
The Mojave Compiler: Providing Language Primitives for

Whole-Process Migration and Speculation for Distributed
Applications

Justin D. Smith 1, Cristian Ţăpuş2, and Jason Hickey2

1University of Pennsylvania 2California Institute of Technology
jyasu@cis.upenn.edu {crt,jyh}@cs.caltech.edu

Abstract

We present an approach for implementing language-
level primitives for whole-process migration and specu-
lative execution in a compiler and associated runtime
environment. These primitives are exposed to the user
through simple language constructs that do not require
the user to manage process state explicitly. With migra-
tion and speculation we show how the user can quickly
add persistent checkpoints to any large-scale distributed
application that requires longevity in a faulty environ-
ment. We demonstrate the use of migration and spec-
ulation primitives for checkpointing in a canonical grid
computation application, and analyze the results of this
implementation.

1. Introduction

The most intuitive way to provide reliability in soft-
ware is by allowing applications to take recoverable
checkpoints during their lifetime. Writing checkpoints
to persistent storage such as a disk array can be ex-
pensive; recovery has a similar cost. In a distributed
system, the cost of recovery can be reduced by restor-
ing only the state of processes that have failed. Our
work reduces the cost of checkpoint recovery by intro-
ducing primitives that can take advantage of resident
state on surviving nodes. These primitives utilize copy-
on-write mechanisms to preserve and recover a recent
state entirely in local memory.

In order to provide more flexibility in how a check-
point is taken our implementation splits the checkpoint
operation into two primitives: one for process migra-
tion and one for speculative execution. In the pres-

1-4244-0910-1/07/$20.00 c©2007 IEEE.

ence of reliable distributed persistent storage, process
migration allows a process to create a checkpoint by
migrating into persistent storage.

A speculation is a computation based on a precondi-
tion. Speculations allow a process to make progress in
a computation by optimistically assuming that the pre-
condition is satisfied before it is evaluated. If it is later
discovered that the precondition is not satisfied, the
process is rolled–back to the state immediately before
the assumption was made, and it may potentially take
a different execution path. Speculations are defined by
three operations: speculate, which starts a new specu-
lation; abort, which cancels the effects of a speculation
by rolling back the program to the state just before the
speculation was started; and commit, which discards a
rollback point of a speculation for which the precondi-
tion was successfully verified. Speculations share many
traits with traditional distributed transactions, one of
the earliest and simplest abstractions for reliable con-
current programming [5]. Unlike transactions, they al-
low speculative processes to use communication. This
relaxation of the Isolation property increses parallelism
but it also requires processes that depend on the values
generated by a speculative process to join that process’s
speculation and roll back together in case of failure.

The main contributions presented in this paper
are: introducing speculative execution constructs as
programming language primitives; and implementing
speculative execution and process migration primitives
in a compiler and runtime environment. The com-
piler generates process state management code auto-
matically, removing the need for the user to implement
hand-written checkpointing code.

We begin by providing a set of examples on how to
use the speculation and migration primitives to write
fault-tolerant and efficient distributed applications, fol-
lowed by an overview of our approach and an introduc-

1

Transfer (obj1, obj2, k) {
// We want the transfer to be atomic
// given that read and write are atomic
if (read (obj1, buf1, k) != k)

return failure;
if (read (obj2, buf2, k) != k)

return failure;
if (write (obj1, buf2, k) != k)

return failure;
if (write (obj2, buf1, k) != k) {

// Undo first write
while (write (obj1, buf1, k) != k) {
// Unrecoverable error on write failure
// Inconsistent state. Try again...
}
return failure;

}
return success;

}

Transfer (obj1, obj2, k) {
if ((specid=speculate())>0) {

// Enter speculation
if (read (obj1, buf1, k) != k)

abort(specid);
if (read (obj2, buf2, k) != k)

abort(specid);
if (write (obj1, buf2, k) != k)

abort(specid);
if (write (obj2, buf1, k) != k)

abort(specid);
commit(specid); // Speculation committed
return success;

} else { // Speculation aborted
return failure;

}
}

Figure 1. Using speculations for fault-
tolerance. Top half code is written in the
traditional programming model. Bottom half
code uses the speculative model, which sep-
arates the error recovery code from the trans-
fer operation.

tion of the compiler. In Section 6 we present related
projects and compare them to our approach. Details
of the implementation are discussed in Section 4. Ex-
perimental results are shown in Section 5. The paper
is concluded in with a discussion of future avenues of
research emerging from this work.

2. Speculations through examples

The first example we consider is the traditional
database example of money transfer between two ac-
counts, represented as a transfer of data between two
objects. We want to implement an atomic function
that swaps the first k bytes of two account objects,
obj1 and obj2, using read/write operations that may
fail. Figure 1 presents a traditional implementation of
such a transfer function together with a speculative ver-
sion. One of the more important differences is that the
speculative version separates the error recovery code

from the implementation of the transfer operation. In
contrast, in the traditional version the error recovery
code is written in-line, which can obscure the code, and
also makes error recovery dependent on the execution
path.

In this example, we have included explicit calls to
the speculation operations speculate, abort, and com-
mit. However, an even simpler implementation can be
obtained by treating the speculation like an exception
mechanism, where the read/write operations raise an
exception on failure. In this case, the speculative as-
sumption is that the transfer is successful; if an error
occurs, the speculation is rolled-back.

Along the same lines, we can use speculative exe-
cution to prevent certain types of software bugs from
crashing applications. For example, applications that
suffer from unchecked buffer overflow issues could be
instrumented using speculative execution. The instru-
mentation would make it such that if a buffer overflow
occurs the program is rolled back to where the mem-
ory allocation occurred and a different path of execu-
tion (potentially allocating more memory and retrying)
could be taken, thus preventing the application from
crashing. This would require minimal support from
the operating system. A similar approach, using only
simple checkpoints was suggested in the Rx [10] sys-
tem. The advantage of using speculative execution as
opposed to traditional checkpointing is that users can
instrument their own code and provide alternate ex-
ecution paths based on how the precondition of their
speculation is invalidated.

The second example (Figure 2) presents the bene-
fits of using the primitives for speculations and process
migration through a scientific computing application.
The computation runs for very long periods of time
and is prone to node failures.

The single processor implementation creates a ma-
trix and computes the value of each grid point based on
the values of its neighbors at the previous time step.
Parallelizing the application and making it run in a
distributed environment is of particular interest to the
problem we address in this work.

The decomposition of the computation grid and
the distribution of the work for a sample example is
presented in Figure 2. The computation domain of
each node overlaps with the computation domain of
its neighbors, allowing it to compute local information
with only limited boundary information from its neigh-
bors. The update of the border data is done using a
customized message passing interface.

The application has been implemented in the C lan-
guage with primitives for speculation and process mi-
gration, and it has been compiled using our compiler,

specid=speculate();
for(step = 1; step <= timesteps; step++) {

/* Get boundary values from neighbors. */
/* May have to rollback due to failure */
err=get_borders(u,rows,cols,myid,step);
if(err == MSG_ROLL)

abort(specid);
/* Perform the computation. */
do_computation(step, u, rows, cols);
/* Save a checkpoint if it’s time. */
if((step % checkpoint_interval) == 0) {

/* Save the current speculation */
commit(specid);
/* Save checkpoint to file */
migrate(checkpoint_name);
/* Start a new speculation */
specid=speculate();

}
}

Figure 2. Simplified speculative main loop, the 2D domain decomposition, and the work distribution
and process migration

the MCC. The main computing loop of the application
is presented in Figure 2. The program starts a specu-
lation by calling the speculate function. A speculation
is started at the beginning of the computation and af-
ter each checkpoint. Checkpoints are taken regularly,
after a fixed number of iterations. Depending on the
failure frequency, this parameter of the application can
be adjusted to balance the overhead of speculations
against the expected cost of fault recovery. At each
time step, each computing cell retrieves the boundary
information from its neighbors. If any of its neighbors
fails, the local computation is rolled back to the previ-
ous speculation, and the border information for that
timestep is requested again from the neighbors. In
this particular example there is a guarantee that the
computation will not rollback more than one specula-
tion, due to the commit operation present before each
checkpoint is taken. In the general case however, any
uncommitted speculation can be rolled back, indepen-
dent of its age, and commits for speculations can occur
out of order.

When a failure is observed at a given node the com-
putation has to be revived on a different node in the
system. To allow migration, each node of the com-
putation grid executes an MCC migration daemon. If
automatic resurrection of failed computation processes
is expected, the application needs to implement specific
daemons to resurrect failed processes. The checkpoints
are formatted as executable files and the resurrection
of processes is done by executing the saved checkpoint.
A run of this application on the cluster in the presence
of a fault is also illustrated in Figure 2. If computing
node 1 fails the computation thread is resurrected on
a remote node from the last checkpoint. All the other
processes rollback their last speculation to bring the

computation to a consistent state. The existence of a
reliable and distributed storage medium is needed for
a real fault-tolerant implementation. For the purpose
of this example an NFS mount point visible across the
entire cluster provided the required functionality.

The code presented in Figure 2 shows the clear
distinction between the checkpointing and speculative
code and the rest of the algorithm and it can easily
be used as a template for a large variety of scientific
computing applications. The minimal annotation re-
quired through the use of specific language primitives
is computation and architecture independent.

3. Overview of MCC

We implement whole-process migration and specu-
lative execution as part of the Mojave Compiler Collec-
tion (MCC). We built MCC as a multi-language com-
piler that compiles C, Pascal, ML, and Java. MCC
provides an active test bed for research in several areas
of distributed systems.

We chose to expose migration and speculation to
the user as language primitives. Since the compiler
determines how process state is organized, we can use
it to automatically generate code to manage the pro-
cess state during migration or speculative execution,
requiring minimal knowledge from the user.

The compiler is in an ideal position to enforce safety
in a program, by introducing runtime safety checks.
The compiler can ensure the process will not attempt
to access illegal areas of memory or use values with in-
appropriate types. To support this, MCC compiles all
source languages to a semi-functional intermediate rep-
resentation (FIR) [7, 13]. FIR is a type-safe intermedi-
ate language where variables are immutable, but heap

values can be modified. Function calls in the source
language are converted to tail-calls using continuation
passing style. Loops are expressed with recursive func-
tions.

The FIR is machine-independent, and the Mojave
compiler architecture is designed to support multiple
back-ends, including both native-code and interpreted
runtime environments. Our primary runtime imple-
mentation is a native-code runtime for the Intel IA32
architecture. An additional runtime environment is
available that simulates RISC architectures. Object
code generation is performed by elaborating the FIR
code to machine-specific assembly code, introducing
runtime safety checks as necessary.

MCC is a suitable platform for developing whole-
process migration primitives in an efficient manner.
Also, MCC’s safety properties make it ideal for use
in distributed applications that are deployed over un-
trusted networks such as the Internet. MCC’s heap
design allows for easy support of speculative execution
models.

4. Implementation of migration and
speculations

Most support for process migration and specula-
tions is provided by the MCC runtime environment.
The runtime manages several tasks, including garbage
collection, process migration, speculation, and runtime
type-checking for heap operations. Process migration
and speculation are tightly integrated with the garbage
collector.

The garbage collector implements generational,
mark-sweep, compacting collection. It incorporates
two phases: a minor collection phase that is fast and
eliminates blocks with short live ranges, and a ma-
jor collection phase that sweeps and compacts the en-
tire heap. Use of a compacting collector is possible
through the use of the pointer table, and is benefi-
cial since it preserves temporal data locality. Two
blocks that are allocated near each other temporally
are more likely to be used together than two blocks
that were allocated far apart from each other. By
preserving temporal locality, we increase the likelihood
that frequently-accessed data will be close together in
memory, thereby improving the cache performance over
breadth-first copying collectors.

The garbage collector maintains a number of heap
invariants that are required for efficient implementa-
tion of speculations. The interaction with the garbage
collector is beyond the scope of this paper, but is dis-
cussed elsewhere [13, Chapter 5].

4.1. Process state in the runtime

To support process migration and speculation,
the runtime provides a standardized, architecture-
independent representation of the entire program state.
Each memory structure, or block, is stored in a heap.
Each block has a header, and stores its data in an
architecture-independent format.

Data for FIR variables are stored in registers in a
machine-dependent representation for efficiency. Dur-
ing migration, register state that is live across a mi-
gration point is copied into the heap first so a stan-
dard, architecture-independent representation of the
data may be migrated.

Data blocks in the heap are tracked by a pointer
table. All non-empty entries in the pointer table con-
tain pointers to valid blocks in the heap, and every
valid block in the heap has an entry allocated for it in
the pointer table. With speculation, it is possible that
there will be valid blocks in the heap whose pointer ta-
ble entry refers to a different block; these special blocks
are tracked by a checkpoint record in the event that a
speculation is rolled back. A function table contains
pointers to all valid higher-order functions.

The program state includes code in a text area, con-
taining both native machine code and a representation
of the FIR code. The FIR code is immutable at all
times, and the native machine code is immutable at
all times except during process migration. The native
code is modified during process migration, when the
machine code is regenerated from the FIR for the tar-
get architecture.

4.1.1 Pointer table

The pointer table’s main purpose is to allow for re-
location (enabling migration and speculation) and to
provide safety for C memory. The pointer table is
implemented in software, however its design is com-
patible with a hardware implementation for increased
efficiency.

Figure 3 illustrates the pointer table layout. The
pointer table contains entries pointing to allocated data
blocks. Source-level C pointers are represented in the
runtime as (base + offset) pairs. The base pointer al-
ways points to the beginning of a data block in the
heap. Base pointers are never stored directly in the
heap. Instead, the base pointer is stored as an index to
an entry in the pointer table, which contains the actual
address of the beginning of the data block.

The pointer table provides a simple mechanism for
identifying and validating data pointers in aggregate
blocks. When an index i for a base pointer is read from

Figure 3. Pointer table representation

the heap, i is checked against the size of the pointer
table T to verify if it is a valid index, then Ti is read
from the ith entry in the pointer table and checked to
ensure it is not a free entry in the pointer table. These
steps can be performed in a small number of assembly
instructions, and ensure Ti is a valid block pointer.

The pointer table also supports relocation. If the
heap is reorganized by garbage collection or process
migration, the pointer table and registers are updated
with the new locations, but the heap values themselves
are preserved. This level of transparency has a cost:
in addition to the execution overhead, the header of
each block in the heap contains an index. In the IA32
runtime, the overhead is in excess of 12 bytes per block,
including the pointer table.

4.2. Process migration

To facilitate fault-tolerant computing, MCC intro-
duces a level of abstraction between the processes that
are running in a distributed system and the specific
machines on which they are running. The mechanism
for migrating a process from one machine to another
needs to perform three operations: a pack operation
to capture the entire state of the process, including the
program counter, register values, heap data, and code;
a transmit operation to transmit the state of the pro-
cess to a target machine; and an unpack operation
to reconstruct the process state on the target machine
and resume execution. The same mechanism is used to
generate checkpoint files while the process is running.

Process migration should be architecture-
independent to allow for distributed clusters of
heterogeneous nodes. Also, process migration should
be safe; the remote machine receiving the program
should be able to verify that the program type-checks
and that heap values are used in a proper manner.
If the remote machine can verify that a received

program is safe, then process migration is viable
in environments where machines in the cluster do
not trust each other entirely, such as the wide-area
computing clusters on the Internet.

4.2.1 Using process migration in the FIR

Process migration is expressed in the FIR as a pseudo-
instruction: migrate [i, aptr , aoff] f(a1, . . . , an). The
first three arguments indicate how the migration should
be performed, and are not passed as arguments to f .
The integer i represents a unique label that identifies
the migration call, and is used by the backend to deter-
mine where program execution resumes after a success-
ful migration. (aptr , aoff) is a pointer (pointer to head
of a data block, and offset within that block) that refers
to a string describing the migration target. The string
includes information on what protocol to use to trans-
fer state to the target. f(a1, . . . , an) is a continuation
function (with arguments) to call once the program has
migrated.

There are three protocols that may be used for pro-
cess migration: migrate, suspend, and checkpoint.
The migrate protocol sends the entire state of a pro-
cess to another machine for immediate execution, and
terminates the process on the original machine. If mi-
gration fails for any reason, the process will continue to
execute on the original machine. While a process may
indirectly observe the result of a migration by invoking
external functions, the process is indifferent to the ma-
chine it is running on, and does not observe a successful
migration. This encourages an abstraction between the
process and the machine it is running on, and enables
processes to be migrated without their specific knowl-
edge for failure-recovery or load-balancing purposes.

In order to migrate to another machine, the remote
machine must run a migration server. This is a version
of the compiler that will listen for incoming migration
requests, recompile any inbound processes on the new
machine, and reconstruct their state before executing
them.

The other two protocols write the process state to
a file for later execution. The suspend protocol writes
the process state to a file and terminates the process if
it is successfully written. In contrast, the checkpoint
protocol continues running the process even when the
file is successfully written.

4.2.2 Runtime support for migration

The implementation of the pack and unpack opera-
tions is relatively straightforward. Since all heap data
and function pointers in the heap are represented in-
directly as indices, the heap data is not modified by

a migration, even if the data are relocated. Also, by
imposing standard byte ordering and alignment rules
on heap data, the amount of translation required to
migrate the heap across architectures is minimal. This
is essential for unsafe languages such as C, where it is
difficult or impossible to determine whether data in the
heap needs to be realigned or byte-swapped. For ex-
ample, an array of characters is indistinguishable from
an array of 32-bit integers in languages that do not fea-
ture strong typing, defeating attempts to automatically
align and byte-swap data for the native architecture.

The pack operation first performs garbage collec-
tion on the heap. Then it packs the live data, the
pointer table, the program text, and the registers into
a message that can be stored or transmitted. To mi-
grate the register spills and hardware registers (which
together cover the set of variables in the FIR program),
MCC stores the set of live variables into a newly allo-
cated block migrate env on the heap, taking care to
convert any real pointers into index values. The set of
live variables across migration corresponds exactly to
the arguments (a1, . . . , an) passed to function f .

All data is stored in the heap at the time of migra-
tion, with the exception of a single variable that con-
tains the index for migrate env . Since no data is stored
in variables, no data will be stored in the hardware-
specific registers. Therefore system migration does
not need to construct an explicit map between reg-
ister names on different architectures. All heap data
follows the standard, architecture-independent MCC
representation, including migrate env ; data in hard-
ware registers may continue to have hardware-specific
representations without interfering with system migra-
tion. Also, since no real pointers exist in the data, sys-
tem migration does not need to construct an explicit
map between pointers across different machines.

On an unpack operation, the FIR code is type-
checked, recompiled, and execution is resumed. Reg-
ister values are extracted from the heap and the stan-
dard safety checks are applied as they are read from
migrate env , allowing the register values to be type-
checked.

To implement the migrate operation, the source
machine first transmits the following data to the server:
FIR code for the process, size of heap and pointer
tables, index of the block containing live variables
(migrate env), and location to resume execution at (i).

The server compiles the code and links it with a spe-
cial stub that initializes the heap, restores the registers
and resumes execution at the location indicated by i.
If this compilation is successful, then the server starts
the new process using the stub, and the source machine
transmits the contents of the pointer table and heap to

the new process, allowing the heap to be reconstructed.
In order to achieve architecture independence, MCC

never migrates the actual executable text. Instead it
migrates the FIR code for the program, so the target
machine can verify the safety of the code. The loca-
tion index i in the migration call is used to correlate
the runtime execution point with a corresponding ex-
ecution point in the FIR. Since all pointers are stored
in the heap using indexes, migration must be careful
to preserve order in the pointer and function tables.

4.3. Speculative operations

Semantically, speculative execution appears atomic;
that is, either all the operations in a speculation suc-
ceed, or none of them succeed. The FIR provides a
generalization of speculation for expressing rollback of
a distributed computation that is more efficient than
using process migration alone in the event of a machine
failure.

When a speculation is aborted, the entire process
state, including all variable and heap values, is restored
to the state it had on entry into the speculation. This
rollback operation can be expressed with process mi-
gration by having a process write a checkpoint file each
time it enters a new speculation. To abort the spec-
ulation, the previous state is restored from the check-
point file. However, since the migration mechanism
recompiles the program, and the entire process state
must be reconstructed, this operation can be very ex-
pensive. Taking the checkpoint is expensive, since the
entire state must be written to a file, even parts of the
state that have not changed since a prior checkpoint.
By contrast, speculation uses a copy-on-write mecha-
nism to keep track of modified state that must be re-
stored if a speculation is rolled back, and speculation
does not need to recompile the code.

The FIR provides three primitives for managing
speculations: speculate, which enters a new specu-
lation level; commit, which marks a speculation level
as completed; and rollback, which aborts all changes
made by a level and resumes execution at the point
where the level was previously entered.

4.3.1 Using speculations in the FIR

Each speculate operation enters a new speculation
level nested within the previous level. Speculation lev-
els are numbered from 1 to N , where 1 is the oldest
speculation level entered and N is the most recent. A
process that has not entered any speculation is at level
0. A level l keeps track of all changes made to the
state that have occurred since l was entered. Specula-
tion levels use copy-on-write semantics; when a block

in the heap is modified, the block is cloned and the
pointer table updated to point to the new copy of the
block, preserving the data in the original block. On
a commit or rollback operation of l, exactly one of
these blocks will be discarded.

The speculate operation is represented
in the FIR using the following primitive:
speculate f(c, a1, . . . , an). The function f is
called within a speculative context. f does not return
(the FIR is expressed in a continuation-passing style),
and all live data must be passed as arguments. c
is an integer that is passed as the first argument to
f . On rollback, the value of c passed to f may be
changed to indicate that the rollback occurred. This
is currently the only way to carry state information
across a rollback.

The primitive for the commit operation is
commit [l] f(a1, . . . , an). This commits data for level
l ∈ {1 . . .N} by folding all changes from that level into
its previous level. Once the speculation is committed,
the function f(a1, . . . , an) is invoked.

The primitive for the rollback operation is
rollback [l, c]. This reverts all changes made by in
level l ∈ {1 . . .N} and all later levels. Rollback re-
sumes execution at the point where level l was entered.
The function that was called when level l was entered
is saved as part of the checkpoint and is called with the
original arguments but with the new value for c. This
version of the primitive is a retry primitive; level l is
automatically re-entered after it has been rolled back.
In effect, the state that is captured and restored is the
state immediately after level l was entered.

5. Speculations and process migration
in action

Due to space constraints we only present a brief sum-
mary of the experimental results. A detailed discussion
can be found in a technical report [13]. The test bed
is a cluster composed of nodes with dual 700MHz pro-
cessors and connected via a 100Mbps network.

We observed a migration time of 4 seconds for a
process with a 1MB heap in an untrusted environment
that required re-compilation of the FIR at the desti-
nation. Of this 10% represented the actual network
transfer and the rest was due to re-compilation. For
the same process, the binary migration time was under
1 second, of which 30% represented the data transfer
from source to destination. This overhead included the
time for establishing a TCP connection and the actual
data transfer.

The cost of speculative execution was analyzed as
a function of the mutation percentile of the heap dur-

ing the life of the speculation. While the entry time
was independent of it, and ran at about 40µsec for a
process with heap of size 200KB, the abort time of a
speculation in case of a 10% mutation was 120µsec and
went up to 135µsec in the case of 100% mutation. The
commit times were 81µsec for a mutation of 10% and
87µsec for a mutation of 100%. By comparison, the
context switch time on the cluster used for data collec-
tion was about 300µsec if only 2 processes with heap
sizes of 200KB ran in parallel.

In conclusion, the overhead from using speculative
execution and process migration is small compared to
having to re-start the application from scratch in the
presence of certain types of failures. This is especially
true in the case of long-running applications where mi-
gration is infrequent.

6. Related Work

Whole-process migration has been widely studied [2,
15]. The JoCaml system [1] provides process mobility
for OCaml programs based on the join calculus [3].

DEMOS/MP [9] is a message-based operating sys-
tem that provides process migration by leaving a stub
of the process on the source node to forward all com-
munication to the destination, or current location, of
the process. DEMOS/MP does not address the issue
of node failure. Kerrighed OS [4] is an operating sys-
tem designed to provide a single system image of a
distributed environment, which supports process mi-
gration between its nodes. However, using a custom
operating system in a production environment and the
lack of portability to multiple architectures are some
of the main concerns of these approaches. The Mo-
jave compiler takes a formal approach to process mi-
gration by using a functional intermediate representa-
tion (FIR) of programs based on a formal operational
semantics [7]. Furthermore, due to the use of the FIR,
which is a concept similar to Java bytecode, the Mojave
compiler provides process migration in heterogeneous
environments. Unlike the Java bytecode, the FIR is a
higher level representation of programs that could be
used to verify the correctness of the programs through
the use of theorem provers.

Ramkumar and Strumpen discuss the idea of
portable checkpoints in heterogeneous environ-
ments [11] by using a source-to-source compiler. They
developed a C to fault tolerant C compiler. Their
approach is limited by the use of ambiguous type
information when generating checkpointing code and
by requiring the use of specific memory allocation
routines provided by their system.

While speculations are similar to the concept of

lookahead-rollback introduced by the TimeWarp [8]
mechanism, we extend the concept by enabling specu-
lations throuh programming language extensions.

Speculations share many traits with traditional dis-
tributed transactions, one of the earliest and simplest
abstractions for reliable concurrent programming [5].
Transactions provide source-level fault isolation: from
a process’s point of view, a failure cannot occur during
a transaction; if a failure occurs, it must occur before
or after. While transactional models are ubiquitous in
the database community, they have not been frequently
applied to traditional programming languages. An im-
portant difference between speculations and transac-
tions is that speculations do not provide isolation, al-
lowing processes to communicate and collaborate while
inside an atomic operation.

As part of the Venari project, Haines et.al. [6] im-
plement a transaction mechanism as part of Standard
ML, utilizing a mutation log produced by a genera-
tional garbage collector to implement undoability. The
speculatives in MCC provide a programming paradigm
that permits optimistic distributed computation.

Recent related work includes the AtomCaml [12]
project, which is an extension to Objective Caml that
provides a synchronization primitive for atomic (trans-
actional) execution of code to replace locks. In our ap-
proach we allow speculative programs to use communi-
cation to interact with other programs while executing
inside a speculations.

7. Conclusion and Future Work

We presented a new approach for checkpoints in
distributed applications using programming language
primitives for process migration and speculative exe-
cution. Applications using these constructs are more
reliable and recover more easily from failures.

We are exploring ways to enhance this work to sup-
port speculative I/O with MojaveFS, a distributed
speculative filesystem. This will allow users to use nor-
mal file I/O operations and socket communication us-
ing standard calls inside a speculation. While we have
not discussed the issue of migrating network connec-
tions, we believe our work can be easily integrated with
a system like Migratory-TCP [14].

Migration and speculation primitives allow for a
number of interesting programming concepts, such as
dynamic transparent load balancing and mobile agents.
Our work can be applied to a wide variety of applica-
tions in applied sciences that would benefit from auto-
matic checkpointing code and code mobility.

References

[1] S. Conchon and F. L. Fessant. Jocaml: mobile agents
for Objective-Caml. In ASA/MA’99 Joint Agents
Symposium, October 1999.

[2] G. Di Marzo Serugendo, M. Muhugusa, and
C. Tschudin. A survey of theories for mobile agents.
World Wide Web Journal, special issue, 1998.

[3] C. Fournet, G. Gonthier, J.-J. L. a nd Luc Maranget,
and D. R¡E9¿my. The reflexive chemical abstract
machine and the join-calculus. In Proceedings of
PoPL’96, January 1996.

[4] P. Gallard and C. Morin. Dynamic streams for effi-
cient communications between migrating processes in
a cluster. In Euro-Par 2003: Parallel Processing, vol-
ume 2790.

[5] J. Gray and A. Reuter. Transaction Processing: Con-
cepts and Techniques. Morgan Kaufmann, 1994.

[6] N. Haines, D. Kindred, J. G. Morrisett, S. M. Net-
tles, and J. M. Wing. Composing first-class transac-
tions. ACM Transactions on Programming Languages
and Systems, November 1994. Short Communication.

[7] J. Hickey, J. D. Smith, B. Aydemir, N. Gray,
A. Granicz, and C. Ţăpuş. Process migration and
transactions using a novel intermediate language.
Technical Report caltechCSTR 2002.007, California
Institute of Technology, Computer Science, July 2002.

[8] D. R. Jefferson. Virtual time. ACM Trans. Program.
Lang. Syst., 7(3), 1985.

[9] M. L. Powell and B. P. Miller. Process migration in
demos/mp. In SOSP ’83: Proceedings of the ninth
ACM symposium on Operating systems principles.

[10] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou. Rx:
treating bugs as allergies—a safe method to survive
software failures. In SOSP ’05: Proceedings of the
twentieth ACM symposium on Operating systems prin-
ciples, pages 235–248, New York, NY, USA, 2005.
ACM Press.

[11] B. Ramkumar and V. Strumpen. Portable checkpoint-
ing for heterogeneous archtitectures. In FTCS ’97:
Proceedings of the 27th International Symposium on
Fault-Tolerant Computing (FTCS ’97).

[12] M. F. Ringenburg and D. Grossman. Atomcaml: first-
class atomicity via rollback. In ICFP ’05: Proceedings
of the tenth ACM SIGPLAN international conference
on Functional programming, pages 92–104, New York,
NY, USA, 2005. ACM Press.

[13] J. D. Smith. Fault tolerance using whole-process
migration and speculative execution. Master’s the-
sis, California Institute of Technology, Department of
Computer Science, 2003.

[14] F. Sultan, K. Srinivasan, D. Iyer, and L. Iftode. Migra-
tory tcp: Connection migration for service continuity
in the internet. In ICDCS ’02: Proceedings of the 22
nd International Conference on Distributed Comput-
ing Systems (ICDCS’02).

[15] G. Vigna, editor. Mobile Agents and Security.
Springer, 1999. LNCS 1419.

