
Effects of Replica Placement Algorithms on Performance of structured

Overlay Networks

Bassam A. Alqaralleh, Chen Wang, Bing Bing Zhou, and Albert Y. Zomaya

School of Information Technologies

University of Sydney, NSW 2006, Australia

{bassam, cwang, bbz, zomaya}@it.usyd.edu.au

Abstract
In DHT-based P2P systems, Replication-based
content distribution and load balancing strategies
consists of such decisions as which files should be
replicated, how many replicas should be created
and where to replicate them in order increase the
system performance in the presence of non-uniform
data and access distribution. There are many works
on replica placement policies; however, the impact
of system workload on different replica placement
strategies is not well studied. We investigate this
problem under the context of content addressable
overlay networks. We compare a trace based
replica placement algorithm with two of its
variations, namely random placement and priority
based placement under different workloads. Our
experimental results show that the effect of replica
placement policy is highly affected by the workload
of the system, which indicates that an adaptive
replica placement strategy is desirable for content
distribution in an overlay network.

1. Introduction

In recent years, decentralized search with the

support of Peer-to-Peer (P2P) technologies draw
lots of interests as it potentially enables us to

organize distributed systems for information

diffusion and storage in a very flexible manner. A

structured P2P overlay network normally maps data

and computer nodes into the same ID space. With a

Distributed Hash Table (DHT) [5][6][7] like

routing mechanism, it effectively reduces the cost

of data search. In a structured overlay, data are

mapped to nodes based on the relationships

between their IDs. The ID of a data item is

normally calculated from the attributes [12] of the
data item or the digest of the data itself. However,

this causes data items unevenly distributed among

content nodes due to the difference in popularity of

these data items. It also causes the workload of

nodes that serve queries to these data items

unevenly distributed. The former may lead to data
skew where many data items corresponding to the
same ID are mapped to one content node, the latter

leads to access skew where queries to a popular

data ID may overwhelm the hosting node. Solving

the skew problem is crucial to the scalability of

systems built on P2P technologies. We discuss the

different approaches for solving access skew

problem in this paper.

Constructing a content distribution network

through replicating popularly accessed data is a

common way for solving access skew problem.

However, replication-based content distribution

and load balancing strategies consist of such
decisions as which data items should be replicated,

how many replicas should be created and where to

replicate them in order to enhance the system

performance in the presence of non-uniform data

distribution and dynamic data access pattern. In this

paper, we first describe three replica placement

algorithms for content distribution network

construction on top of a structured overlay. We

then investigate the effect of replica placement

algorithms on the performance of content

distribution network. We implement the following
three replica placement algorithms on top of prefix

routing based DHT overlay.

The first algorithm, CDN-QueryStat, is a query

route based replica placement algorithm. In a DHT

routing mechanism, the routes of messages

converge to nodes surrounding the destination node

hop by hop exponentially in speed. This can be

explained by that the destination node is only

included in the routing tables of a limited number

of nodes and messages have to be routed to the

destination through one of these nodes. Putting
number of hops a query has to travel.

The second algorithm, CDN-Rand, is a random

node selection algorithm for replica placement. The

hosting node randomly generates an ID from the ID

space and the content node that is responsible for the

ID is selected to store the replica. The third

algorithm, CDN-PR, is priority based. A content

1-4244-0910-1/07/$20.00 ©2007 IEEE

node is likely responsible for multiple data IDs, and

each data ID may have its own content distribution

network which consists of all nodes holding data

items with the same data ID, therefore the content

node can be a member of multiple content

distribution networks. The CDN-PR gives priority
to nodes that already store replicas. This algorithm

clusters replicas of different IDs to a few content

nodes. Only when the existing nodes with replicas

are saturated, a new node is selected for replicas.

This approach tries to minimize the number of

nodes that store replicas, which may be useful for

the maintenance of content distribution networks.

The rest of the paper is organized as follows.

Section 2 discusses related works. Section 3

describes the system model. In Section 4, we detail

the three replica placement algorithms mentioned

above. Section 5 presents experiment results and
Section 6 concludes the paper.

2. Related work

Recently, there are many efforts attempting to

balance the load using replication-based strategies in

the context of both unstructured [10][16][17] and

structured [5][6][7] overlay networks. In the context

of unstructured P2P networks, three replication

strategies proposed in [2] rely on different replica

placement strategies: owner replication replicates a

data items to the peer that has successfully received

the service through a query. In other words, the

receiver node becomes a service provider. Path
replication replicates the data on all peers along the

query forwarding route between the peer requesting
the data and the peer having the data. The service-

providing peer receives the query which contains

information about the sequence of peers that

forwarding the query, then the service provider peer

sends a reply and replica in the reverse direction of

the query forwarding route. Path replication method

has a good search performance and it is easy to

implement [3][4]. Random replication replicates

data objects randomly amongst other peers.

However, the authors claimed that for unstructured

p2p networks, random replication is superior to
owner and path replication, and it is the most

effective approach for achieving both smaller search

delays and smaller deviations in search.

Paper [4] proposed two replica placement

methods derived from path replication: Path
random Replication is straightforward extension of

path replication. This method is a combination of

path replication method coupled with a replication

ratio. Based on the probability of the pre-determined

replication ratio, each intermediate peer randomly

determines whether or not a replica is created and

placed there. Path adaptive Replication determines
the probability of the replication in each peer based

on a predetermined replication ratio and its resource

status. Paper [9] proposed uniform and proportional
replication strategies. In the uniform strategy,

replicas are uniformly distributed over the network,

while the proportional strategy replicates popular

files more frequently to improve its availability. A

proportional strategy improves the availability of the
popular items.

In the context of structured p2p networks, paper

[8][14] proposed the “power of two choices” load

balancing strategy for Chord. This strategy relies on

different algorithm for replica placement. In order to

provide load-balancing, multiple hash functions are

used instead of only one, each object is hashed to

multiple IDs, and placed on the least loaded node of

the nodes responsible for those IDs, and the other

nodes are given a redirection pointer to hosting

node. Also, [15] proposed another replica placement

strategy relies on utilizing multiple hash functions.
When the demand for popular file exceeds the

overall capacity of the current serving nodes, a

previously unused hash function is used to obtain a

new node ID where the file will be replicated. A set

of distributed algorithms proposed to choose an

unused hash function when replicating a file and

used function when requesting a file. Another

replication-based load balancing strategy proposed

in [11] relies on a fully distributed mechanism to

maintain the file access history in order to predict

the future file access frequencies. This strategy
replicates the files on the peers adjacent to a group

of peers which have high probability to access these

files in the future.

Comparing to existing replica placement

algorithms, the algorithms given in this paper is

based on decentralized decision making and can

construct content distribution networks in a self-

organizing way.

3. System Model

A node in a structured overlay stores a number

of data items mapped to it based on their IDs. Each

content node in the overlay network runs a process

for query processing. Query processing is FCFS
based. The maximum queue size defines the query

processing capacity of a node. When the queue is

full, the queries coming subsequently are either
dropped or forwarded to a node that might be able to

solve the query. When the data hosted by a node is

popular, it is likely that the queue is full most of the

time.

Each node in the system is able to create

replicas of its local data items onto other nodes

selected by replica placement algorithm.

The system contains the following components:

- Query routes and access history collection

mechanism to capture the temporal locality of

incoming queries, in order to collect the most

popular routes where queries come from.

- A replica placement algorithm.

- A mechanism that constructs and maintains a

content distribution network for data items of

popular IDs.

- A load balancing mechanism that dispatches
queries in the content distribution network in

order to make efficient use of content nodes and

to efficiently cope with dynamic query streams.

3.1 Query Routes and Access History Collection

Mechanism

Algorithms CDN-QueryStat and CDN-PR rely

on a simple and efficient mechanism to maintain

data access history information and to further

capture the temporal locality of incoming queries to

make content distribution and load balancing

decisions. This mechanism collects the pattern of

paths from recent queries as follows: Each

individual peer manages its own data access history

in order to cope efficiently with the distributed

nature of p2p networks, and to reduce the effects of
the disappearance of peers on the overall

functionality of the network. Each peer uses

QueryStat table to record the last-hop nodes

incoming queries travel through, as well as the count

of queries coming from these last-hop nodes in the

latest time frame. The time frame is defined to

reflect recent query arriving patterns, all the access

history before the latest time frame has no much

usage and should be removed to limit the size of the

QueryStat table. In this QueryStat table, we only

need to keep records for a certain period which is
enough to estimate the highly demanded data IDs

and help selecting nodes for data replication.

3.2 CDN Construction and Load

Balancing

We denote a set of content nodes which hold

the data items with ID k as cdnk. A content node N is

likely to be responsible for multiple data IDs. We

denote the set of content nodes that store data items

of IDs held in node N as cdnA. Node N’s capacity of

processing queries is described by a query queue

bounded by the maximum number of queries it can

process within a time frame, denoted by CN. Node N
also has a watermark WN, which is a certain

percentage of its capacity. A content node is

considered as overloaded if the workload assigned

to it is above the watermark. When the number of

queries in the queue is above the watermark, the

node will forward the subsequent incoming queries

to selected nodes in cdnk to prevent message from

being dropped from the queue.

There is a pre-defined value called acceptance
margin, denoted by m to help determining whether a

query should be forwarded to another content node.

A procedure for query forwarding and replicas

creation is described in Procedure 1. This procedure

is activated only when access frequency exceeds the

watermark WN. Nodes in cdnk form a complete

graph where each node maintains the direct address

of other nodes that store the same data. Workload is
exchanged among these nodes periodically. The

load of a content node is defined as the number of

queries in its queue. A node that hosts multiple data

IDs maintains a set of content nodes. The maximum

times that a query can be forwarded inside a CDN is

bounded by a constant max_fwds.

The New_Content_Node() function in

Procedure 1 uses ContentNet protocol to negotiate

with a candidate content node for replica creation of

a selected key. ContentNet protocol defines 8 types

of messages, four of which are exchanged between a

node requesting new content nodes and the
candidate new nodes, one is used for query

forwarding among content node, one is used for

exchanging load information among content nodes

and the rest two used for removing rarely used

content nodes. These messages and the ContentNet
protocol are described in [1].

Procedure 1: Query forwarding and content node

creation

if the query’s forwarding count has reached max_fwds
insert the query into the query queue
return

endif

find the least loaded node n from cdnk\{t}
if loadn < Wn - m

forward the query to n and increase its

forwarding count by 1

return

endif
insert the query into the query queue
// create a new content node
create new content node via function
New_Content_Node()
return

4. Replica Placement Algorithms

In this section, we give three different replica

placement algorithms CDN-Rand, CDN-PR and

CDN-QueryStat algorithms which can be described
as aggressive, conservative and moderated

algorithms, respectively, in terms of the number of

replica nodes created by these algorithms. Because

CDN-Rand, CDN-PR and CDN-QueryStat replica

placement algorithms create relatively large, small

and medium number of replica nodes, respectively.

The first algorithm CDN-QueryStat, as shown in

Algorithm 1, places replicas on nodes where queries

frequently come from. Algorithm 2 and 3 are CDN-
Rand and CDN-PR, respectively. The CDN-

QueryStat relies on simple and efficient mechanism

to maintain data access history information and

further capture the nodes from which the queries

come from. Replicas are therefore created along the

query incoming paths. CDN-QueryStat most likely

places replicas on nodes one hop a way from the
overloaded node.

Algorithm 1: Content node creation - CDN-

QueryStat

function New_Content_Node()

if new content node creating flag is not set
set new content node creating flag

 find the node n from Query_Stat table

 with maximum query rate, assume n
passes most queries to key k and

kcdnn∉

if not found

 randomly select node n from the DHT

ID space, kcdnn∉ .

 assign n the most requested Key in
Query_Stat table

endif

 send cdn_request message to n

endif

In CDN-Rand, the new content node is selected

randomly from the ID space of the overlay.

Therefore, this algorithm shows a tendency of

distributing the replicas uniformly across the

network. Furthermore, some replicas may be placed

far away from the overloaded node. Therefore, the

negotiations and communications between the node

requesting new content nodes and the candidate
nodes may consume longer time. On the other hand,

that may increase the query travel time between the

source nodes and the destination nodes as well.

Algorithm 2: Content node creation - CDN-Rand

function New_Content_Node()

if new content node creating flag is not set
set new content node creating flag

 randomly select node n from the DHT ID space,

kcdnn∉ .

 assign n the most requested Key in Query_Stat
table

 send cdn_request message to n

endif

Algorithm CDN-PR selects the new content

nodes using CDN-QueryStat algorithm, and then
keeps replicating different data index keys on the

same node until that node is saturated, then another

new content node is selected using the CDN-
QueryStat algorithm again. Assume that a new

replica of data ID k is to be created; new content

nodes will not be selected for storing the replica

until there is a clear evidence that the current
content replica nodes cdnA of all data index keys

hosted by the same node Nhost are saturated or

included in the content delivery network of data ID

k, cdnk. CDN-PR differs from CDN-QueryStat by

showing a tendency of replicating data index keys

on less number of content nodes in order to reduce

the overhead of load updating between the nodes in

content distribution networks.

Algorithm 3: Content node creation - CDN-PR

function New_Content_Node()

if new content node creating flag is not set
set new content node creating flag

find the node n from cdnA , where Acdnn ∈ ,

and load n < Wn – m and assign n the next
most requested Key in Query_Stat table

if not found

 randomly select node n from the DHT

ID space , kcdnn ∉

assign n the most requested Key in Query_Stat

table

endif

send cdn_request message to n

endif

In order to explain in details the differences

between these algorithms, we give a simple example

to describe the behaviour of each algorithm. In this

example we assume that content node N0

responsible for hosting a certain range of data index

keys {K0, K1, K2, K3, K4, K5}, was overloaded,

and replicated the following data index keys {K0,
K1, K2, K3} in order to relieve itself. Node N0

created the following number of replicas: 2 replicas

of K0, 2 replica of K1, 2 replicas of K2 and 1

replica of K3, and in the following order: K0, K1,

K2, K3, K2, K0 then K1.

Algorithm CDN-QueryStat replicates the data

index keys based on the information from the

QueryStat table. Table 1 shows the current

QueryStat table of the original hosting node N0, this

QueryStat table records top-3 frequently query

routing nodes. As mentioned before, only top-x
nodes are kept in each list. In this table, K0 has been

queried 65 times recently, while 25 of them are

routed via node N1, 20 of them are routed via N2,

10 are routed via node N4 and the rest 10 are routed

via other nodes. As shown in Fig. 1, QueryStat
algorithm replicated each key on the top frequently

routing nodes of that key; K0 was replicated on N1

and N2 because those nodes are the top two

frequently routing nodes of K0. K1 was replicated

on N2 and N3, K2 on N3 and N4, and K3 on N2.

Table 1: QueryStat table of the original node

Key (msg rate) Node-Id (msg rate)

K0(65) N1(25) N2(20) N4(10)

K1(60) N2(24) N3(22) N6(14)

K2 (50) N3(20) N4(18) N9(12)

K3(30) N2(15) N5(10) N8(5)

CDN-PR relies on CDN-QueryStat algorithm to
select only the new replica nodes. Therefore, CDN-
QueryStat was used to select the first replica node to

host replica of K0 based on the information from the

QueryStat table. As shown in Fig. 2, Node N1 was

selected because it’s the first top frequently routing

node of K0. Then CDN-PR algorithm replicated K0,

K1, K2, and K3 on the same node N1. Then CDN-
QueryStat algorithm was used again to select

another replica node to host a replica of K2 because

the current content node N1 was already hosting a

replica of K2. Therefore, N2 was selected because

it’s the second top frequently routing node of K2.
Then CDN-PR algorithm replicated K0 and K1 on

the same node N2. If there is more than one content

node meet the required criteria to host a new replica

to choose from, the least loaded node will be

selected to host the new replica.

Algorithm CDN-Rand most likely replicates

every data index key on different randomly selected

node using uniform random replica node selection

mechanism. Fig. 3 shows one of the possible

replicas distribution scenarios.

Fig. 1 Construction of content delivery network

using CDN-QueryStat algorithm

Fig. 2 Construction of content delivery network

using CDN-PR algorithm

Fig. 3 Construction of content delivery network

using CDN-Rand algorithm

5. Experiment Results

We measure the performance of the three
replica placement algorithms with a simulator built

on top of FreePastry 1.4.1, in which the routing base

is set to 2. Our simulation consists of 1000 nodes.

The node IDs are randomly generated based on

uniform distribution. Data items of 10,000 IDs

published on the overlay are generated based on zipf

distribution with α =0.5. Queries select these keys

as targets based on zipf distribution with α = 1.0. In

this scenario, some data nodes are likely to host many

hot keys each. Queries are submitted to the whole

overlay in a Poisson process with varying average
query arrival rate. The source nodes of these queries

are randomly selected from the overlay based on

uniform distribution. The hop-to-hop latency is set

to 9ms. The query processing time is 20ms/query. In

the experiment, we assume homogeneous node

query processing capacity and set the maximum

queue size to 50. The watermark of the load in a

content node is set to 80% of its capacity, i.e., 40

queries in its queue. A load-updating message is

sent out when there is a workload change of 20%.

Different query arrival rate defines different
workload of the system. Query arrival rates vary

from 1000 to 20000 queries per second in our

experiment.

Query Dropping Rate: In Fig. 4, CDN-
QueryStat, CDN-Rand and CDN-PR show

comparable performance in terms of reducing query

dropping rate. The experiment results show that

CDN-QueryStat outperforms CDN-Rand under all

workload circumstances; it is about 2-30% better

than CDN-Rand. This is due to two main factors;

firstly, requests to create new content nodes may be

affected by the distance between the overloaded
content node and the selected candidate content

nodes. CDN-QueryStat selects the new candidate

content nodes from a group of nodes one hop away

from the overloaded content node. These nodes are

most likely closer to the overloaded content nodes

than the candidate content nodes selected randomly

by CDN-Rand from the ID space. Therefore, not

surprisingly, CDN-QueryStat was able to select a

new content node and serve the coming queries

faster than CDN-Rand. Secondly, Using CDN-

Rand, most likely the queries will be forwarded to

the key node which is responsible for dispatching
them to other content nodes within the content

distribution network, if it is overloaded. The

dispatching incurs additional cost which reduces the

query processing capability of the content network.

On the other hand, CDN-QueryStat pushes the

content closer to the requestor. Therefore, queries

most likely will arrive to some content nodes which

hold the required data items before they arrive in the

key node. Those content nodes will be responsible

for dispatching queries to other content nodes if they

are overloaded and not able to serve them. That

most likely will distribute the query dispatching load
among many content nodes and reduce the query

forwarding delay. As a result, that increased the

capability of the content distribution network to

process those queries faster and reduced the number

of dropped queries.

Under heavy workload, CDN-PR performed the

worst in terms of query dropping rate. CDN-
QueryStat is about 11-71% better than CDN-PR
when the load was above 5000 queries/second, and

CDN-Rand is about 50-60% better than CDN-PR
when the load was above 10000 queries per second.
This can be explained as follows: Firstly, as

mentioned in section 3, as CDN-PR algorithm based

on concentrating replicas on a minimum number of

content nodes, and as the nodes in the network are

heavily loaded, these nodes are most likely saturated

faster and are not able to accept hosting more

replicas as required by this algorithm. Fig. 8 shows

that CDN-PR algorithm has the maximum number

of rejected CDN-Requests which increased the delay

of new content node creation and affected the

performance of this algorithm. Secondly, as shown
in Fig. 5, under heavy workload, CDN-PR

performed the worst in terms of Queuing delay,

CDN-QueryStat and CDN-Rand are about (16-

34%), (6-10%), respectively, better than CDN-PR

in terms of reducing Queuing delay. Therefore, as

we mentioned before, less queuing delay results

from short waiting queues which decreases the

probability of dropping queries.

Under light workload, CDN-PR achieved the

best performance in terms of reducing the query

dropping rate when the load was below 10000
queries per second. CDN-PR performed similar to

CDN-QueryStat when the load was below 5000

queries/second, and is about (17-93%) better than

CDN-Rand when the load was below 10000 queries

per second. The performance of CDN-PR algorithm

was improved because the number of rejected CDN-

Requests of CDN-PR was reduced as shown in Fig.

8, due to the low query incoming rate which

improved the ability of the candidate content nodes

to accept more CDN-Requests.

Average query traveling distance: as shown

in Fig. 6, the experiments results show that CDN-PR
and CDN-QueryStat algorithms outperform CDN-

Rand algorithm in terms of reducing query travel

distance (number of hops) between the source node

of the query and the destination content node. The

results show that CDN-QueryStat is about (3-

12.5%) better than CDN-Rand. Also, CDN-PR is

about (1-7%) better than CDN-Rand as well,

because both of CDN-QueryStat and CDN-PR
algorithms most likely select candidate content

nodes from a group of nodes one hop away from the

overloaded content node. Therefore, replicating the
content to these nodes will not only relieve the

overloaded content but also will push the content

closer to the requestor to reduce the travel time of

many queries. Therefore, many queries will be able

to get the required data items before they arrive in

the key node.

Furthermore, The reason which makes CDN-
QueryStat outperforms (1-7%) better than CDN-PR
is, as we mentioned before, CDN-QueryStat

algorithm relies completely on QueryStat table to

select candidate content nodes, Therefore, CDN-
QueryStat algorithm was able to select the best

location to place the replicas and was able to push

more replicas to be closer to the requestor than

CDN-PR.

Query forwarding hops: As shown in Fig. 7,

Dropped Queries Comparison
(Node#:1000; Published Data Index Keys:10,000; Query#:50,000)

0

200

400

600

800

1000

1200

1400

1600

10000 5000 2500 2000 1000

Mean Query Arrival Rate (queries/second)

N
u

m
b

e
r

o
f

Q
u

e
ri

e
s CDN-PR

CDN-QueryStat

CDN-Rand

Average Query Queuing Time comparison
(Node#:1000; Published Data Index Keys:10,000; Query#:50,000)

0

50

100

150

200

250

300

350

20000 15000 10000 5000 2500 2000 1000

Mean Query Arrival Rate (queries/second)

A
v
e
ra

g
e
 Q

u
e
u
in

g
 T

im
e
 (
m

s
)

CDN-PR

CDN-QueryStat

CDN-Rand

Fig. 4 Number of dropped messages under different
workloads, network size: 1000 node, # keys: 10,000

Fig. 5 Average queuing time, network size: 1000
node, # keys: 10,000

Query Travel Distance (Number of Hops) Comparison
(Node#:1000; Published Data Index Keys:10,000; Query#:50,000)

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

20000 15000 10000 5000 2500 2000 1000

Mean Query Arrival Rate (queries/second)

A
v

e
ra

g
e

 Q
u

e
ry

 T
ra

v
e

ll
in

g

H
o

p
s

CDN-PR

CDN-QueryStat

CDN-Rand

Average of Query Forwarding Hops Comparison
(Node#:1000; Published Data Index Keys:10,000; Query#:50,000)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

20000 15000 10000 5000 2500 2000 1000

Mean Query Arrival Rate (queries/second)

A
v

e
ra

g
e

 Q
u

e
ry

fo

rw
a

rd
in

g
 H

o
p

s

CDN-PR

CDN-QueryStat

CDN-Rand

Fig. 6 Average of query travel distance in terms of

number of hops, network size: 1000 node, #keys:

10,000

Fig. 7 Average of query forwarding hops among the

CDN-Nodes, network size: 1000 node, #keys: 10,000

Average Rejected CDN-Requests Comparison

(Node#:1000; Published Data Index Keys:10,000; Query#:50,000)

0

200

400

600

800

1000

1200

20000 15000 10000 5000 2500 2000 1000

Mean Query Arrival Rate (queries/second)

A
v

e
ra

g
e

 R
e

je
c

te
d

R

e
q

u
e

s
ts

CDN-PR

CDN-QueryStat

CDN-Rand

Content Delivery Nodes Comparison

(Node#:1000; Published Data Index Keys:10,000; Query#:50,000)

0

100

200

300

400

500

600

20000 15000 10000 5000 2500 2000 1000

Mean Query Arrival Rate (queries/second)

N
u

m
b

e
r

o
f

C
D

N

N
o

d
e

s

CDN-PR

CDN-QueryStat

CDN-Rand

Load Update Messages Comparison

(Node#:1000; Published Data Index Keys:10,000; Query#:50,000)

0

5000

10000

15000

20000

25000

20000 15000 10000 5000 2500 2000 1000

Mean Query Arrival Rate(queries/Second)

N
u

m
b

e
r

o
f

 M
s

g
s CDN-PR

CDN-QueryStat

CDN-Rand

Fig. 8 Average number of

rejected CDN-Requests, network

Size: 1000 node

Fig. 9 Number of CDN-Nodes

under different workloads

Fig. 10 Number of load update

messages, network size: 1000 node

CDN-QueryStat algorithm performed the best in

terms of reducing query forwarding hops among the

content nodes which hold data items with the same

data ID. On the other hand, CDN-PR outperforms
CDN-Rand as well, because both of CDN-QueryStat
and CDN-PR select the candidate content nodes to

be closer to the overloaded content node than the

candidate content nodes selected by CDN-Rand to

be uniformly distributed over the network. Also,

CDN-QueryStat outperforms CDN-PR because,

using CDN-PR, the content nodes most likely will

be hosting more replicas, and may become saturated

and heavily loaded faster, and the load update

messaging mechanism will not be able to provide

instant accurate load information to the other

content nodes due to communication time.
Therefore, those queries will be forwarded based on

inaccurate information to some overloaded content

nodes which may cause re-forwarding those queries

again

Rejected CDN-Requests: We compare the

number of rejected CDN-Requests under different

workloads in Fig. 8. The results of our experiments

show that CDN-PR performed the worst in terms of

rejected CDN-Requests because CDN-PR algorithm

based on concentrating replicas on a minimum

number of content nodes, these nodes most likely
will be saturated soon and will not be able to accept

hosting more replicas as required by this algorithm.

As a result, as shown in Fig. 8, CDN-PR algorithm

has more rejected CDN-Requests than CDN-
QueryStat and CDN-Rand. Furthermore, the

experiment results show that CDN-QueryStat
algorithm has more rejected CDN-requests than

CDN-Rand as well, because this algorithm also

shows a tendency of replicating many data index

keys on the same node. Therefore, under heavy

workload, some nodes were saturated faster and

rejected more CDN-Requests.

Content nodes: Also, we compare the number

of content nodes in Fig. 9 under different workloads.

CDN-PR algorithm created the minimum number of

content nodes, about 56-65% less content nodes

than CDN-Rand and 32-34% less than CDN-
QueryStat, because CDN-PR based on concentrating
hosting replicas on less number of content. On the

other hand, CDN-QueryStat shows about 16-36%

less content nodes than CDN-Rand as well because

CDN-QueryStat also shows a tendency of

replicating many data items on the same node while

CDN-Rand shows a tendency of distributing the

replicas uniformly over the network.

Load update messages: Decentralized content

distribution and load balancing systems rely on

periodic load updates from individual content nodes

to balance the load and expand the content
networks. However, more frequent load updates

increases freshness of the load information at the

cost of higher overhead. Fig. 10 shows that

decreasing the number of content nodes does not

necessarily lead to a drop in the number of load

updating messages. Our experiments results show

that CDN-QueryStat outperforms the other two

algorithms in terms of reducing the overhead by
achieving the minimum number of load updating

messages when the query arrival rate was less than

10000 queries per second. When the load exceeded

10000 queries per second, Fig. 10 shows that CDN-
PR had less number of load update messages, but it

does not necessarily mean that CDN-PR
outperforms the other two algorithms in terms of

reducing load update messages; Because CDN-PR
dropped high number of queries under heavy

workload which leaded to less number of queued

and served queries by the network. As a result, the

number of load update messages was reduced.

6. Conclusions

The replica placement problem has drawn lots

of attentions in unstructured overlay networks.

However, it is not well studied in a structured
overlay. In this paper, we gave three replica

placement algorithms proposed for solving the

access skew problem in a data index DHT overlay.

We compared the performance of three

algorithms. We detailed the advantages and

disadvantages of each algorithm through simulation.

Our simulation results revealed that system

workload has great impact to the performance of

replica placement algorithms. The results indicated

that an adaptive mechanism that combines the three

algorithms together is likely to improve the

performance of content distribution and load
balancing. Our results also showed that reducing the

number of content nodes does not necessarily lead

to reduced overhead of exchanging load update

messages between the content nodes.

References

[1] C. Wang, B. Alqaralleh, B. Zhou, F. Brites

and A. Zomaya, Self-Organizing Content

Distribution in a Data Indexed DHT Network,

Sixth IEEE International Conference on Peer-

to-Peer Computing (P2P'06) pp. 241-248.

[2] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker,

Search and Replication in unstructured peer-to-

peer networks, In Proceedings of 16th ACM

International Conference on Supercomputing

Systems (ICS’02), June 2002.

[3] S. Ata, Y. Gotoh, and M. Murata, Replication
Strategies in Peer-to-Peer Services over Power-

law Overlay Networks, The 7th Asia-Pacific

Network Operations and Management

Symposium (APNOMS 2003), Fukuoka,

JAPAN October 2003.

[4] H. Yamamoto, D. Maruta and Y. Oie,

Replication Methods for Load Balancing on

Distributed Storages in P2P Networks, In

Proceedings of the 2005 Symposium on

Applications and the Internet (SAINT’05).

[5] I. Stoica, R. Morris, D. Karger, F. Kaashoek
and H. Balakrishnan, Chord: A scalable peer-to-

peer lookup service for Internet applications, In

Proceedings of the ACM SIGCOMM
Conference, San Diego, California, Aug. 2001.

[6] S. Ratnasamy, P. Francis, M. Handley, R. Karp

and S. Shenker, A scalable content-addressable

network, In Proceedings of the ACM
SIGCOMM Conference, San Diego, California,

August 2001.

[7] A. Rowstron and P. Druschel, Pastry: Scalable,

distributed object location and routing for large-

scale peer-to-peer systems, In Proceedings of
IFIP/ACM Middleware, Heidelberg, Germany,

November 2001.

[8] J. Byers, J. Considine, and M. Mitzenmacher,

Simple load balancing for distributed hash

tables, In Proceedings of 2nd International
Workshop on Peer-to-Peer Systems, 2003.

[9] E. Cohen and S. Shenker, Replication strategies

in unstructured peer-to-peer networks, In Proc.
ACM SIGCOMM’02, August 19-23, 2002,

Pittsburgh, Pennsylvania, USA.

[10] I. Clarke, O. Sandberg, B. Wiley, and T.W.
Hong, Freenet: A distributed anonymous

information storage and retrieval system, Proc.

ICSI Workshop on Design Issue in Anonymity

and Unobservability, LNCS 2009, pp.46–66,

Springer, July 2000.

[11]Z. Xu and L. Bhuyan, Effective Load Balancing

in P2P Systems, Cluster Computing and the

Grid, 2006. CCGRID, Sixth IEEE International

Symposium on Volume 1, 16-19 May 2006

Page(s): 81–88, 2006.

[12]N. Harvey, M. Jones, S. Saroiu, M.Theimer,

and A. Wolman,"SkipNet: A Scalable Overlay
Network with Practical Locality Properties,"

Fourth USENIX Symposium on Internet
Technologies and Systems (USITS'03) , Seattle,

WA, March 2003.

[13]L. Garces-Erice, P. A. Felber, E. W. Biersack,

G. Urvoy-Keller, K. W. Ross, Data Indexing in

Peer-to-Peer DHT Networks, In Proceedings of
2004 ICDCS Conference, 2004.

[14] J. Byers, J. Considine, M. Mitzenmacher,

Geometric generalizations of the power of two

choices, in: Proceedings of the SPAA, 2004.
[15]Y. Xia, S. Chen and V. Korgaonkar, Load

Balancing with Multiple Hash Functions in

Peer-to-Peer Networks, Proceeding of the 12th

International Conference on parallel and

Distributed Systems (ICPADS’06), 2006.

[16]Napster Website: http://www.napster.com

[17]Kazaa Website: http://www.kazaa.com

