shortened. Both
can be justified by the reason that the queueing time in the
gateway is much longer with higher packet loss rate and
longer delay, so the transfer time can be shortened more.

4.4 Internal Benchmarking

To further identify the improvements and the bottle-
necks of kP2PADM, we examine the execution time of
each stage in the entire packet processing flow with all
the functions turned on. The execution time is measured
by calculating the difference of timestamps taken from the
do gettimeofday() kernel function, which supports
resolution up to µs, in the beginning and the end of a code
segment. Table 3 presents the internal benchmarking results
of P2PADM and kP2PADM. Moving the code from the user
space to the kernel space can reduce the execution time in
most of the stages, especially those of getting packets for
processing, handling TCP sequence and auditing. The im-
provement of these three stages are the most significant be-
cause they heavily depend on moving the packets between
the kernel space and the user space. Handling the HTTP
protocol should have shown significant improvement, but
it does not because processing the HTTP protocol takes
longer time than data passing between the kernel space and
the user space.

5 Conclusions

This work presents an in-kernel gateway design with
four major functions for P2P management. Several prac-
tical techniques are proposed to enhance the system perfor-
mance. The dual-queue architecture can effectively elim-
inate head-of-line blocking. Besides, kP2PADM also re-
solves the possible performance degradation from useless
reconnection requests and out-of-order packets. Through
the connection cache and fast pass, we can increase the

Stage P2PADM (ms) kP2PADM (ms)
Getting packets 30 5
Checking the checksum 8 7
Packet classification 5 5
Handling TCP sequence 28 10
Handling HTTP 30 28
Auditing 30 12
Setting the verdict 7 6

Table 3. Execution time of each stage in the
internal benchmark.

throughput of kP2PADM and reduce the transmission time.
The in-kernel design is also compared with an in-daemon
design in terms of the throughput and CPU utilization to
show the benefits of implementation in the kernel.

The external benchmark results indicate that in-kernel
management improves the performance of the daemon ver-
sion of P2PADM. The throughput can achieve 185.73 Mbps
from 85 Mbps in the functions of proxy and content filter-
ing. The throughput is more than double that of P2PADM.
The connection cache can increase the throughput by about
21 – 34 Mbps. The CPU utilization of kP2PADM always
reaches 100% because all the functions of kP2PADM are
implemented in the kernel space. Fast pass can reduce more
transfer time when the delay time is longer or the packet loss
rate is larger.

References

[1] S. A. Baset and H. Schulzrinne. An analysis of the Skype
peer-to-peer internet telephony protocol. In Proceedings of
IEEE INFOCOM, Apr. 2006.

[2] M. Carson and D. Santay. NIST Net - a Linux-based network
emulation tool. 2003.

[3] T. Karagiannis, A. Broido, N. Brownlee, k. claffy, and
M. Faloutsos. Is P2P dying or just hiding? In Proceedings of
Globecom, Nov. 2004.

[4] T. Karagiannis, A. Broido, M. Faloutsos, and k. claffy.
Transport layer identification of P2P traffic. In ACM. SIG-
COMM/USENIX Internet Measurement Conference (IMC),
Oct. 2004.

[5] A. Parker. P2P in 2005. Available at http:
//www.cachelogic.com/home/pages/studies/
2005_01.php.

[6] S. Sen, O. Spatscheck, and D. Wang. Accurate, scalable
in-network identification of p2p traffic using application sig-
natures. In Proceedings of International WWW Conference,
May 2004.

[7] S. Sen and J. Wang. Analyzing peer-to-peer traffic across
large networks. IEEE/ACM Transactions on Networking,
12(2):219–232, Apr. 2004.

[8] A. Spognardi, A. Lucarelli, and R. D. Pietro. A methodology
for p2p file-sharing traffic detection. In Proceedings Interna-
tional Workshop on Hot Topics in Peer-to-Peer Systems, 2005.

8

[9] M. Uajnik, S. Moon, J. Kurose, and D. Towsley. Measure-
ment and modeling of the temporal dependence in packet loss.
Tech. Rep. UMASS CMPSCI 98-78, 1998.

9

