
Packet Loss Burstiness: Measurements and
Implications for Distributed Applications

David X. Wei1, Pei Cao2, Steven H. Low1

1Division of Engineering and Applied Science 2Department of Computer Science
California Institute of Technology Stanford University

Pasadena, CA 91125 USA Stanford, CA 94305 USA
{weixl,slow}@cs.caltech.edu cao@cs.stanford.edu

Abstract

Many modern massively distributed systems deploy thou-
sands of nodes to cooperate on a computation task. Net-
work congestions occur in these systems. Most applications
rely on congestion control protocols such as TCP to protect
the systems from congestion collapse. Most TCP conges-
tion control algorithms use packet loss as signal to detect
congestion.

In this paper, we study the packet loss process in sub-
round-trip-time (sub-RTT) timescale and its impact on the
loss-based congestion control algorithms. Our study sug-
gests that the packet loss in sub-RTT timescale is very
bursty. This burstiness leads to two effects. First, the sub-
RTT burstiness in packet loss process leads to complicated
interactions between different loss-based algorithms. Sec-
ond, the sub-RTT burstiness in packet loss process makes
the latency of data transfers under TCP hard to predict.

Our results suggest that the design of a distributed sys-
tem has to seriously consider the nature of packet loss pro-
cess and carefully select the congestion control algorithms
best suited for the distributed computation environments.

1 Introduction

Many modern massively distributed systems deploy
thousands of nodes to cooperate on a computation task.
Huge amount of data is transferred by the underlying net-
work. Often, the network becomes a bottleneck for these
data transfers and congestions occur.

Network congestion requires distributed system design-
ers to deploy transfer control protocols that can prevent con-
gestion collapse and achieve fair share of the network re-

1-4244-0910-1/07/$20.00 c©2007 IEEE.

sources. The most commonly used control protocol for re-
liable data transmission is Transmission Control Protocol
(TCP) [18], with a variety of congestion control algorithms
(Reno [5], NewReno [11], etc.), and implementations (e.g.
TCP Pacing [16, 14]). The most commonly used control
protocol for unreliable data transmission is TCP Friendly
Rate Control (TFRC) [10]. These algorithms all use packet
loss as the congestion signal. In designs of these protocols,
it is assumed that the packet loss process provides signals
that can be detected by every flow sharing the network and
hence the protocols can achieve fair share of the network
resource and, at the same time, avoid congestion collapse.

However, our preliminary study shows that the packet
loss process is very bursty in sub-RTT timescale. Such
sub-RTT burstiness leads to different efficiencies of loss
detection in different protocols. More specifically, the
window-based protocols, which also have sub-RTT bursti-
ness in their data transmission processes, tend to underes-
timate the packet loss rates. This leads to unfairly large
network resource utilization for the window-based proto-
cols when they share the network with rate-based protocols
such as TFRC and TCP-Pacing. Also, the sub-RTT bursti-
ness in packet loss process and in window-based protocols’
data transmission processes lead to a poor predictability of
TCP’s performance. These results are based on detailed
measurements of packet loss processes in simulation, em-
ulation and the Internet.

Based on these results, we suggest that the design of a
distributed system needs to seriously consider the effects
of sub-RTT burstiness in packet loss process and select the
appropriate congestion control algorithms and implementa-
tions for the specific application environment.

2 Related work

There are two areas of related work to this paper: the in-
teraction among different loss-based protocols and the mea-
surement of packet loss processes.

In the area of interaction among different loss-based pro-
tocols, there are several studies on the friendliness between
a pair of specific loss-based congestion control algorithms.
For example, Aggarwal, Savage and Anderson observe that
TCP Pacing usually loses to TCP NewReno in competi-
tion [4]. Rhee and Xu point out that TFRC can have lower
throughput than TCP NewReno when they share the same
bottlenecks [19]. These studies focus on a specific pair of
algorithms. Our study addresses the underlying source for
these complicated interactions between different loss-based
algorithms. Tang et al. discuss the interaction among differ-
ent protocols with different congestion signals in the con-
gestion window control level [21]. Our study focuses on
the relation between sub-RTT level burstiness in packet loss
process and the interactions of different loss-based conges-
tion control algorithms.

In the area of packet loss measurement, Paxson has an
extensive study on the Internet packet loss patterns [17]. His
study uses TCP traces to reproduce loss events and study
the timing and distribution of packet loss in different Inter-
net paths. The study points out that packet loss is bursty
in large time scales. However, since TCP traffic itself is
very bursty in sub-RTT timescale, the measurement results
from TCP traces are not able to differentiate the burstiness
of TCP packets from the burstiness of packet loss in sub-
RTT timescale. In our approach, we use Constant Bit Rate
(CBR) traffic to measure the Internet loss patterns. With
our measurement, it is convincing that packet loss process
is bursty in sub-RTT level as our methodology excludes the
TCP burstiness in our measurement setup. Borella et al. use
User Datagram Protocol (UDP) packets to measure packet
loss along one path [6]. The study focuses in the loss pattern
and its impact to VoIP traffic. In our study, we use Planet-
Lab nodes to measure more than 500 paths in the Internet.

3 Observations: Sub-RTT Level Burstiness
in Packet Loss Processes

We study sub-RTT level burstiness in packet loss pro-
cesses in three different environments: simulation network
(via NS-2 [3]), emulation network (via Dummynet [20]) and
the Internet (via PlanetLab [2]).

From these three measurement sources, we find signifi-
cant burstiness in sub-RTT time scales.

bottleneck link:
capacity: c=100MbpsTCP

Receiver
TCP
Sender

TCP
Sender

UDP UDP

UDPUDP

1Gbps 1G
bp
s

1Gbps1G
bp
s

 Noise: 50 flows, avg rate: 10% of c
 Two way exponential on-off traffic

 TCP flows
 Flow number: 2, 4, 8, 16 or 32

TCP
Receiver

Router Router

Figure 1. Setup of NS-2 simulations and Dum-
mynet Emulations. c: capacity of the bottle-
neck router

3.1 Measurements

We measure the timing of each packet loss in three differ-
ent environments: simulation network, emulation network
and the Internet.

For each loss trace, we calculate the time interval be-
tween each two consecutive lost packets and analyze the
packet loss process by plotting the probability density func-
tion (PDF) of the loss intervals. The resolution of the PDF
(bin-size) is 0.02 RTT. We compare the PDF of the packet
loss processes to the corresponding Poisson process with
the same average arrival rate. We observe that the packet
loss process is much more bursty than the Poisson process.

We conduct measurements in three environments: NS-
2 simulation, Dummynet emulation and PlanetLab. NS-
2 simulation is used to simulate a single ideal bottleneck
shared by extremely heterogeneous sources. Dummynet is
used to emulate a single non-ideal bottleneck (with noise in
packet processing time) shared by heterogeneous sources.
PlanetLab is used to measure the realist situations in the In-
ternet.

For NS-2 simulation, we use a dumbbell topology with
a set of senders and a set of receivers sharing a bottleneck,
as shown in Figure 1. The receivers and senders are con-
nected to the bottleneck with access links. The latencies
of the access links are randomly distributed from 2ms to
200ms. We simulate with different buffer sizes, from 1/8 of
the bandwidth-delay-product (BDP) to 2 times of the BDP.
We record traces from the simulated routers for each event
in which a packet is dropped.

Our Dummynet emulation follows the same topology
setup as our NS-2 simulations. However, the traffic pat-
tern consists of only 4 different latencies: 2ms, 10ms, 50ms
and 200ms.1 To collect the timing of each packet loss, we
instrument the Dummynet router to record the time when
each packet is dropped. The clock resolution in the Dum-
mynet machine (FreeBSD operating system) is 1ms. Hence
all Dummynet records have a resolution of 1ms.

1This limitation is due to the ability of the emulation testbed.

2

We also run measurement over the Internet with the fa-
cilities of PlanetLab. We select 26 sites from PlanetLab.
The experiment sites are listed in Table 1. The sites are ge-
ographically located in different states in the United States
and also in different continents. Among them, 6 are in Cali-
fornia, 11 are in other parts of United States, 3 are in Canada
and the rest are in Asia, Europe and Southern America. The
complete graph formed by these 26 sites has 650 directional
edges. Each edge corresponds to a path. The RTTs of these
paths have a range from 2ms to more than 200ms between
each other.2

From October 2006 to December 2006, we periodically
initiate constant bit rate (CBR) flows between two randomly
picked sites. For each experiment, two runs of measure-
ments are conducted: One with a packet size of 48 bytes
and the other with a packet size of 400 bytes. We com-
pare these two results and validate the measurement only if
the two traces exhibit similar loss patterns. Hence, the ef-
fect of traffic load from our own measurement CBR flows
is negligible in our measurement results.3 Each run of mea-
surement lasts for 5 minutes. In analysis, we normalize the
loss interval by the RTT of the path.

3.2 Observations

The measurements from NS-2, Dummynet and the Inter-
net all suggest that the sub-RTT packet loss process is very
bursty.

3.2.1 Results in NS-2 Simulation

Figure 2 shows the PDF of the loss interval in NS-2 sim-
ulations. The RTTs of the flows in simulation are random
between 2ms to 200ms. We observe that more than 95% of
the packet losses cluster within short time periods smaller
than 0.01 RTT. In the figure, we also present the PDF of a
Poisson process which has the same average arrival rate as
the measured packet loss process. We zoom in to a small
time scale of 0 to 2 RTT and use log-scale in the Y-axle
so that the Poisson process has a straight line in its PDF.
Comparing to the Poisson process, the packet loss process
is much more bursty as almost all the packet losses in the
packet loss process happen in the smallest interval.

3.2.2 Results in Emulation Network

Figure 3 is the PDF of the loss interval in Dummynet emu-
lations. The RTTs of the flows are fixed to 4 classes: 2ms,
10ms, 50ms, and 200ms. We observe that about 80% of the

2The highest measured RTT is more than 300ms, depending on the time
of the day.

3To use a packet size of 400 bytes, we are sure that our measurement
packets are not fragmented by old routers which only pass 500-byte pack-
ets.

Node Location
planetlab2.cs.ucla.edu Los Angeles, CA
planetlab2.postel.org Marina Del Rey,

CA
planet2.cs.ucsb.edu Santa Barbara,

CA
planetlab11.millennium.berkeley.edu Berkeley, CA
planetlab1.nycm.internet2.planet-

lab.org
Marina del

Rey,CA
planetlab2.kscy.internet2.planet-

lab.org
Marina del

Rey,CA
planetlab3.cs.uoregon.edu Eugene, OR

planetlab1.cs.ubc.ca Vancouver,
Canada

kupl1.ittc.ku.edu Lawrence, KS
planetlab2.cs.uiuc.edu Urbana, IL
planetlab2.tamu.edu College Station,

TX
planet.cc.gt.atl.ga.us Atlanta, GA

planetlab2.uc.edu Cincinnati, Ohio
planetlab-2.eecs.cwru.edu Cleveland, OH

planetlab1.cs.duke.edu Durham, NC
planetlab-10.cs.princeton.edu Princeton, NJ

planetlab1.cs.cornell.edu Ithaca, NY
planetlab2.isi.jhu.edu Baltimore, MD

crt3.planetlab.umontreal.ca Montereal,
Canada

planet2.toronto.canet4.nodes.planet-
lab.org

Toronto, Canada

planet1.cs.huji.ac.il Jerusalem, Israel
thu1.6planetlab.edu.cn Beijing, China
lzu1.6planetlab.edu.cn Lanzhou, China

planetlab2.iis.sinica.edu.tw Taipei, China
planetlab1.cesnet.cz Czech

planetlab1.larc.usp.br Brazil

Table 1. PlanetLab sites in measurement

3

0 0.5 1 1.5 2
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Loss Interval (RTT)

P
D

F

Measured
Poisson

Figure 2. PDF of inter-loss time (NS-2 mea-
surements).
Note that all the PDF figures in this paper
have Y-axis in log-scale.

0 0.5 1 1.5 2
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Loss Interval (RTT)

P
D

F

Measured
Poisson

Figure 3. PDF of inter-loss time (Dummynet
measurements).

0 0.5 1 1.5 2
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Loss Interval (RTT)

P
D

F

Measured
Poisson

Figure 4. PDF of inter-loss time (PlanetLab
measurements).

packet losses cluster within short time periods smaller than
0.01 RTT. As shown in the figure, the packet loss process is
much more bursty than the corresponding Poisson process.

3.2.3 Results in the Internet

Figure 4 presents the PDF of loss intervals in Internet mea-
surement via PlanetLab. The Internet measurement shows
less burstiness in packet loss processes than we observe in
simulation and emulation. This is due to the heterogeneity
of the Internet, in terms of application types, traffic patterns
and queuing delay. In such extremely heterogeneous en-
vironment, we observe that 40% of the packet losses clus-
ter within short time periods of 0.01 RTT and 60% of the
packet losses cluster within time periods of 1 RTT. This ev-
idence is still very strong for sub-RTT burstiness in packet
loss processes.

Comparing to the Poisson process with the same arrival
rate, we observe that the loss process is much more bursty
than the Poisson process in sub-RTT timescale (within 0 to
0.25 RTT).

3.3 Possible Sources of sub-RTT Bursti-
ness

As shown by the results of NS-2 simulations, Dummynet
emulations and the Internet, packet loss is highly bursty in
sub-RTT timescale. There are several possible sources that
lead to such burstiness.

DropTail router is considered the major source of packet
loss burstiness. DropTail router serves as a FIFO queue, ac-
cepting incoming packets until the buffer is full. Working
with DropTail router, loss-based congestion control algo-
rithms keep increasing the data rate when the router’s buffer
is not full. When the router’s buffer is full and packets are

4

dropped, the aggregate data rate is higher than the router’s
capacity and packet drops persist until the loss-based con-
gestion control algorithms detect the loss of packets and re-
duce the data rate, usually half an RTT later. In between the
first packet loss and the reduction of data rate, there is a peak
of packet losses in the DropTail router. There are some pro-
posals to introduce randomness in the router. For example,
Random Early Dropping (RED) [12] is proposed to drop
the packets earlier before the buffer is overflowed. How-
ever, these proposals suffer from difficult parameter settings
problems.

Slow start of short flows is another source of packet loss
burstiness, which is even harder to be eliminated. A TCP
flow starts with a very small rate (sending two packets every
round trip), and doubles its data rate if no loss is observed.
This process can quickly fill up the bottleneck buffer in a
few round trips and produce a large number of continuous
packet losses in the router. Some new congestion control
algorithms such as Rate Control Protocol (RCP) [8] and
QuickStart [9] have been proposed to avoid such aggres-
sive detection. These algorithms require changes in both
the IP routers and data senders, which are expensive for the
existing infrastructure.

Hence, the sources of sub-RTT burstiness in packet loss
processes will exist in the foreseeable future and it is im-
portant to understand the impact of burstiness in packet loss
processes to the data transfer in distributed systems.

4 Impact of sub-RTT Packet Loss Burstiness
on Data Transfer

Burstiness in packet loss affects the fairness and pre-
dictability of TCP congestion control algorithms. When
rate-based flows compete with applications using window-
based flows for bandwidth, packet loss burstiness results in
rate-based flows receiving less than their fair-share. Packet
loss burstiness also leads to concurrent flows obtaining dif-
ferent transfer rate, making it very difficult to predict la-
tency of data transfers in distributed applications.

4.1 Interaction of loss-based congestion
control protocols

Different loss-based congestion control protocols can be
categorized into two classes, rate-based implementations
and window-based implementations.

A rate-based implementation controls the data transmis-
sion rate x(t) (bytes/second) on each data source, based on
the loss measurement from the network. The data packets
are sent into the network with a constant interval of M

x(t)

seconds, where M is the packet sizes in bytes. Examples of
such controls are TFRC and TCP Pacing.4

4In sub-RTT timescale, TCP Pacing is a rate-based implementation

A window-based implementation does not directly con-
trol the transmission rate x(t). Instead, x(t) is implicitly
controlled by a window-based implementation with two im-
portant variables:

• pif(t) =
∫ t

t−RTT
x(u)du: the number of packets in

flight. It is the number of packets that are transmitted
in the previous RTT;

• w(t): the congestion window, the upper bound of
pif(t).

The window-based implementation only controls w (t) on
RTT time scale. w (t) determines the average rate of a TCP
flow in each RTT. Whenever pif (t) is smaller than w (t)
(for example, in the occasion of acknowledgment arrival, or
congestion window increment), w (t) − pif (t) packets are
sent in a burst to fill the gap.

Window-based implementations are used in most imple-
mentations of TCP. One important issue introduced by the
window-based implementation is the sub-RTT burstiness in
data packet arrival processes. Since the data packets are
sent at almost the same time whenever there is a gap be-
tween pif(t) and w(t), the data packets arrive at the bottle-
neck routers back-to-back. Once sub-RTT level burstiness
is formed in the data packet arrival processes, the burstiness
is maintained for the life of the connection and its effect
cannot be eliminated by a large buffer size or high multi-
plexing level. Jiang and Dovrolis show that sub-RTT level
burstiness persists in scenarios with a single TCP flow as
well as in daily Internet traffic (from router trace) where the
number of flows is very large [15].

Hence, there is a significant difference in sub-RTT
packet arrival patterns between rate-based implementations
and window-based implementations. The packets con-
trolled by a rate-based implementation arrive at the bottle-
neck evenly spaced. The packets controlled by a window-
based implementation exhibit an on-off pattern in sub-RTT
timescale.

When interact with the packet loss dynamic, complicated
interaction happens between these two different classes of
algorithms.

With rate-based implementations, since data packets are
evenly distributed in the bottleneck, the majority of the
flows will lose packets when the bottleneck drops packets
in bursty pattern. Figure 5 illustrates this situation.

With window-based implementations, since data packets
are in on-off pattern, some flows will lose multiple packets
and some flows will not lose any packets when the bottle-

since the transmission rate x(t) is directly controlled by the congestion
control algorithm. However, in a larger timescale, TCP Pacing also has
the concept of window to achieve reliable communication. This paper fo-
cuses in sub-RTT timescale dynamics so TCP Pacing is categorized as a
rate-based implementation.

5

i

K packets evenly distributed

burst period of loss signal

M incoming packets

Legend:

a dropped
packet

a packet
from flow i

ii i iiiii

incoming packets during the RTT of loss event from all flows

i

a packet
(from any flow)

Figure 5. Packet loss with rate-based imple-
mentations: A flow (Flow i) has high proba-
bility to detect the loss event.

burst period of one flow: K packets

burst period of loss signal

M incoming packets

Legend:

a dropped
packet

a packet
from flow i

ii iiiii ii

incoming packets during the RTT of loss event from all flows

i

a packet
(from any flow)

Figure 6. Packet loss with window-based im-
plementations: A flow (Flow i) has low prob-
ability to detect the loss event.

neck drops packets in bursty pattern. This situation is illus-
trated in Figure 6.

If a window-based implementation and a rate-based im-
plementation share the same bottleneck, the flows con-
trolled by the window-based implementation will see less
congestion events and get higher throughput than the flows
controlled by the rate-based implementation.

In the ideal cases, assume the packets controlled by the
rate-based implementation are perfectly evenly distributed
in the bottleneck and assume the packets controlled by the
window-based implementation are clustered in a continuous
trunk of packets. The expected number of rate-based flows
that see a packet loss event with M dropped packets is

Lrate−based = min {M, N} (1)

where N is the number of flows. And the expected number
of window-based flows that see a packet loss in the same
event is:

Lwin−based = max
{

M

K
, 1

}
(2)

where K is the number of packets sent by a flow in that RTT.
Hence Lrate−based >> Lwin−based.

In reality, if the rate-based flows and window-based
flows are sharing the same bottleneck, the window-based
flows will be slightly spread out by the rate-based flows.
In this case, the difference in throughput is not as large as
the one shown by the equations. But the effect is still sig-
nificant. Figure 7 shows the aggregate throughput of 16

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

45

50

time (sec)

ag
gr

eg
at

e
th

ro
ug

hp
ut

 (
M

bp
s)

TCP Pacing
TCP NewReno

Figure 7. Aggregate throughput of TCP Pac-
ing (16 flows) and TCP NewReno (16 flows)
sharing a bottleneck of 100Mbps and a path
of 50ms RTT: TCP Pacing flows lose to TCP
NewReno flows in aggregate throughput.

TCP Pacing (rate-based) and the aggregate throughput of
16 TCP NewReno (window-based) flows, which share the
same path with 50ms delay and 100Mbps capacity. TCP
Pacing uses exactly the same loss detection and congestion
reaction algorithms as TCP NewReno. However, since TCP
Pacing is a rate-based control protocol and it is easier to
see packet losses, it has a 17% lower throughput than TCP
NewReno in the competitions. We observe the same behav-
ior with different parameters (different RTTs and different
number of flows).

Hence, the sub-RTT burstiness in packet loss process can
lead to a lower throughput of rate-based protocols when
they compete with window-based protocols.

4.2 Predictability of Data Transfer La-
tency

Another impact of packet loss burstiness is that the per-
formance of window-based implementations becomes less
predictable.

As shown in Figure 6 and equation (2), only a few TCP
flows experience packet loss during a congestion event.
Other flows continue to increase their rates until another
congestion event happens. This phenomenon introduces un-
fairness to different TCP flows and makes it hard to predict
the performance when applications use many TCP flows be-
tween many hosts.

This is especially significant if the TCP flows are short
and start-up phase (slow-start) is the main part of the lives
of the flows. During start-up phase, each TCP flow doubles
its data rate every round trip until it experiences a packet
loss. After that, the flow enters congestion avoidance state

6

2 4 8 16 32
10

0

10
1

number of flows

A
pp

lic
at

io
n

la
te

nc
y

(s
ec

on
ds

)
RTT=2ms
RTT=10ms
RTT=50ms
RTT=200ms

Figure 8. Data transfer latency (normalized
by theoretic lower bound) with parallel flows
sending a total of 64MB data.
Note that the standard variation at the point
of RTT=200ms and flow number=4 is too
large and cannot be displayed in the scale of
the figure.

in which the data rate is increased very slowly. If a few
flows enters congestion avoidance state earlier than other
flows, these flows will be very slow (half of the rates of
other flows, or even lower) and become the bottleneck.

Figure 8 presents the latency of parallel flows (as in
GridFTP [1] or GFS [13]) that transfer a total of 64MB of
data. The 64MB data is divided into chunks with the same
size for each flow.

In the 100Mbps network, the theoretic lower bound of
completion time of a 64MB transfer is 5.39 seconds. The
bound is tight if the network is fully utilized in all times.

With TCP NewReno, the transfer latency with 200ms
RTT varies from 11 seconds to 50 seconds, depending on
how many flows enter the congestion avoidance phase pre-
maturely.

5 Implications for Distributed Applications

Section 4 demonstrates that the sub-RTT burstiness in
packet loss process has significant impact on the data trans-
fer protocols in the distributed system. Thus, one has to
carefully consider the selection of congestion control algo-
rithms used in distributed systems.

One important lesson is that rate-based implementations
and window-based implementations should not mix. If they
do, the rate-based flows tend to suffer in throughput. For
example, if a distributed application has to use both UDP
(controlled by the rate-based TFRC), and TCP (controlled
by window-based implementation) in the data communi-

cation, TFRC will have unexpectedly low throughput. In
this case, TCP Pacing should be considered to replace the
window-based TCP implementation.

Another important lesson is that if the computing envi-
ronment is tightly controlled and the same TCP implemen-
tation can be enforced on every node, then a rate-based im-
plementation has an advantage in that it makes TCP more
fair, and leads to better predictability of throughput for con-
current flows.

There are proposals to reduce the burstiness of packet
loss process in the DropTail bottleneck by introducing ran-
domness in the packet loss process. RED [12] is the most
famous one. Thus, perhaps RED should be deployed if one
wants to eliminate loss burstiness. However, the parameter
tunings of RED are difficult, and we suggest this approach
be used only when the scenarios in the distributed system
are simple and the RED’s effect can be well understood in
the scenarios.

Another suggestion is to use other congestion signals,
instead of loss, to by-pass the burstiness problem in packet
loss process. In [22], we suggest a simple Explicit Conges-
tion Notification (ECN) algorithm which can provide per-
sistent congestion signal for one RTT, covering most of the
participating flows. This algorithm significantly improves
the TCP performance and also solves the competition prob-
lem of rate-based implementation and window-based im-
plementations. In [23], a delay-based algorithm is proposed
and achieved better stability and fairness.

6 Conclusion and Future work

This paper is a report of our ongoing work on under-
standing the sub-RTT pattern of packet loss process and its
impact to the performance of loss-based congestion control
protocols. Our extensive measurements in simulation net-
work, emulation network and the Internet all show signifi-
cant sub-RTT burstiness in the packet loss process.

Our simulation results show that such sub-RTT level
burstiness have significant impacts on the performance of
TCP and the interactions between window-based imple-
mentations and rate-based implementations. Hence, we
suggest that the design of a distributed system should seri-
ously consider the sub-RTT level burstiness in the selection
of congestion control algorithms.

Our future work lies in the following three directions:
First, we plan to have more rigorous analysis on the

burstiness of packet loss process. In this paper, we present
preliminary analysis with PDF. We plan to analyze the loss
trace with more rigorous model and provide more concrete
evidence. We also plan to compare our results with the re-
sults obtained from TCP trace analysis to understand the
extent of difference due to measurement methodology.

7

Second, we plan to enrich our solutions to sub-RTT
level burstiness. Two promising sub-directions are to im-
prove and finalize the ECN algorithm proposed in [22]
and to study the possibility of using rate-based control and
window-based control for differential services.

Finally, we plan to extend our simulation framework to
include more detailed model for distributed applications.
Currently, we only use parallel flows as the application. We
plan to simulate more complicate scenarios such as a com-
plete graph topology in MapReduce [7].

References

[1] GridFTP. URL: http://www.globus.org/toolkit/
docs/4.0/data/gridftp/.

[2] PlanetLab: An open platform for developing, deploying, and
accessing planetary-scale services. URL:http://www.planet-
lab.org.

[3] The Network Simulator - NS-2. URL:
http://www.isi.edu/nsnam/ns/index.html.

[4] A. Aggarwal, S. Savage, and T. Anderson. Understanding
the performance of TCP pacing. In Proceedings on INFO-
COM 2000, pages 1157–1165, 2000.

[5] M. Allman, V. Paxson, and W. Stevens. RFC 2581: TCP
Congestion Control, April 1999.

[6] M. Borella, D. Swider, S. Uludag, and G. Brewster. Internet
Packet Loss: Measurement and Implications for End-to-End
QoS, 1998.

[7] J. Dean and S. Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. In OSDI’04: Sixth Sympo-
sium on Operating System Design and Implementation, De-
cember 2004.

[8] N. Dukkipati and N. McKeown. Why flow-completion time
is the right metric for congestion control. SIGCOMM Com-
put. Commun. Rev., 36(1):59–62, 2006.

[9] S. Floyd, M. Allman, A. Jain, and P. Sarolahti. Internet
Draft: Quick-Start for TCP and IP, Oct 2006.

[10] S. Floyd, M. Handley, J. Padhye, and J. Widmer. Equation-
based congestion control for unicast applications. In SIG-
COMM, pages 43–56, Stockholm, Sweden, 2000.

[11] S. Floyd and T. Henderson. RFC 2582: The New Reno Mod-
ification to TCP’s Fast Recovery Algorithm, April 1999.

[12] S. Floyd and V. Jacobson. Random early detection gateways
for congestion avoidance. IEEE/ACM Transactions on Net-
working, 1(4):397–413, 1993.

[13] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google file
system. In SOSP ’03: Proceedings of the nineteenth ACM
symposium on Operating systems principles, pages 29–43,
New York, NY, USA, 2003. ACM Press.

[14] D. Hong. FTCP Fluid Congestion Control, 2000.
[15] H. Jiang and C. Dovrolis. Why is the Internet traffic bursty

in short time scales? In SIGMETRICS ’05: Proceedings
of the 2005 ACM SIGMETRICS international conference
on Measurement and modeling of computer systems, pages
241–252, New York, NY, USA, 2005. ACM Press.

[16] J. Kulik, R. Coutler, D. Rockwell, and C. Partridge. A simu-
lation study of paced TCP. Technical Report BBN Technical
Memorandum No. 1218, BBN Technologies, 1999.

[17] V. Paxson. End-to-end Internet packet dynamics. In Pro-
ceedings of the ACM SIGCOMM ’97 conference on Applica-
tions, Technologies, Architectures, and Protocols for Com-
puter Communication, volume 27,4 of Computer Communi-
cation Review, pages 139–154, Cannes, France, September
1997. ACM Press.

[18] J. Postel. RFC 793 - Transmission Control Protocol, Sep
1981.

[19] I. Rhee and L. Xu. Limitations of Equation-based Conges-
tion Control. In Proceedings of ACM Sigcomm 2005, 2005.

[20] L. Rizzo. Dummynet: a simple approach to the evaluation of
network protocols. ACM Computer Communication Review,
27(1):31–41, 1997.

[21] A. Tang, D. Wei, S. Low, and M. Chiang. Heterogeneous
Congestion Control: Efficiency, Fairness and Design. In
Proceedings of ICNP 2006, 2006.

[22] D. X. Wei, P. Cao, and S. H. Low. Fair-
ness Convergence of Loss-based TCP. URL:
http://www.cs.caltech.edu/˜weixl/pacing/sync.pdf.

[23] D. X. Wei, C. Jin, S. H. Low, and S. Hedge. FAST TCP:
Motivation, Architecture, Algorithms, Performance. IEEE/
ACM Transactions on Networking, 14(6):1246–1259, 2006.

8

