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Abstract

OpenMP has gained wide popularity as an API for
parallel programming on shared memory and distributed
shared memory platforms. It is also a promising candi-
date to exploit the emerging multicore, multithreaded pro-
cessors. In addition, there is an increasing trend to combine
OpenMP with MPI to take full advantage of mainstream su-
percomputers consisting of clustered SMPs. All of these re-
quire that attention be paid to the quality of the compiler’s
translation of OpenMP and the flexibility of runtime sup-
port. Many compilers and runtime libraries have an in-
ternal cost model that helps evaluate compiler transforma-
tions, guides adaptive runtime systems, and helps achieve
load balancing. But existing models are not sufficient to
support OpenMP, especially on new platforms. In this pa-
per, we present our experience adapting the cost models in
OpenUH, a branch of Open64, to estimate the execution cy-
cles of parallel OpenMP regions using knowledge of both
software and hardware. Our OpenMP cost model reuses
major components from Open64, along with extensions to
consider more OpenMP details. Preliminary evaluations
of the model are presented using kernel benchmarks. The
challenges and possible extensions for modeling OpenMP
on multicore platforms are also discussed.

1 Introduction

OpenMP [21], a set of compiler directives, runtime li-
brary routines and environment variables, is the de-facto
programming standard for parallel programming in C/C++
and Fortran on shared memory and distributed shared mem-
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ory systems. There is an increasing trend to combine
OpenMP with MPI to take full advantage of medium and
large-scale computers consisting of clustered shared mem-
ory parallel processors (SMPs). It is also considered a
promising candidate for exploiting emerging multicore pro-
cessors.

However, getting high performance from OpenMP is a
non-trivial task. On traditional SMPs, the speedup of codes
using OpenMP relies on many factors, including the avail-
able parallelism in applications and the manner in which it
is exploited, compiler optimizations, runtime support, data
layout, operating system noise, and workload balancing
and so on. The introduction of multicore processors poses
considerable challenges to the OpenMP application devel-
oper, since these processors differ from the simple symmet-
ric view of computational resources assumed in OpenMP.
Moreover, they also greatly differ from each other in terms
of the nature of hardware resource sharing, inter-core con-
nections and supported logical threads per core.

Cost models[17] are a class of low level models to re-
flect the detailed execution characteristics of computer sys-
tems and estimate the cost, mostly the time, of executing
applications using such systems. Many compilers and run-
time libraries have an internal cost model that helps evaluate
compiler transformations and thus guides the compiler in
its optimization process, guides adaptive runtime systems,
and helps achieve load balancing. However, existing cost
models are too simple to be sufficient for the compilation of
OpenMP, especially for new multicore platforms.

In this paper, we presents our efforts to create an effi-
cient and accurate cost model of OpenMP based on the cost
models in the OpenUH[14] compiler. With extensibility in
mind, our model consists of a set of submodels account-
ing for different factors: processors, memory hierarchy, as
well as parallel overheads. At compile time, our model uses
knowledge of both software and hardware to estimate the
execution cycles of parallel OpenMP regions. We evaluate
our model with respect to its accuracy and efficiency using



microbenchmarks.
The reminder of this paper is organized as follows. In

the next section, our motivation for building an OpenMP
cost model are given. Section 3 presents an overview of
OpenUH and its cost models. Our adaptation of OpenUH’s
cost models is described in Section 4, followed by prelim-
inary results in Section 5. Section 6 surveys related work.
Finally, Section 7 concludes by outlining future work.

2 Motivation

Cost modeling is important in many aspects of current
OpenMP research, especially those related to the challenge
of adapting OpenMP for emerging multicore platforms. An
accurate OpenMP cost model is indispensable for perfor-
mance modeling and prediction for modern parallel appli-
cations. It can help to guide compiler transformations, to
improve adaptive runtime systems targeting new platforms,
and to facilitate load balancing of MPI using OpenMP.

Multicore processors have entered the mainstream. A
typical multicore processor has several physical proces-
sor cores integrated into one chip (Chip MultiProcessing,
CMP), sometimes combined with hardware-supported si-
multaneous (SMT) or fine-grained/coarse-grained multi-
threading. There is great variety in multicore designs, espe-
cially in the amount and nature of resource sharing between
threads on a given system. For example, L2 cache could be
dedicated to each core or fully shared among them. Each
core might support multiple threads using simultaneous/in-
terleaved multithreading. As a result, emerging SMPs using
multicore processors provide opportunities for exploitation
of shared features, impose challenges arising from resource
contention, and require that attention be paid to scalability.

Though a promising candidate for exploiting multicore
platforms, OpenMP cannot readily meet the new challenge.
As a simple fork-join parallel programming model, it was
primarily designed for flat, uniform access shared-memory
space (UMA) systems and for relatively modest thread
counts. Initial observations [15] indicate some inefficien-
cies in current OpenMP on multicore platforms. For exam-
ple, default strategies that make good sense on a flat SMP,
such as using the maximum number of threads, an arbitrary
thread-processor mapping, and static block scheduling of
loops, may no longer be appropriate.

One of the major approaches to address the challenges
posed by new platforms is to use empirical search. For
example, Zhang et. al.[34] proposed an empirical runtime
search for choosing the right number of threads and a good
scheduling method for iterative applications on SMPs with
hyper-threading. While empirical search usually works well
for iterative algorithms and a small search space consisting
of limited factors, it fails to handle more complex situations
such as non-iterative algorithms and a much larger search

space, considering variants such as different chunk sizes,
thread placement and bindings.

On the other hand, SMP clusters dominate the high per-
formance computing market today. OpenMP is being in-
creasingly used with MPI on them to provide fine-grain
parallelism and to improve load balancing in MPI code.
A key problem here is to decide the “right” number of
OpenMP threads for each MPI process. Existing simple
heuristics[8, 29] for estimating execution time of OpenMP
code portions are quite limited in their ability to provide ac-
curate predictions.

Existing compile-time OpenMP cost models are simplis-
tic in terms of functionality and applicability. For instance,
to decide if parallelization is profitable, a simple heuristic
based on the size of the loop body and iteration space was
used in SUIF [16]. Another simple fork-join model [30]
was used to derive a threshold for dynamic serialization of
OpenMP. Neither consider sufficient OpenMP details for
more serious usage.

An accurate and efficient cost model of OpenMP is ur-
gently needed today for advancing research and develop-
ment in OpenMP. We believe it can be widely used to com-
plement existing solutions for the challenges imposed by
new architectures and complex programming models.

3 OpenUH and its Cost Models

The OpenUH compiler[14], a branch of Open64 [1],
is an optimizing and portable open-source OpenMP com-
piler for C/C++ and Fortran 90 programs. It is a com-
plete optimizing compiler for Itanium platforms, for which
object code is produced, and may be used as a source-
to-source compiler for non-Itanium machines using IR-to-
source tools. As depicted in Fig. 1, OpenUH reuses ma-
jor components of the Open64 infrastructure: the fron-
tends, the interprocedural analyzer (IPA) and the middle-
end/backend, which is further subdivided into the loop
nest optimizer (LNO) including an auto-parallelization op-
tion (APO), global optimizer (WOPT), and code genera-
tor (CG). The IR of OpenUH (and also Open64) is named
WHIRL, which has five levels to facilitate different com-
piler analyses and optimizations from high-level language-
dependent ones to low-level machine-dependent optimiza-
tions, and anything between. Among its many enhance-
ments, OpenUH has also incorporated features from other
major branches[22, 23, 7] of Open64.

OpenUH handles OpenMP in several steps (see [14]
for details). First, the source code is parsed by the
appropriate extended language frontend and translated
into WHIRL IR with OpenMP pragmas. Then a phase
named OMP Prelower preprocesses OpenMP pragmas for
semantic checking and simplifications. Most OpenMP
transformations are conducted in the LOWER MP phase,
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Figure 1. The OpenUH compiler

where WHIRL with OpenMP pragmas is translated into
WHIRL representing multithreaded code with correspond-
ing OpenMP runtime library calls. The remainder of the
process depends on the target machine: for Itanium plat-
forms, the code generator derived from Open64 can be di-
rectly used to generate object files. For a non-Itanium plat-
form, compilable, multithreaded C or Fortran code with
OpenMP runtime calls is generated after the middle end
to preserve valuable optimizations from IPA, LNO and
WOPT. In this case, a native C or Fortran compiler needs to
be invoked on the target platform to complete the compila-
tion of the multithreaded C/Fortran code. In both native and
source-to-source compilation models, a portable OpenMP
runtime library is used to support the execution of OpenMP
programs.

3.1 Cost Models

OpenUH includes a set of cost models inherited from
Open64’s loop nest optimizer(LNO) [32] that can be used to
estimate, in CPU cycles, the cost of executing singly nested
loop (SNL) nests. SNL loop nests comprise perfectly nested
loop nests, and imperfect ones that are eligible to be trans-
formed into perfect ones. The compiler uses its cost models
to choose a combination of different loop level optimiza-
tions, including transformations such as arbitrary loop in-
terchange, tiling and outer loop unrolling. The cost model
may also guide automatic parallelization. There are three
major models: the Processor model, Cache model and Par-
allel model. We briefly describe each of them below:

The processor model(see Fig.2) is mainly used to esti-
mate the CPU cycles needed to execute one iteration of a
SNL loop, without considering latencies from the memory
hierarchy. The processor cycles (Machinec per iter) are
calculated based on cycles from FP and ALU units(OPc),
memory units(MEM refc), and issue units(Issuec). The

compiler uses a preset scheduling table to map the WHIRL
IR into target machine instructions. The instructions are fur-
ther associated with processor resources (FP, ALU, Branch
etc.) and latencies. The compiler accumulates cycles for
each resource after IR browsing based on the mappings and
returns the maximum value as the result. In addition, the
compiler counts base registers (reserved ones) and registers
used in the loop for scalar and array references to get total
number of registers (Regs used) required in a loop. The
spilled registers (Reg used − Target Regs), if they ex-
ist, are converted into extra memory references and spilling
cycles are included in memory reference cycles.

The processor model also takes into consideration the
latency involved for instructions/memory operation depen-
dencies, which are significant for processor stalls. The
assumption is that the loop modeled will be optimized
using software pipelining so that intra-loop dependencies
can be ignored. Loops are analyzed to build dependence
graphs, in which a vertex represents a floating point load
or store and an edge is marked with a latency and an it-
eration distance. The cycles in the graph are located to get
sum of latenciesi/sum of distancesi) . The maximum
is returned as dependency latencyc.

The cache model helps by predicting the cache misses
and the associated penalty cycles required to execute inner
loops. It creates instruction footprints, which represent the
number of bytes of data references in cache by a given in-
struction. Instruction footprints are further accumulated to
loop level footprints. The unused data residing in the same
cache lines as the referenced data is also considered as part
of footprints as edge effect. To consider spatial data locality,
the compiler counts only once for all references to the same
array whose index expressions differ by at most a constant
in each dimension,(e.g. a[i][j] and a[i][j+1]). Adding the
different footprints can predict cache overflow if the sum
of the footprints exceeds the cache capacity, which gen-
erates cache misses. The final cost (Shown as Cachec in
Fig.3) is accumulated from all levels of cache hierarchy us-
ing miss ∗ penalty for simplicity.

The parallel model was designed to support automatic
parallelization by evaluating the cost involved in paralleliz-
ing a loop. It helps to determine if there is sufficient work to
justify the parallelization and to choose the best level of the
loop to parallelize taking loop permutations into considera-
tion. The parallel model mainly calculates loop body execu-
tion cycles by reusing the processor and cache models, but
also includes the parallel overhead from the fork/join oper-
ations in the shared memory model, plus the loop overhead.
Fig.3 shows a high level summary of the equations used to
calculate the total cycles of a parallelized loop from various
sources including processor(machine), cache misses, TLB
misses, loop overhead, and parallelization overhead.
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Machinec per iter = Resourcec + Dependency latencyc + Register spillingc

Resourcec = maximum(OPc, MEM refc, Issuec)
MEM refc = (Num fp refs + Num int refs)/Num mem units

Issuec = Num inst/Issue rate

Dependency latencyc = maximum(Sum of latenciesi/Sum of distancesi)
Regs used = Base regs + Scalar regs + Array regs

Spilling mem ref = (Reg used − Target Regs) ∗ [Num reg refs/(Scalar regs + Array regs)]

Figure 2. Equations of Processor Model

Totalc = Machinec + TLBc + Cachec + Loop overheadc + Parallel overheadc

Machinec = Machinec per iter ∗ Num loop iter/Num threads

TLB miss = Num array ref − TLB entries, if(Num array ref − TLB entries > 0)
TLBc = TLB miss penalty ∗ TLB miss

Cachec =
Levels∑

i=1

(Clean footprinti ∗ Clean penaltyi + Dirty footprinti ∗ Dirty penaltyi)

Loop overheadc = Loop overhead per iterc ∗ Num loop iter/Num threads

Parallel overheadc = Parallel startupc + Parallel const factorc ∗ Num threads

Figure 3. Equations of Parallel Model and Cache Model

4 Modeling OpenMP

We have adapted the parallel model in OpenUH to model
OpenMP parallel regions, which involved adding exten-
sions to the model and modifying its implementation.

Extending the parallel model to model OpenMP has been
proved to be mostly straightforward, since OpenMP uses
a simple fork-join execution model and the original paral-
lel model in OpenUH provided a good basis for it, though
many important factors were ignored. The extensions cover
more details of the OpenMP programming API and are de-
picted in Fig.4. We show only the C/C++ aspects here; our
model for OpenMP in Fortran programs is similar.

Our OpenMP cost model focuses on a parallel region at
a time, which in turn may contain multiple worksharing
regions (omp for, omp section or omp single),
and multiple synchronization constructs (omp master,
omp critical, etc.). The execution time of the entire
parallel region (Parallel regionc) depends on the execu-
tion time of the most time-consuming thread between each
pair of synchronization points(Threadi exe jc), plus fork-
join overheads. Threadi exe jc is in turn the sum of en-
closed worksharing and synchronization costs. Taking the
maximum execution time between synchronization points
of all participating threads into account ensures the overall
accuracy and exposes possible load imbalance. Also, our
model considers scheduling overhead cycles (Schedulec)
and chunk size, aiming to model different scheduling poli-
cies. The rest of the terms in the model’s equations directly
derive from the original equations of the parallel model
in OpenUH, including Machinec per iter, Cachec, and

Loop overheadc, etc.
There are several implementation details worth mention-

ing. First of all, the original parallel model only worked
for sequential SNL loops. Thus a new IR traversal phase
was added to locate all OpenMP parallel regions and to ap-
ply our OpenMP cost model to each of them subsequently.
In addition, the OpenUH compiler is capable of aggressive
loop transformations. We chose to place the OpenMP cost
model after all possible loop transformations to allow it to
be aware of possible applications of loop interchange, loop
unrolling and tiling happening on the parallel loops. Third,
most values of the parameters (thread fork-join overhead,
scheduling overheads,etc.) used in the OpenMP model
can be obtained or derived from microbenchmarks[5, 28].
Finally, a lightweight OpenMP scheduler was needed to
estimate the chunks of loop iterations assigned to each
thread. For simplicity, we use a round-robin chunk assign-
ment method for all scheduling policies including static,
dynamic, and guided. It might also be possible to simu-
late the runtime scheduling inside the OpenMP model based
on the estimation of the execution time of each assigned
chunk for each thread in the future.

5 Preliminary Results

We provide some early results of evaluating our cost
model for OpenMP in this section. The benchmark used
was a classic matrix-matrix multiplication(MMM) kernel
(Listing 1), which has also been widely used in previous
research[32, 33] due to its importance in scientific compu-
tation. We selected three square array sizes (500 × 500,
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Parallel regionc = Forkc +
m∑

j=1

[maximum(Thread0 exe jc, ..., Threadn−1 exe jc)] + Joinc

Threadi exe jc = Worksharing c + Synchronization c

Worksharing c = Parallel forc/Parallel sectionc/Singlec

Synchronization c = Masterc/Criticalc/Barrierc/Atomicc/F lushc/Lockc

Parallel forc = Schedule times ∗ (Schedulec + Loop chunkc + Orderedc + Reductionc)
Loop chunkc = Machinec per iter ∗ Chunk size + Cachec + Loop overheadc

Figure 4. Equations of Cost Model for OpenMP

1000 × 1000, and 1500 × 1500) to study the impact of dif-
ferent input data sets on our model. Our test platform was
COBALT, an SGI Altix system at NCSA. COBALT is a cc-
NUMA platform with a total of 32 1.5 GHz Itanium 2 pro-
cessors and 256 GB memory.

Listing 1. Matrix multiplication in OpenMP

#pragma omp p a r a l l e l f o r p r i v a t e ( i , j , k )
f o r ( i = 0 ; i < N; i ++)

f o r ( k = 0 ; k < K; k ++)
f o r ( j = 0 ; j < M; j ++)

c [ i ] [ j ]= c [ i ] [ j ]+ a [ i ] [ k ]∗ b [ k ] [ j ] ;

Major machine and other modeling parameters are shown
in Table 1 and 2. They were obtained in several ways:
vendor manuals, system information from an open-source
performance analysis toolset named PerfSuite[24], and mi-
crobenchmarks such as LMbench[20] and EPCC[5]. We
used OpenUH to compile all versions of the MMM kernel
with compilation option -mp -O3 because our OpenMP
cost model assumes that optimizations occur. The executa-
bles were run from 1 to 8 threads and PerfSuite was used to
collect performance metrics.

Processor Count/Cycle
Mem units 4
Issue rate 6
Float units 2
Integer units 6
Branch units 3
Target regs 128(int)+128(fp)
Base regs 10(int)+32(fp)
Other Cycles
Loop overhead per iter 4
Parallel startup 3000
Parallel const factor 500
Schedule static c 2000

Table 1. Major processor/parallel parameters

Fig.5 shows both modeled and measured CPU cy-
cles of all versions of the MMM kernel. The ac-
curacy of the OpenMP cost model was depicted in
Fig. 6 using the relative difference ratio ((Modeledc −

Size LineSize Clean
Penalty

Dirty
Penalty

Assoc.

L1D 16KB 64 21 21 4
L2 256KB 128 200 200 8
L3 6MB 128 220 220 24

Entries PageSize
TLBD 32 16KB 50 50 Full

Table 2. Major memory hierarchy parameters

Measuredc)/Measuredc) between modeled cycles and
measured cycles. The results of modeling OpenMP with
schedule clause is given in Fig.7 using array size 1000×
1000 with 4-thread execution. Only static scheduling re-
sults are shown because dynamic and guided scheduling
have very similar results. It is interesting that the compiler
optimized the innermost two level loops of the MMM ker-
nel extensively: loop interchanging, tiling at k loop, as well
as unrolling at j loop.

It is obvious that our current model leaves plenty of room
for tuning and improvements. Many factors contribute to
the large difference ratio between modeling and measuring
results: compile-time cost modeling solely relying on static
analysis, an input high-level IR which is quite different from
the final assembly code, system noise when measuring mul-
tithreaded execution, as well as ignored sources of execu-
tion cost such as instruction cache misses, coherence cache
misses, and bus contentions. However, our simple model
is still able to capture the relative performance of different
chunk sizes of static scheduling, which would often give
enough hints for guiding OpenMP compilation and runtime
tuning.

Finally, we measured the amount of time spent on
OpenMP cost modeling of the MMM kernel. On average,
only 0.079 second was needed when invoking the OpenMP
cost model for the first time, which accounted for 1.25%
(0.079s/6.33s) of the total compilation time of the kernel.
And the time spent on additional evaluations using different
threads was negligible since they could reuse many results
of the initial modeling. Thus our model is efficient enough
for frequent usage within the compiler.
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6 Related Work

Building analytical models that incorporate knowledge
of both hardware and software has been a research topic
since the early days of computing, because they can be
widely used to evaluate different computer system designs,
to select compiler transformations, and also to tune appli-
cation performance. We only mention a few of them below
since an exhaustive list is beyond of the scope of this paper.

Numerous compiler cost models for computation and
memory access have been proposed, especially for guid-
ing loop transformations [32]. Wang [31] presents a cost
model for superscalar processors considering multiple func-
tion units and instruction dependency. His work also maps
high level language constructs to low level machine oper-
ations using cost tables. Ferrante et al. [10] determines
the innermost loop with overflowing caches using the num-
ber of distinct cache lines accessed inside a loop to guide
transformations like loop interchange. McKinley’s cache
model [19] is based on equivalence classes of array ref-
erences showing temporal and spatial locality. Ghosh et
al. [11] introduces cache miss equations based on a system
of linear Diophantine equations from a reuse vector. A more

recent study by Yotovo et. al.[33] demonstrates the use of a
detailed compile-time model for the sequential matrix mul-
tiplication kernel and compares it with a library using em-
pirical optimizations.

It is common for models to rely on benchmarking and
profiling. Saavedra et. al.[25] uses benchmarking of ab-
stract operations to find characteristics of both applica-
tions and machines, trying to estimate execution time for
arbitrary machine/program combinations. Based on con-
trol flow graph edge frequency and memory reuse distance
obtained from binary profiling of benchmarks, Marin et.
al.[18] apply approximation functions to build parameter-
ized performance models. Both of their models are lim-
ited to sequential programs only. Snavely et. al.[26] use
benchmarks to probe the machine’s signature and use a pro-
filing tool to generate an application profile. A convolu-
tion model based on machine and application features was
applied to predict performance. Their model only targets
memory-intensive applications.

Models [4, 27] are also used to estimate the perfor-
mance of parallel programs. Some of them [9] are at a high
level, proving qualitative insights. Some are based on task
graphs [3]. Several integrated performance frameworks [2]
also exist. However, they are often not lightweight and
versatile enough for compile-time usage. There are sev-
eral compile-time parallel models: a simple heuristic based
on the size of the loop body and iteration space is used in
SUIF [16] to decide if parallelization is profitable. A sim-
ple fork-join model [30] is used to derive a threshold for
dynamic serialization of OpenMP. Considering coherence
misses, lock time and memory contention, Jin et al. [13]
presents an analytical model for SMPs to select optimiza-
tions for reductions, but not for OpenMP applications.

To the best of our knowledge, there are very few mod-
els for multicore/multithreaded platforms. Chandra et. al.
[6] model the extra L2 cache misses due to inter-thread
contention on a chip multi-processor architecture using
stack distance or circular sequence profile. Their mod-
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els are limited to co-scheduled threads from different se-
quential benchmarks, and are thus not directly applicable to
OpenMP threads.

As to the accuracy, profiling or microbenchmarking-
based models[25, 26] usually have good accuracy: the av-
erage difference ratio between predicted and measured per-
formance ranges from ±10% to ±30%. Models[12, 3, 6]
using mathematical equations extensively have much wider
difference ranges (from a few percentage to even hundreds
percentage) or no accuracy information[31] was provided at
all. Most compile-time cost models[32, 19] have not been
directly validated for accuracy, only showing performance
improvement using model-driven optimizations.

7 Discussion and Future Work

Building cost models is challenging, but valuable. The
major difficulty is the deep knowledge needed about hard-
ware, software and their internal and external interactions,
and the trade-off between accuracy and efficiency.

Getting machine profiles is not easy. The vendor manu-
als cannot cover each variant of their hardware and results
of microbenchmarks often do not agree with each other.
The popularity of multicore platforms demands reevaluat-
ing and updating traditional models for processors, caches,
buses and networking. The conventional notion of a fixed
number of available resources does not directly apply to
the new resource-sharing features in multicore processors.
As for user applications, compile-time models usually have
limited ability to foresee the impact of different input data
sets. The complex, implementation-dependent optimiza-
tions conducted on the applications make it difficult for
models to predict the final form of the code. Modeling
parallel programs on multicore platforms is much harder,
considering the exponentially increased execution possibili-
ties and non-deterministic behavior of concurrent executing
threads. Taking OpenMP as an example, an accurate cost
model has to consider additional factors like the activated
thread context and thread-processor mapping and bindings.

The modeling of interactions among hardware/software
components is a another tough call. The complexity of mod-
ern out-of-order, superscalar processors and multiple levels
of non-blocking memory hierarchy already impose numer-
ous challenges. For example, how to accurately convert
cache misses into final execution latencies is still an open
question due to the overlapping between computation and
memory requests. The mainstream modeling approach to-
day is still to consider one component at one time and com-
bine their results in simple ways, which could lead to sig-
nificant inaccuracy. Again, multicore platforms introduce
more variants in studying hardware/software interactions.

There are two other concerns with regard to cost mod-
els. One is the trade-off between accuracy and efficiency.

Theoretically, one can always try to improve the accuracy
of models by considering more and more factors. But the
cost/accuracy ratio might not justify the effort, especially
for compile-time models which are invoked hundreds of
times or more for one compilation unit. The other is porta-
bility and reusability. There are still few ways to express
the knowledge used to build models and to share the code
of their components, yet this could save a lot of repetitive ef-
forts to build various types of machine profiles/application
signatures and to implement popular modeling components.

On the other hand, the value of cost models is greatest
when they are used together with other approaches such as
simulation-based and profiling/measurement-based perfor-
mance prediction. A combined method can leverage advan-
tages from different approaches and offer a good balance
of accuracy, efficiency, portability and flexibility in perfor-
mance prediction, especially for multicore platforms.

Our future work can follow several directions. One is
to extend our cost model for multicore platforms as well
as improving its accuracy on traditional SMPs. Exploring
portable and reusable ways to build cost models is another
major task. Using simulators in addition to real platforms
could enable the exploration of more machine configura-
tions and thus help revise and validate our model. Finally,
we are considering parameterizing all the models, in order
to widen its applicability for both static compilers and dy-
namic runtime systems. This may enable it to support future
combinations of simulation, profiling, measurement, run-
time monitoring and analytical modeling.
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