
Using Linearization for Global Consistency in SSR

Kendy Kutzner1 and Thomas Fuhrmann2

1University of Karlsruhe 2Technical University of Munich
Computer Science Department Computer Science Department

Am Fasanengarten 5 Boltzmannstrasse 3
76131 Karlsruhe, Germany 85748 Garching, Germany

kutzner@ira.uka.de fuhrmann@net.in.tum.de

Abstract

Novel routing algorithms such as scalable source rout-
ing (SSR) and virtual ring routing (VRR) need to set up and
maintain a virtual ring structure among all the nodes in the
network. The iterative successor pointer rewiring protocol
(ISPRP) is one way to bootstrap such a network. Like its
VRR-analogon, ISPRP requires one of the nodes to flood
the network to guarantee consistency.

Recent results on self-stabilizing algorithms now suggest
a new approach to bootstrap the virtual rings of SSR and
VRR. This so-called linearization method does not require
any flooding at all. Moreover, it has been shown that lin-
earization with shortcut neighbors has on average polylog-
arithmic convergence time, only.

1 Introduction – Scalable Source Routing

The scalable source routing protocol (SSR) [4][6] is a
novel routing protocol. It draws on ideas from overlay rout-
ing protocols such as Chord. Like Chord, SSR views all
nodes of the network as being members of a virtual ring.
The nodes’ addresses determine their position on the ring.
In other words, the ring is the circularly connected address
space. This ring is purely virtual, i. e. it is completely inde-
pendent from the actual physical topology of the network.
SSR does not assume the nodes’ addresses to match the
actual network topology. Nodes have virtual neighbors in
the virtual ring and physical neighbors in the physical net-
work topology. In general virtual and physical neighbors of
a node are independent.

Unlike Chord, SSR is a network layer routing protocol.
Physically neighboring nodes are directly linked by some
communication technology. For example, in the wireless
case, nodes are physical neighbors when they are in reach

of each other’s radio links. Virtual neighbors are connected
by source routes which act as virtual links. SSR builds up
and maintains these source routes as part of its routing pro-
tocol (cf. sec. 3). In essence, nodes exchange messages
containing source routes to other nodes. They store (some
of) these source routes and may append (parts of) them to
each other to create new source routes. Thereby, the nodes
change the virtual links in the virtual network graph. SSR
does this so that these virtual links, i. e. the sources routes,
eventually connect all nodes to form the virtual ring. The
details of the formation and maintenance of the virtual ring
are discussed in [4].

When the virtual ring has been established, SSR can
route messages to any destination. By construction the route
cache of each node contains source routes to the node’s
neighbors in the virtual ring. Beside that the caches will
contain source routes to other destinations. For example,
all nodes that are part of a source route in the cache can
be viewed as potential destinations, too. When routing a
packet, the respective node chooses that (intermediate) des-
tination from its cache that is physically closest to itself and
virtually closest to the final destination of the packet. It
appends the according source route from its cache to the
packet’s header. The nodes along this source route can then
forward the packet using the source route in the packet. This
routing step is repeated at the intermediate destination and
all subsequent destinations until the packet has reached its
final destination. If the virtual ring has been formed con-
sistently, this routing algorithm is guaranteed to succeed for
any source and destination pair.

Obviously, SSR is based on ideas from structured rout-
ing overlays such as Chord [9]. It combines these ideas with
proposals to use source routes as edges in the overlay graph
[8][10]. Recently, a proposal similar to SSR was put forth,
virtual ring routing (VRR) [2]. Contrary to SSR, VRR does
not use source routes and route caches, but builds up rout-
ing state along the paths that reflect the edges of the virtual

1-4244-0910-1/07/$20.00 ©2007 IEEE

network in the physical network.
Both SSR and VRR require a globally consistent virtual

ring to guarantee correct routing. As we will discuss in sec-
tion 3, this was thought to require at least one node to flood
the network. Furthermore, no formal assessment about the
convergence time of SSR’s and VRR’s consistency mecha-
nisms has been done so far. In this paper we transfer recent
results from the study of self-stabilizing algorithms to the
convergence of SSR (and VRR). We describe a new ring
formation algorithm that does not require flooding to guar-
antee consistency. Furthermore, using a result from Onus et
al [1] we know this mechanism to have on average polylog-
arithmic convergence time for random graphs.

The rest of the paper is structure as follows: Section 2
summarizes the linearization technique from Onus et al. for
arbitrary graphs. Section 3 describes how this linearization
technique can be applied to the ring formation of SSR (and
VRR). Section 4 details this new approach. Finally, sec-
tion 5 concludes with an outlook to future work.

2 Linearization

Graph linearization is the task to link the nodes of an ar-
bitrary graph in the order of their identifiers. Such an algo-
rithm is called self-stabilizing if it converges to the correct
state for every possible input graph.

As Onus et al. [1] showed, it is possible to linearize any
given connected graph having unique node identifiers with
the following simple decentralized and self-stabilizing al-
gorithm:

Algorithm 1 (Pure Linearization) For each node v we
consider all its n neighbors ui in the graph. These ui can be
sorted according to their node identifiers. Let u1 < . . . <
uk < v < uk+1 < . . . < un be the respective ordering.
Then we replace the edges {v, u1}, {v, u2}, ..., {v, un} with
the new edges {u1, u2}, {u2, u3}, ..., {uk, v}, {v, uk+1},
{uk+1, uk+2}, ..., {un−1, un}. By applying this operation
repeatedly the graph is transformed into a sorted linear list.

Since pure linearization may require many iterations
for some graphs, it is unsuitable for real world networks.
Hence, Onus et al. propose linearization with memory:
Unlike with pure linearization, edges are not replaced but
added. This improves the performance of the algorithm
significantly: The average runtime decreases from linear to
polylogarithmic.

However, keeping all edges may require significant
memory at the nodes. Therefore, Onus et al. propose lin-
earization with shortcut neighbors (LSN). The idea is sim-
ilar to the techniques that are applied in [9] and [7]: Every
node divides its local view of the identifier space into expo-
nentially growing intervals. For every interval at most one
edge is remembered.

As with pure linearization, LSN preserves the connect-
edness of the input graph. Moreover, Onus et al. show
that this algorithm converges quickly for regular random
graphs as well as for power law graphs (e. g. a power law
graph with 16.000 nodes and α = 2 converges in less than
39 rounds). Hence, LSN is suitable for real world applica-
tions. In the following section we describe how to use the
linearization technique to improve SSR and similar proto-
cols.

3 SSR and Linearization

The authors of SSR originally proposed ISPRP, the iter-
ative successor pointer rewiring protocol, to ensure consis-
tency of SSR’s virtual ring. ISPRP achieves local consis-
tency of the ring by means of an iterative protocol that en-
sures that each node has exactly one successor and exactly
one predecessor. To this end each node sends a notification
message to its presumed successor. If a node, say node A,
detects a local inconsistency, i. e. more than one node noti-
fied it to be its successor, A sends update messages to these
nodes to ensure a partial ordering among these nodes. Say
nodes B and C both notified A to be their successor, then
either B < C < A or C < B < A. In the former case A
sends an update to B pointing it to C, and vice versa in the
latter case.

As described in section 1 these messages contain source
routes. In our example an update that is sent from A to B
pointing it to C as better successor would carry a source
route A → C that B would append to its source route B →
A. Thereby B obtains a source route B → C.

This process continues until all nodes have pointers to
their successors in a locally consistent way. ISPRP achieves
global consistency by having one node flood the network
with its identifier. Thereby a potentially remaining global
inconsistency can be detected and resolved iteratively us-
ing ISPRP’s normal rewiring process [3]. VRR employs a
similar technique by piggy-backing the address of one node
– the so called ’representative’ – onto the hello beacons.
Both, SSR and VRR propose to choose the node with the
numerically largest address as (one) representative.

Linearization avoids this flooding step: It considers the
address space as linear, not as being a ring. Thereby the
address space regains its natural global ordering. Note that
each iteration of the linearization process preserves the con-
nectedness of the network. Therefore the network will not
be partitioned if it was connected at the beginning. As a
consequence, local consistency is equivalent to global con-
sistency.

This is illustrated in figure 1. With respect to the suc-
cessor relation of ISPRP, all nodes are locally consistent,
i. e. all nodes have exactly one successor and exactly one
predecessor. This is easily seen when we draw the graph as

2

Figure 1. The Loopy State

ring (upper figure). Obviously, despite being locally con-
sistent, the graph is not globally consistent. If we draw
it linearly (lower figure), this global inconsistency is also
reflected locally: Nodes 1 and 4 have two right neighbors
each; nodes 21 and 25 have two left neighbors each. If all
nodes – except for the leftmost and rightmost node – had
at exactly one left and right neighbor, the graph would be
globally consistent.

The type of inconsistency discussed so far is called loopy
state. Another type of global inconsistency are several par-
titioned virtual rings. Figure 2 shows a corresponding ex-
ample. Here nodes 1, 9, 18 and 4, 13, 21 form two dis-
connected rings. A consistency mechanism must hence not
only avoid loopy states. It must also guarantee that the re-
sulting virtual graph is one ring.

In the next section we sketch an iterative consistency
mechanism for SSR that manages both: It removes local in-
consistencies and preserves the connectedness of the graph.

4 Using Linearization in SSR

The insight from the previous section suggests a new al-
gorithm for ring formation in SSR (and VRR). We describe
it formally as self-stabilizing algorithm:

Let V be the set of nodes in the network. Let Ep be the

Figure 2. Separate Rings

set of edges in the physical network graph. Let Ev be the set
of edges in the virtual network graph that is to be turned into
the virtual ring. Edges in Ep are physical communication
links. Edges in Ev are source routes.1

Unlike with ISPRP the edges in Ev are undirected,
i. e. v1v2 ∈ Ev ⇔ v2v1 ∈ Ev , because linearization uses
the total ordering of the nodes’ addresses to distinguish left
and right neighbors. Thus, ∀v1,2 ∈ V, v1 �= v2 either
v1 < v2 or v2 < v1. In contrast, ISPRP uses the directed-
ness of the edges in the virtual graph to define its successor
relation.

We define NL(v) := {v′ ∈ V : vv′ ∈ Ev ∧ v′ < v}, the
left neighbor set of v, and correspondingly NR, the right
neighbor set of v.

Upon initialization, the set of virtual edges is initialized
to contain the physical edges, i. e. Ev := Ep. Then, each
node linearizes its virtual neighbors. We explain this lin-
earization procedure for the right neighbor set. It can be ap-
plied analogously to the left neighbor set. Assume v2,3 are
right neighbors of v1 with v2 < v3 and ¬∃v′ ∈ NR(v1) :
v′ < v2,3.

Then v1 sends both v2 and v3 a neighbor notification
message containing a pointer to v3 and v2 respectively. For
SSR these pointers are source routes. For VRR the noti-
fication messages set up state along their forwarding path.
In terms of the formal description here, this means that the
edge v2v3 is entered into Ev (if it has not already contained
that edge).

An SSR node v2 that receives a neighbor notification
message pointing it to v3 enters the according source route
into its route cache. Then v2 acknowledges the message

1Note that the proposed mechanism also applies to other routing mech-
anisms such as Virtual Ring Routing. There the virtual edges are the paths
as represented by the routing table entries.

3

Figure 3. The Linearization Algorithm at work

to indicate that its side of the new edge has been success-
fully established. When v1 has received the acknowledg-
ment both from v2 and v3 it may remove the state for its
edge to v3. If it does so, it should send a tear down acknowl-
edgment to v3 so that v3 can remove the according state too.
In terms of the formal description here, this removes v1v3

from Ev .
As a result, this procedure reduces the size of v1’s right

neighbor set by one. Moreover, any node v can apply it as
long as |NR(v)| > 1. The same holds for the nodes’ left
neighbor set. Thus, linearization will transform the virtual
network graph into the linear graph, in which each node
has at most one left and one right neighbor. Furthermore,
each linearization step maintains the connectedness of the
graph. Assuming trivially that the physical network graph
is connected, we have thus proven that linearization builds a

globally consistent connected linear virtual graph. Figure 3
illustrates the algorithm with the example from section 2.

In order to complete the virtual ring, the leftmost node
must establish an edge to the rightmost node. To this end,
a node with an empty left neighbor set sends a clockwise
discovery message. Similarly, a node with an empty right
neighbor set could send a counter-clockwise discovery mes-
sage. It should do so for sake of redundancy. These mes-
sages are routed through the virtual ring using the usual
greedy routing rules of SSR (or VRR respectively) until
they reach a node with an empty right (or left) neighbor set.
They are then acknowledged, thereby concluding the setup
of the virtual ring.

As described in section 1, SSR nodes cache source
routes. Each of these routes contains many nodes that can
serve as intermediate destinations. As has been demon-
strated in [5], a node typically caches at least one node for
each of the exponentially growing intervals (shortcut node)
introduced with LSN (cf. sec. 2). Thus, from the results
in [1] we know that this algorithm has polylogarithmic con-
vergence time if the nodes in this shortcut set are informed
with a message containing paths to the members of the cur-
rent set.

The SSR protocol as presented in [6] already guaranteed
the network to converge into a consistent and connected
state. However, it was necessary to flood the network at
least once to guarantee these properties. With the modifica-
tions presented in this section, the protocol is now guaran-
teed to converge and to keep the network connected without
flooding any message.

5 Conclusion and Future Work

Scalable source routing (SSR) and virtual ring routing
(VRR) are novel routing algorithms that are based on ideas
from structured overlay networks such as Chord. They set
up and maintain a virtual ring in which the nodes are or-
dered according to their globally unique identifier. SSR
suggested to use ISPRP to bootstrap the virtual ring. VRR
provides a similar functionality in its protocol. Both require
at least one node to flood the network in order to guarantee
global consistency of the virtual ring. Albeit SSR and VRR
have shown good performance in simulations, no formal as-
sessment of their convergence time has been published so
far.

In this paper, we applied a recent idea from self-
stabilizing algorithms to SSR. This so-called linearization
method guarantees globally consistent convergence of the
virtual ring without the need for flooding. Moreover, it is
known to have polylogarithmic convergence time, only.

Still, this fruitful collaboration between the more the-
oretical side of the research on self-stabilizing algorithms
and their application to real-world challenges of routing are

4

at their beginning. As a next step we are about to evaluate
the performance of linearization in simulations of SSR and
VRR. But more thorough theoretical work needs to be done,
e. g. to obtain more precise bounds on the performance of
SSR and VRR, especially with respect to convergence, sta-
bility and router state.

Acknowledgments

This research was funded by Deutsche Forschungsge-
meinschaft under grant number FU-448/1. The authors
would like to thank Christian Scheideler for the fruitful dis-
cussions that lead to this paper.

References

[1] Melih Onus Andrea Richa Christian Scheideler. Lin-
earization: Locally self-stabilizing sorting in graphs.
In Proceedings of the Ninth Workshop on Algorithm
Engineering and Experiments, 2007.

[2] Matthew Caesar, Miguel Castro, Edmund B. Nightin-
gale, Greg O’Shea, and Antony Rowstron. Virtual
Ring Routing: Network Routing Inspired by DHTs.
In Proc. ACM SIGCOMM ’06, Pisa, Italy, September
2006.

[3] Curt Cramer and Thomas Fuhrmann. Self-Stabilizing
Ring Networks on Connected Graphs. Technical Re-
port 2005-5, Fakultät für Informatik, Unversität Karl-
sruhe (TH), Germany, 2005.

[4] Thomas Fuhrmann. Scalable routing for networked
sensors and actuators. In Proceedings of the Second
Annual IEEE Communications Society Conference on
Sensor and Ad Hoc Communications and Networks,
pages 240–251, September 2005.

[5] Thomas Fuhrmann. A self-organizing routing scheme
for random networks. In Proceedings of the 4th IFIP-
TC6 Networking Conference, pages 1366–1370, Wa-
terloo, Canada, May 2–6 2005.

[6] Thomas Fuhrmann, Pengfei Di, Kendy Kutzner, and
Curt Cramer. Pushing chord into the underlay: Scal-
able routing for hybrid manets. Interner Bericht 2006-
12, Fakultät für Informatik, Universität Karlsruhe,
June 21 2006.

[7] Kendy Kutzner, Curt Cramer, and Thomas Fuhrmann.
Towards Autonomic Networking using Overlay Rout-
ing Techniques. In Proceedings of the 18th Interna-
tional Conference on Architecture of Computing Sys-
tems (ARCS ’05) - System Aspects in Organic and Per-
vasive Computing, Innsbruck, Austria, March 2005.

[8] Himabindu Pucha, Sumitra M. Das, and Y. Charlie
Hu. Ekta: An Efficient DHT Substrate for Distributed
Applications in Mobile Ad Hoc Networks. In Pro-
ceedings of the 6th IEEE Workshop on Mobile Com-
puting Systems and Applications (WMCSA 2004), En-
glish Lake District, UK, December 2004.

[9] Ion Stoica, Robert Morris, David Karger, M. Frans
Kaashoek, and Hari Balakrishnan. Chord: A Scal-
able Peer-to-peer Lookup Service for Internet Appli-
cations. In Proceedings of the SIGCOMM 2001 con-
ference, pages 149–160. ACM Press, 2001.

[10] Thomas Zahn and Jochen Schiller. MADPastry: A
DHT Substrate for Practicably Sized MANETs. In
5th Workshop on Applications and Services in Wire-
less Networks (ASWN 2005), Paris, France, June 2005.

5

