
Runtime Optimization of Application Level
Communication Patterns

Edgar Gabriel and Shuo Huang
Department of Computer Science , University of Houston ,

Houston, TX, USA
{gabriel, shhuang}@cs.uh.edu

Abstract— This paper introduces the Abstract Data and
Communication Library (ADCL). ADCL is an applica-
tion level communication library aiming at providing the
highest possible performance for application level commu-
nication operations on a given execution environment. The
library provides for each communication pattern a large
number of implementations and incorporates a runtime
selection logic in order to choose the implementation
leading to the highest performance of the application on
the current platform. Two different runtime selection al-
gorithms are currently available within ADCL: the library
can either apply a brute force search strategy which tests
all available implementations of a given communication
pattern; alternatively, a heuristic relying on attributes
characterizing an implementation has been developed in
order to speed up the runtime decision procedure. The
paper also evaluates the performance of a finite difference
code using ADCL on an AMD Opteron cluster using
InfiniBand and Gigabit Ethernet interconnects.

I. INTRODUCTION

Software development for High Performance Com-
puting systems is currently facing significant challenges,
since many of the software technologies applied in the
last ten years have reached their limits. The number of
applications being capable of efficiently using several
thousands of processors or achieving a sustained per-
formance of multiple teraflops is very limited and is
usually the result of many person-years of optimizations
for a particular platform. These optimizations are how-
ever often not portable. As an example, an application
optimized for the IBM Blue Gene will very probably
perform poorly on a Cray X1 or the Earth Simulator,
and will probably even have performance problems on
a PC cluster utilizing a commodity network interconnect.
Among the problems application developers face are
the wide variety of available hardware and software
components and their influence on the performance of
an application, such as processor type and frequency,
number of processor per node and number of cores
per processor, characteristics and performance of the
network interconnect, or software components such as
the operating system, device drivers and communication
libraries. Hence, an end-user faces a unique execution
environment on each parallel machine he uses. Even

experts struggle to fully understand correlations between
hardware/software parameters of the execution environ-
ment and their effect on the performance of a parallel
application.

In the following, we would like to clarify the dilemma
of an application developer using a realistic and com-
mon example. Consider a regular 3-dimensional finite
difference code using an iterative algorithm to solve
the resulting system of linear equations. The parallel
equation solver consists of three different operations
requiring communication: scalar products, vector norms
and matrix-vector products. Although the first two op-
erations do have an impact on the scalability of the
algorithm, the dominating operation from the commu-
nication perspective is the matrix-vector product. The
occurring communication pattern for this operation is
neighborhood communication, i.e. each process has to
exchange data with its six neighboring processes at
least once per iteration. Depending on the execution
environment and some parameters of the application
(e.g. problem size), different implementations for the
very same communication pattern can lead to optimal
performance. Figure 1 presents the execution times for
200 iterations of the equation solver applied for a steady
problem using 32 processes on the same number of pro-
cessors on a state-of-the-art PC cluster for two different
problem sizes (32×32×32 and 64×32×32 mesh points
per process) and two different network interconnects
(Infiniband and Gigabit Ethernet). The neighborhood
communication has been implemented in four different
ways, named here fcfs, fcfs-pack, ordered, overlap.

The results indicate, that already for this simple test-
case on a single platform three different implementations
of the neighborhood communication lead to the best
performance of this application: the fcfs implementation
shows the best performance for both problem sizes when
using the Infiniband interconnect. This implementation
is initiating all required communications simultaneously
using asynchronous communication. However, for the
Gigabit Ethernet interconnect the fcfs approach seems
to congest the network. Instead, the implementation
which is overlapping communication and computation

1-4244-0910-1/07/$20.00 ©2007 IEEE

(overlap), is showing the best performance for the small
problem size while the ordered algorithm, which limits
the number of messages concurrently on the fly, is
the fastest implementation for the large problem size
for this network interconnect. Thus, the implementation
that was considered to be the fastest one over the
Infiniband network has turned out to be under certain
circumstances the slowest of the available implementa-
tions over Gigabit Ethernet. An application developer
implementing the neighborhood communication using a
particular algorithm will inevitably give up performance
on certain platforms.

Fig. 1. Comparison of the execution times for various implementa-
tions of the neighborhood communication in a regular finite difference
code, on 32 processors using Open MPI 1.0.1

In the last couple of years many projects have been
dealing with optimizing collective communication op-
erations. Most of the work has focused on collective
operations as defined in the MPI specifications, such
as in [1]–[7]. While all of them incorporate a cer-
tain flexibility with respect to the algorithm used to
implement a given collective operation, most of them
determine a-priori which algorithm will be applied for
a particular message length. Star-MPI [5] is the only
approach known to the authors which incorporates a
runtime decision logic.

Among the numerical libraries incorporating adaptive
techniques are ATLAS [8] and FFTW [9]. The probably
most flexible approach is offered by FFTW. This li-
brary incorporates runtime optimizations of Fast Fourier
Transform (FFT) operations. In order to compute an
FFT, the user has to invoke first a ’planner’ specifying a
problem which has to be solved. The planner measures
the actual runtime of many different implementations
and selects the fastest one. In case many transforms of
the same size are executed in an application, this ’plan’
delivers the optimal performance for all subsequent
FFTs.

In this paper we present a new application level
communication library which enables the runtime op-
timization of collective operations. The library provides
two runtime selection algorithms in order to deter-
mine the implementation leading to the best application
performance at runtime. We demonstrate the benefits
of this approach using a finite difference code over
InfiniBand and Gigabit Ethernet. The remainder of the
paper is organized as follows: section II presents the
main ideas and the main concepts of the Abstract
Data and Communication Library (ADCL). Section III
presents then a heuristic for the runtime selection logic
based on attributes characterizing an implementation.
Section IV details performance results and discusses
current limitations of the library and of the algorithms
used for the runtime selection logic. Finally, section V
summarizes the paper and presents the currently ongoing
work in this project.

II. THE ABSTRACT DATA AND COMMUNICATION
LIBRARY (ADCL)

ADCL (Abstract Data and Communication Library)
is an application level communication library aiming
at providing the highest possible performance for ap-
plication level communication patterns within a given
execution environment. In this context, an application
level communication pattern is defined as a repeat-
edly occurring communication operation incorporating
a group of processes. Typical examples are the 2-D or
3-D neighborhood communication occurring in many
applications that are based on regular domain decompo-
sition. Although not necessarily implemented using MPI
collective operations, these communication patterns are
collective by their nature, and usually dominate the time
spent in communication in the according applications.

The ADCL API offers high level interfaces of applica-
tion level collective operations. The high level interfaces
are required in order to be able to switch within the
library the implementation of the according collective
operation without modifying the application itself. Thus,
ADCL complements functionality available within MPI.
The main objects within the ADCL API are:

1) an ADCL Topology object, which provides a
description of the process topology and neigh-
borhood relations within the application. In the
example shown below the creation of this object
is based on a concept defined in the MPI-1 spec-
ification, cartesian communicators.

2) an ADCL Vector object, which specifies the data
structure to be used during the communication and
the actual data. The user can for example register
a data structure such as a vector or a matrix with
the ADCL library, detailing how many dimensions
the object has, the extent of each dimension, the

number of halo-cells, the basic datatype of the
object, and the pointer to the data array of the
object.

3) an ADCL Request object, which combines the
process topology and a vector object, and is thus
capable of determining which elements of the
vector object have to be sent to which neighboring
process.

Another useful feature of the ADCL library is its
ability to ’share’ performance data between different
requests. Two conditions have to be fulfilled in order to
share the performance data between two requests: first,
they have to use the same process topology; second the
vector objects used to construct the requests have to be
of identical dimensions.

A. Runtime selection logic

A key concept of the adaptive communication frame-
work is its ability to select the fastest of the available im-
plementations for a given communication pattern during
the regular execution of the application. The approach
chosen by ADCL is to use the first n iterations of the
application to determine the fastest available implemen-
tation. Although some of the tested implementations will
deliver a suboptimal performance, this approach avoids
a separate ’planner’ step.

The algorithm used within ADCL to determine the
fastest available implementation relies on a brute force
search strategy. This approach tests all available im-
plementations multiple times. Each process keeps track
of the execution time(s) of each implementation in
an data array which is attached to the according
ADCL Request. After all implementations have been
tested, all processes have to agree collectively on the
implementation which will be used for the rest of the
application. The according algorithm consists of four
steps:

1) Filtering of the execution times in order to ex-
clude incidental outliers. Right now, an outlier is
defined as a value which is x times higher than
the minimal value measured for the very same
implementation. However, a measurement is only
considered to be an outlier and thus removed from
performance data of the according implementa-
tion, if the fraction of number of outliers to total
number of available measurements for the same
implementation does not exceed a certain thresh-
old. In case the number of outliers generated by an
implementations is non negligible, the library as-
sumes this to be a property of the implementation
on the current execution environment.

2) Each process determines the average execution
time for each implementation using the filtered list
of measurements.

3) All processes determine collectively for
each implementation the maximum average
execution time across all processes using an
MPI Allreduce.

4) Each process determines individually which im-
plementation has the lowest maximum average
execution time.

Assuming that the runtime environment produces re-
producible performance data over the lifetime of an
application, the brute force search is guaranteed to find
the fastest of available implementation for the current
tuple of {problem size, runtime environment }. Further-
more, the algorithm requires only a single (additional)
collective operation during the entire runtime decision
procedure.

The major drawback of this approach is the time
it might take to determine the fastest implementation.
According to our experience on various platforms, the
library requires between 10 and 30 measurements per
implementation in order to have reliable performance
data. Taking into account that the library might have to
test up to twenty different implementations, up to 600
iterations might be required before the runtime selection
logic comes up with a final decision. Although the
capability of ADCL to share performance data between
multiple requests speeds up the decision procedure in
real-world applications, adaptive applications with vary-
ing problem sizes would require a significantly faster
procedure in order for ADCL to become useful for this
class of applications.

III. A RUNTIME SELECTION LOGIC BASED ON
PERFORMANCE HYPOTHESIS

Any implementation of a collective communication
operation has certain implicit requirements to the hard-
ware and software environment in order to achieve the
expected performance. As of today, ADCL uses three
attributes in order to characterize an implementation:

1) Number of simultaneous communication partners:
this attribute characterizes how many communica-
tion operation are initiated at once. The currently
supported values by ADCL are all (ADCL at-
tribute value aao) and one (pair). Please note,
that for other communication patterns such as a
broadcast operation, this attribute might charac-
terize whether the broadcast is implemented using
a binary tree or a flat tree. This parameter is
typically bound by the network/switch.

2) Handling of non-contiguous messages: supported
values are MPI derived data types (ddt) and
pack/unpack (pack). The optimal value for this
parameter will depend on the MPI library and
some hardware characteristics.

3) Data transfer primitive: a total of eight different
data transfer primitives are available in ADCL
as of today, which can be categorized as ei-
ther blocking communication (e.g. MPI Send,
MPI Recv), non-blocking/asynchronous commu-
nication (e.g. MPI Isend, MPI Irecv), or
one-sided operations (e.g. MPI Put, MPI Get).
Which data transfer primitive will deliver the best
performance depends on the implementation of
the according function in the MPI library and
potentially some hardware support (e.g. for one-
sided communication).

Please note, that not all combinations of attributes can
really lead to feasible implementations. As an example,
implementations using a blocking data transfer primi-
tives such as SendRecv can not be applied for implemen-
tations having more than one simultaneous communica-
tion partner. Therefore, a total of 20 implementations are
currently available within ADCL for the n-dimensional
neighborhood communication. Further attributes such
as the capability of the library/environment to overlap
communication and computation will be added in the
near future.

In order to speed up the selection logic, an alternative
runtime heuristic based on the attributes characterizing
an implementation has been developed. The heuristic is
based on the assumption, that the fastest implementation
for a given problem size on a given execution environ-
ment is also the implementation having ’optimal’ values
for the attributes in the given scenario. Therefore, the
algorithm tries to determine the optimal value for each
attribute used to characterize an implementation. The
heuristic guided by performance hypothesis is pruning
the search space by assuming an optimal solution is
comprised of optimal subcomponents. Once the optimal
value for an attribute has been found, the library removes
all implementations not having the required value for the
according attribute and thus shrinks the list of available
implementations.

An implementation is characterized by N attributes.
Each attribute has n(i), i = 1, N possible values. The
library assumes that the optimal value k(j)opt for an
attribute j has been found, if reqconf(j), i = 1, N
measurements confirm this hypothesis. In order to be
able to deduct from a set of measurements towards
the optimal value of a single attribute, the library only
compares the execution times of implementations whose
attributes differ only in the according attribute.

To clarify this approach, please assume that we want
to determine the best value for the second attribute.
We assume, that this attribute can have all-in-all three
distinct values, e.g. 1, 2, and 3. Assuming that we have
to deal with four attributes characterizing an implemen-
tation, the library collects first the performance data of

the implementations with the attribute values as shown
in Table I.

Impl. Impl. Impl.
1 2 3

Value for attr. 1 x x x
Value for attr. 2 1 2 3
Value for attr. 3 y y y
Value for attr. 4 z z z

TABLE I
ATTRIBUTE VALUES FOR THREE HYPOTHETICAL

IMPLEMENTATIONS OF A COLLECTIVE OPERATION.

Since the values of all attributes except for the second
one are being constant we assume that any perfor-
mance differences between the four implementations
can be denoted to the second attribute. The library
determines collectively across all processes which of the
four implementations has the lowest average execution
time, using the same approach as outlined in the brute
force section. If we assume as an example, that the
implementation with the attribute values [x, 3, y, z] has
the lowest average execution time, the library would
develop for the second attribute the hypothesis that 3 is
its optimal value on this platform for the given problem
size. At this point, only one set of measurement confirms
the hypothesis that 3 is the optimal value for the second
attribute. Thus, the confidence value in this hypothesis
is set to 1. Typically, a hypothesis has to be confirmed
by more than one set of measurements before ADCL
considers this hypothesis to be probably correct. Thus,
an additional set of measurements with differing (but
constant) values for one of the other attributes has to be
gathered, e.g by using y + 1 as the value for the third
attribute.

If the new set of measurements confirms the result of
the previous set, the confidence value for the hypothesis
is increased. If another attribute value is determined
for this set of measurements to be the best one, the
confidence value for the original performance hypoth-
esis is decreased and the hypothesis potentially even
removed/nullified, if the confidence value reaches zero.
Please note, that if the measurements do not converge
towards an optimal value for an attribute, no implemen-
tation will be removed based on this attribute. Once
a hypothesis reaches however the required number of
confirmations, the library removes all implementations
which have not the optimal value for the according
attribute and thus shrinks the list of implementations
which have to be evaluated.

A. Optimizations for multi-attribute scenarios
Compared to the brute force search outlined in sec-

tion II-A, the approach relying on performance hypoth-
esis can significantly reduce the number of implemen-
tations which have to be tested and thus speed up the

overall decision procedure. However, the algorithm also
contains some inefficiencies compared to the brute force
search. As an example, the runtime decision algorithm
based on the brute force search requires only a single
collective communication operation. The approach using
performance hypotheses requires an MPI Allreduce
operation every time the performance data of a set of
implementations is available and the data needs to be
evaluated in order to determine the best value for an
attribute.

Please note furthermore, that in the example
shown in the last subsection, performance
data for the implementations having the
attributes {x, 1, y, z}, {x, 2, y, z}, {x, 3, y, z}, and
{x, 1, y + 1, z}, {x, 2, y + 1, z}, {x, 3, y + 1, z}, might
be available at a certain point in time. Since we
were only interested in the second attribute, the data
of the first three implementations and of the second
three implementations have been compared in order to
determine the optimal value for the second attribute.
However, in case the third attribute has only two
possible values, it would also make sense to compare
{x, 1, y, z} with {x, 1, y + 1, z}, {x, 2, y, z} with
{x, 2, y + 1, z}, and so on. The problem however is,
that the runtime selection logic might have removed
already one/some of the according implementation(s) if
the confidence value for the first or the second attribute
has reached the required confidence value.

In order to overcome these two limitations, the run-
time selection algorithm using the performance hypothe-
ses has been extended such that the decision procedure
can be delayed. In this case, the sequence of implemen-
tations whose performance data has to be compared is
being ’queued’ until a certain number of comparisons
have to be executed. Thus, a single allreduce operations
can be used to execute multiple comparisons and the
same measurements can be used potentially to determine
the optimal values for multiple attributes. In the current
implementation of ADCL, the decision procedure for
attribute j is delayed until reqconf(j) set of measure-
ments are available, since this earliest point at which
ADCL can perform any actions on behalf of attribute j.

IV. PERFORMANCE EVALUATION

In the following, we will analyze the effect of using
different implementations for the neighborhood com-
munication on the performance of a parallel, iterative
equation solver. The software used in this analysis solves
a partial differential equation (PDE), respectively the set
of linear equations obtained by discretization of the PDE
using center differences. To partition the data among
the processors, the parallel implementation subdivides
the computational domain into rectangular subdomains
of equal size. Thus, each processors holds the data of

the corresponding subdomain. The processes are mapped
onto a regular three-dimensional mesh. Due to the local
structure of the discretization scheme, a processor has
to communicate with at most six processors to perform
a matrix-vector product. For the subsequent analysis
the code has been modified such that it makes use
of the ADCL library, i.e. the sections of the source
code which established the 3-D process topology and
the neighborhood communication routines have been
exchanged by the according ADCL counterparts.

Since most MPI libraries do not show performance
advantages for MPI put/get operations compared to
two-sided communication on a typical PC cluster and
in order to simplify our analysis, we have configured
ADCL for the following tests without the one-sided data
transfer primitives. This leaves twelve implementations
for the 3-D neighborhood communication for the run-
time selection logic to choose from. The number of tests
required to evaluate an implementation has been set to
30.

10

12

14

16

18

20

22

24

Ise
nd

Ire
cv

_a
ao

Ise
nd

Ire
cv

_p
air

Ise
nd

Ire
cv

_a
ao

_p
ac

k

Ise
nd

Ire
cv

_p
air

_p
ac

k

Sen
dIr

ec
v_

aa
o

Sen
dIr

ec
v_

aa
o_

pa
ck

Sen
dIr

ec
v_

pa
ir

Sen
dIr

ec
v_

pa
ir_

pa
ck

Sen
dre

cv
_p

air

Sen
dR

ec
v_

pa
ir

Sen
dre

cv
_p

air
_p

ac
k

Sen
dR

ec
v_

pa
ir_

pa
ck

bru
te

for
ce

 m
in.

bru
te

for
ce

 m
ax

.

he
uri

sti
c m

in.

he
uri

sti
c m

ax
.

E
xe

cu
tio

n
tim

es
 [s

ec
]

IB-small GE-small

Fig. 2. Execution times for the small problem size using 16 processes
for 500 iterations.

The cluster used for the following measurements con-
sists of 24 nodes, each having a single dual-core 2.2 GHz
Opteron processor. The nodes are connected by an 4x
InfiniBand interconnect and an Gigabit Ethernet switch.
We show results for 16 and 32 process testcases using 16
nodes for both scenarios, and three different application
problem sizes. The small problem size is configured such
that each process holds 32 × 32 × 32 mesh points, the
medium problem size assigns 64× 32× 32 mesh points
to each process while the large configuration doubles
the number of mesh points per process once again to
64 × 64 × 32. The execution times presented in this
section are the overall execution time for 500 iterations
of the iterative solver. Timings are given in seconds. The
communication library used throughout the tests was

Open MPI version 1.1.1 [10]. Using Open MPI specific
runtime flags we could test separately the performance
of the code over InfiniBand as well as over GEthernet.

First, we would like to evaluate whether ADCL makes
the correct decisions regarding the implementation cho-
sen when using the runtime decision logic. For this, we
measured the execution times for each of the available
implementations independently of the ADCL runtime
selection logic for all three problem sizes and both net-
work interconnects. Each test has been repeated between
up to 9 times. In the figures 2, 3 and 4 we show the best
execution time achieved for each implementation. When
using the runtime selection logic of ADCL, we report
the best and the worst execution times obtained for both
runtime selection algorithms.

40

42

44

46

48

50

52

54

56

58

60

Ise
nd

Ire
cv

_a
ao

Ise
nd

Ire
cv

_p
air

Ise
nd

Ire
cv

_a
ao

_p
ac

k

Ise
nd

Ire
cv

_p
air

_p
ac

k

Sen
dIr

ec
v_

aa
o

Sen
dIr

ec
v_

aa
o_

pa
ck

Sen
dIr

ec
v_

pa
ir

Sen
dIr

ec
v_

pa
ir_

pa
ck

Sen
dre

cv
_p

air

Sen
dR

ec
v_

pa
ir

Sen
dre

cv
_p

air
_p

ac
k

Sen
dR

ec
v_

pa
ir_

pa
ck

bru
te

for
ce

 m
in.

bru
te

for
ce

 m
ax

.

he
uri

sti
c m

in.

he
uri

sti
c m

ax
.

E
xe

cu
tio

n
tim

es
 [s

ec
]

IB-medium GE-medium

Fig. 3. Execution times for the medium problem size using 16
processes for 500 iterations.

80

90

100

110

120

130

140

Ise
nd

Ire
cv

_a
ao

Ise
nd

Ire
cv

_p
air

Ise
nd

Ire
cv

_a
ao

_p
ac

k

Ise
nd

Ire
cv

_p
air

_p
ac

k

Sen
dIr

ec
v_

aa
o

Sen
dIr

ec
v_

aa
o_

pa
ck

Sen
dIr

ec
v_

pa
ir

Sen
dIr

ec
v_

pa
ir_

pa
ck

Sen
dre

cv
_p

air

Sen
dR

ec
v_

pa
ir

Sen
dre

cv
_p

air
_p

ac
k

Sen
dR

ec
v_

pa
ir_

pa
ck

bru
te

for
ce

 m
in.

bru
te

for
ce

 m
ax

.

he
uri

sti
c m

in.

he
uri

sti
c m

ax
.

E
xe

cu
tio

n
tim

es
 [s

ec
]

IB-large GE-large

Fig. 4. Execution times for the large problem size using 16 processes
for 500 iterations.

An initial observation revelead by fig. 2, 3 and 4
is, that the sensitivity of the execution time on the

implementation of the 3-D neighborhood communica-
tion is increasing with the problem sizes. Furthermore,
the application is more sensitive to the implementation
of the neighborhood communication when using the
Gigabit Ethernet interconnect.

Over InfiniBand the application showed for the
small problem size in most cases the best perfor-
mance when using SendIrecv aao as the imple-
mentation for the neighborhood communication. When
using the ADCL, both runtime selection algorithms
determined in all of our tests the same implementa-
tion to be the fastest one. For the medium and large
problem sizes, IsendIrecv aao showed the best
performance according to our measurements. While for
the large problem size once again both runtime se-
lection algorithms agreed on the best implementation
to be IsendIrecv aao as well, for the medium
problem size the algorithm using the performance
hypotheses concluded twice that a different imple-
mentation might be optimal: in one case, it chose
SendIrecv aao in the other case it decided to use
IsendIrecv aao pack. Before analyzing the devi-
ating results for the medium problem size, we would
like to detail the sequence of events for the optimal
scenarios which are represented in these measurements
by the small and the large problem size.

As described in section II, each implementation
is currently characterized by three attributes. The
runtime heuristic using these attributes values evaluates
in the first stage the performance of four of the
available implementations: IsendIrecv aao,
IsendIrecv pair, IsendIrecv aao pack,
IsendIrecv pair pack. Using the delayed
decision approach described in III-A the library can
compare the performance data of the first two and
the second two implementations in order to determine
the best value for attribute one (aao vs. pair) and
of the first and the third as well as the second and
the fourth implementation for the second attribute
(ddt vs. pack). Since the required confidence value
for both attributes is 2, the library can remove under
optimal circumstances after this first stage many of
the available implementations. For the 16 process
testcases presented above, the measurements confirm
that an implementation initiating all messages at once is
performing better than implementations communicating
only to a single process at a time, and derived datatypes
perform better in this scenario than pack/unpack. Thus,
the heuristic reduces after the first stage the number
of available implementations from 12 to 2. In the
final step, the performance of IsendIrecv aao and
SendIrecv aao are being compared in order to
determine the best value for the the last parameter,
namely the preferred transfer primitive.

An obvious question when comparing the perfor-
mance of the brute search algorithm to the performance
hypotheses based approach is, why the latter one does
not show a significantly lower execution time compared
to the brute force search for the small and the large prob-
lem size over InfiniBand, taking into account that the
number of implementations tested are significantly lower
in the second approach. The answer to this question is
twofold: first, the overhead of testing a ’non-optimal’
implementation is not dramatic over InfiniBand; second,
despite of the optimization presented in section III-A
the heuristic still uses at least one additional collective
operation during the decision procedure, eliminating
some of the performance gained by not testing a sub-
optimal implementation. We expect however, that with
increasing number of attributes, attribute values and
implementations the advantages of the approach using
performance hypotheses will become more dominant.

For the testcases using the medium problem size in
which the runtime selection algorithm using the heuristic
did not select IsendIrecv aao as the fastest imple-
mentation, the heuristic did in fact not achieve the re-
quired confidence values for the first two attributes after
the first stage. Thus, the runtime selection logic com-
pared the performance achieved by all implementations
and concluded that another implementation performed
better at this point in time. The data dumped out by the
library during the decision procedure does indicate, that
the application experienced some perturbations. Figure 5
shows the execution times of each individual instance of
a neighborhood communication measured when using
the runtime selection logic based on the performance
hypotheses. The first 360 iterations shown are used
for determining the best implementation, while the fol-
lowing iterations are using the ’fastest’ implementation
determined by the library. Although the data shows
a significant number of outliers, the majority of the
measurements are located close to the minimal execution
time measured by any implementation. Thus, while the
outcome in these cases are not what we expected, the
data indicates that the decision based on the behavior of
the machine at this point in time is justifiable.

The results using the Gigabit Ethernet interface show
for the 16 processes testcases a similar behavior as over
InfiniBand: in the majority of the tests both runtime
selection algorithms select the implementation which
our external measurements determined to be the fastest
one for that scenario. Even for the test cases where the
runtime selection logic comes to a different conclusion
than what we expected based on our external measure-
ment, the library manages to avoid the implementations
which result in a significantly lower performance. This
is especially evident for the large problem size as shown
in fig. 4.

Fig. 5. Execution times of the neighborhood communication when
using the performance hypotheses approach for the medium problem
size of InfiniBand. The data shown was gathered in process 0.

A. Influence of the data filtering parameters

Since the 32 processes testcases do not reveal any
significant new revelations over InfiniBand, we would
like to focus in this subsection on the results achieved
by the large testcase using 32 processes over Gigabit
Ethernet. As shown in fig. 6, the network/switch behaves
in this case differently than in the 16 processes testcase:
the fastest implementations determined outside of the
runtime selection logic suddenly have the parameter
values pair and pack compared to aao and ddt
for the previous results. Since the switch seems to
get congested by the communication produced in this
scenario, all measurements show a significantly larger
variation then in the previous scenarios. Thus, we show
for all implementations the best, the worst and the
average execution time.

90

100

110

120

130

140

150

160

170

Ise
nd

Ire
cv

_a
ao

Ise
nd

Ire
cv

_p
air

Ise
nd

Ire
cv

_a
ao

_p
ac

k

Ise
nd

Ire
cv

_p
air

_p
ac

k

Sen
dIr

ec
v_

aa
o

Sen
dIr

ec
v_

aa
o_

pa
ck

Sen
dIr

ec
v_

pa
ir

Sen
dIr

ec
v_

pa
ir_

pa
ck

Sen
dre

cv
_p

air

Sen
dR

ec
v_

pa
ir

Sen
dre

cv
_p

air
_p

ac
k

Sen
dR

ec
v_

pa
ir_

pa
ck

he
uri

sti
c 10

%

he
uri

sti
c 20

%

he
uri

sti
c 40

%

Ex
ec

ut
io

n
tim

e
[s

ec
]

Minimum Maximum Average

Fig. 6. Execution times for the large problem size on 32 processes
using the Gigabit Ethernet interconnect

Due to the large variance in the performance achieved
by any implementation, both runtime selection algo-
rithms fail in the initial settings to determine the im-
plementation delivering the best performance. A closer
analysis of the data revealed, that the problem is rooted
in the data filtering approach of ADCL. The default
setting within the library accepts up to 40% of out-
liers. As a result of this setting, many implementations
could remove too many potential outliers and thus an
implementation, which in fact showed a very unreliable
performance behavior was chosen by the algorithms.
Figure 6 shows the performance of the runtime selection
logic using the heuristic for different settings of the
parameter within ADCL, which defines the number of
accepted outliers. While 10% outliers seem to be too
strict for this environment, accepting 40% of outliers
definitely leads to choosing the wrong implementations.
The best results were achieved when the threshold
for the number of accepted outliers has been set to
20%. In this case, both runtime selection algorithms
identified in the majority of the experiments the ’correct’
implementation.

V. SUMMARY

This paper presents the Adaptive Data and Commu-
nication Library (ADCL). The key feature of ADCL is
its capability to choose at runtime the best performing
implementation for a particular collective operation. We
introduce in this paper furthermore attributes charac-
terizing the actual implementation of an application
level collective operation and detail a runtime decision
heuristic relying on these attributes. The library has been
evaluated using a finite-difference code using InfiniBand
and Gigabit Ethernet network interconnects. The results
indicate, that in an environment producing repeatable
performance data, the runtime decision logic based on
the performance hypotheses is determining the ’fastest’
implementation reliable. The library is also capable to
handle moderate perturbations, since it incorporates a
(simplistic) data filtering approach. In case of a less
reliable environment, we showed the dependence of the
library on the parameters of the data filtering.

The currently ongoing work within ADCL focuses on
three aspects: first, the number of available implementa-
tions are being extended by introducing new attribute
values. This includes additional implementation such
as topology-aware implementations of the neighborhood
communication as presented in [11] as well as using
additional transfer primitives such as persistent request
operations. Second, initial measurements in less reliable
environments than the ones used throughout this paper
indicate, that the filtering of the measurements has a
high impact on the decision made in the following steps.
Thus, we are working on extending the filtering routines

within ADCL to use cluster analysis techniques. Third,
we are also working on extending our attribute model
characterizing implementation to include sub-classes of
attributes. As an example, the data transfer primitives
consists today of two-sided and one-sided operation.
According to our experience on current platforms, one-
sided operations are either significantly faster or signif-
icantly slower than regular send/recv operations. Thus,
by testing a single implementation which uses one-sided
operations, we could conclude on the performance of a
whole class of implementations.

REFERENCES

[1] R. Thakur and W. Gropp, “Improving the performance of col-
lective operations in MPICH,” in Recent Advances in Parallel
Virtual Machine and Message Passing Interface, ser. LNCS,
J. Dongarra, D. Laforenza, and S. Orlando, Eds., no. 2840.
Springer Verlag, 2003, pp. 257–267, 10th European PVM/MPI
User’s Group Meeting, Venice, Italy.

[2] S. Vadhiyar, G. Fagg, and J. Dongarra, “Towards an Accurate
Model for Collective Communications,” in Proceedings of In-
ternational Conference on Computational Science (ICCS 2001),
San Francisco, USA, 2001.

[3] T. Kielmann, R. F. H. Hofman, H. E. Bal, A. Plaat, and
R. A. F. Bhoedjang, “MagPIe: MPI’s collective communication
operations for clustered wide area systems,” ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming
(PPoPP’99), vol. 34, no. 8, pp. 131–140, May 1999.

[4] R. Rabenseifner and J. L. Träff, “More efficient reduction algo-
rithms for non-power-of-two number of processors in message-
passing parallel systems,” in Proceedings of EuroPVM/MPI, ser.
Lecture Notes in Computer Science. Springer-Verlag, 2004, pp.
36–46.

[5] A. Faraj, X. Yuan, and D. Lowenthal, “Star-mpi: self tuned
adaptive routines for mpi collective operations,” in ICS ’06:
Proceedings of the 20th annual international conference on
Supercomputing. New York, NY, USA: ACM Press, 2006, pp.
199–208.

[6] B. Palmer and J. Nieplocha, “Efficient Algorithms for Ghost
Cells Updates on Two Classes of MPP Architectures,” in Pro-
ceedings of the 14th IASTED international conference on Paral-
lel and Distributed Computing and Systems (PDCS), Cambridge,
USA, 2002.

[7] C. Bell, D. Bonachea, R. Nishtala, and K. Yelick, “Optimizing
bandwidth limited problems using one-sided communication
and overlap,” in 20th International Parallel and Distributed
Processing Symposium (IPDPS), 2006.

[8] R. C. Whaley and A. Petite, “Minimizing development and
maintenance costs in supporting persistently optimized blas,”
Software: Practice and Experience, vol. 35, no. 2, pp. 101–121,
2005.

[9] M. Frigo and S. G. Johnson, “The Design and Implementation
of FFTW3,” Proceedings of IEEE, vol. 93, no. 2, pp. 216–231,
2005.

[10] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra,
J. M. Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine,
R. H. Castain, D. J. Daniel, R. L. Graham, and T. S. Woodall,
“Open MPI: Goals, Concept, and Design of a Next Generation
MPI Implementation,” in Proceedings, 11th European PVM/MPI
Users’ Group Meeting, Budapest, Hungary, September 2004, pp.
97–104.

[11] R. Keller, E. Gabriel, B. Krammer, M. S. Mller, and M. M.
Resch, “Efficient execution of MPI applications on the grid:
porting and optimization issues’,” Journal of Grid Computing,
vol. 1, no. 2, pp. 133–149, 2003.

